1 2	Supplementary materialsMicrobial Cell Factories
3	
4	Metabolome analysis-based design and engineering of a metabolic pathway in
5	Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and
6	L-arabinose
7	
8	Hideo Kawaguchi ^a , Kumiko Yoshihara ^a , Kiyotaka Y. Hara ^{a,b} , Tomohisa Hasunuma ^a
9	Chiaki Ogino ^c , Akihiko Kondo ^{a,c,d,*}
10	
11	^a Graduate School of Science, Technology and Innovation, Kobe University, 1-1
12	Rokkodai, Nada, Kobe 657-8501, Japan
13	^b Department of Environmental and Life Sciences, School of Food and Nutritional
14	Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526, Japan
15	° Department of Chemical Science and Engineering, Graduate School of Engineering,
16	Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
17	^d Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Turumi, Yokohama,
18	Kanagawa 230-0045, Japan
19	
20	*Correspondence: Akihiko Kondo
21	Graduate School of Science, Technology and Innovation, Kobe University
22	1-1 Rokkodai, Nada, Kobe 657-8501, Japan
23	E-mail: akondo@kobe-u.ac.jp
24	Tel : +81-78-803-6192
25	Fax: +81-78-803-6192

Strain	Carbon source ^{<i>a</i>}	Specific growth rate	Specific con (g/h/g dry c	sumption rate cell weight) ^e	Total amounts of sugar
		(n^{-1})	Glucose	Arabinose	consumed (g/L) ^e
Wild-type	Arabinose	0.36^{b}	_	0.180^{b}	9.2^{b}
Wild-type	Glucose	0.40^{b}	0.167^{b}	—	6.4^{b}
Wild-type	Mixture of arabinose	0.35^{b}	0.070^{b}	0.043^{b}	17.3^{b}
	and glucose				
31831/pCH <i>pyk</i>	Mixture of arabinose	0.28^{c}	0.102^{c}	0.050^{c}	12.7^{c}
	and glucose				
$\Delta araR$	Mixture of arabinose	0.29^{d}	0.101^{d}	0.053^{d}	19.5 ^d
	and glucose				
∆araR/pCHpyk	Mixture of arabinose	0.21^{d}	0.081^{d}	0.078^{d}	16.4^{d}
	and glucose				

Table S1 Specific growth rates and specific sugar consumption rates by recombinant strains and the wild-type strain of *C. glutamicum* ATCC 31831

²⁸ ^aBT medium containing both D-glucose and/or L-arabinose (15 g/L each) was used for aerobic cell growth.

 b Values were determined based on data shown in Fig. 2.

30 ^cValues were determined based on data shown in Fig. 4.

 31 ^{*d*}Values were determined based on data shown in Fig. 5.

³² ^dValues were determined from data at 23 h of cultivation.

				Relative	abundance ^{b, b}		
	Strain ^a	Wi	ld type	Δ	MaraR	Δara	R/pCH <i>pyk</i>
Target gene ^d	Time (h)	11	23	11	23	11	23
araA		1.0 ± 0.26	0.84 ± 0.43	1.76 ± 0.12	2.90 ± 0.40	1.71 ± 0.17	3.52 ± 0.16
			(0.590)	(0.012)	(0.007)	(0.019)	(0.001)
araB		1.0 ± 0.14	0.99 ± 0.48	1.58 ± 0.11	1.60 ± 0.46	1.55 ± 0.34	4.35 ± 2.04
			(0.969)	(0.014)	(0.221)	(0.133)	(0.147)
araE		1.0 ± 0.25	0.65 ± 0.31	1.35 ± 0.28	1.25 ± 0.47	1.38 ± 0.23	1.63 ± 0.95
			(0.178)	(0.196)	(0.498)	(0.143)	(0.341)
ptsG		1.0 ± 0.31	0.45 ± 0.10	0.84 ± 0.10	0.54 ± 0.17	1.03 ± 0.41	0.53 ± 0.13
			(0.092)	(0.373)	(0.072)	(0.995)	(0.130)
ptsI		1.0 ± 0.06	1.28 ± 0.56	1.03 ± 0.19	1.63 ± 0.57	0.69 ± 0.03	1.99 ± 1.21
			(0.435)	(0.844)	(0.132)	(0.001)	(0.230)
pfk		1.0 ± 0.02	0.67 ± 0.23	0.99 ± 0.23	1.60 ± 0.39	1.24 ± 0.15	0.86 ± 0.11
			(0.078)	(0.961)	(0.058)	(0.051)	(0.098)
gapA		1.0 ± 0.13	0.46 ± 0.37	1.02 ± 0.17	1.28 ± 0.58	1.23 ± 0.13	0.80 ± 0.01
			(0.157)	(0.898)	(0.580)	(0.151)	(0.158)
pyk		1.0 ± 0.14	1.03 ± 0.43	1.25 ± 0.08	4.13 ± 1.60	8.16 ± 2.17	3.64 ± 3.16
			(0.925)	(0.055)	(0.028)	(0.003)	(0.214)
tal		1.0 ± 0.10	0.73 ± 0.26	1.45 ± 0.28	2.09 ± 0.52	1.61 ± 0.42	2.22 ± 0.35
			(0.171)	(0.060)	(0.025)	(0.059)	(0.009)
tkt		1.0 ± 0.28	0.27 ± 0.11	0.79 ± 0.21	0.90 ± 0.01	1.38 ± 0.59	0.64 ± 0.29
			(0.013)	(0.304)	(0.572)	(0.406)	(0.236)

Table S2 Relative expression levels of genes in the ara cluster and central metabolic pathway in aerobically grown wild-type and araR-34deletion mutants with/without *pyk* overexpression ($\Delta araR$ and $\Delta araR/pCHpyk$)

36	^a Cells were grown aerobically to late log phase in A medium containing D-glucose and L-arabinose (20 g/L each) and subsequently
37	inoculated to an initial OD ₆₀₀ of 0.2 into BT medium containing both D-glucose and L-arabinose (15 g/L each).
38	^b RNA was isolated from aerobically grown cells of the wild-type strain and <i>araR</i> deletion mutants with or without <i>pyk</i> overexpression
39	harvested after 11 and 23 h of cultivation. The amount of each transcript was subsequently determined using quantitative RT-PCR and
40	expressed relative to the amount obtained for the wild-type strain harvested after 11 h of cultivation. Data are average \pm standard deviation
41	calculated from the results of triplicate measurements.
42	^{c} Values in parentheses indicate p values for comparison with the wild-type strain harvested after 11 h of cultivation.
43	^d Abbreviations: araA, L-arabinose isomerase; araB, L-ribulokinase; araE, L-arabinose transporter; ptsI, enzyme I of PTS; gapA,
44	glycelaldehyde-3-phosphate dehydrogenase; pfk, phosphosfructokinase; ptsG, D-glucose PTS transporter; pyk, pyruvate kinase
45	(NCgl2008); <i>tal</i> , transalderase; <i>tkt</i> , transketolase.

48 Figure captions

- 49
- 50

51	Fig. S1 Retention time comparison of liquid chromatography-mass spectrometry/mass
52	spectrometry total ion current chromatograms of oxaloacetate (OXA) in C. glutamicum
53	cells grown aerobically in BT medium containing sugar mixture of D-glucose and L-
54	arabinose (15 g/L each). The authentic standards of OXA at the concentration of 2, 10,
55	and 20 μ M (a, b, c) as well as their identified counterparts in C. glutamicum cells of the
56	wild-type (d), and recombinant strains of $31831/pCHpyk$ (e) and $\Delta araR/pCHpyk$ (f).
57	OXA was identified based on retention time in chromatography and its mass spectrum.
58	Concentration of OXA was determined with peak area of its multiple reaction
59	monitoring (MRM) transition (131.0>87.1) in LC-MS/MS.
60	
61	
62	Fig. S2 Mass spectra of identified oxaloacetate (OXA) in C. glutamicum cells grown
63	aerobically in BT medium containing sugar mixture of D-glucose and L-arabinose (15
64	g/L each). The authentic standards of OXA at the concentration of 2, 10, and 20 $\mu M\left(A\right)$
65	as well as their identified counterparts in C. glutamicum cells of the wild-type (d), and
66	recombinant strains of 31831/pCH <i>pyk</i> (e) and $\Delta araR/pCHpyk$ (f). OXA was identified
67	based on retention time in chromatography and its mass spectrum acquired by the
68	targeted multiple reaction monitoring (MRM) transition (131.0>87.1).
69	

70 Fig. S1

73 Fig. S2

74

76 Materials and Methods

78	Quantitative RT-PCR analysis
79	Wild-type and recombinant ($\Delta araR$ and $\Delta araR/pCHpyk$) strains of C. glutamicum were
80	grown aerobically in BT medium containing D-glucose and L-arabinose (15 g/L each).
81	Total RNA was extracted from growing cells using an RNeasy Mini kit (Qiagen, Hilden,
82	Germany) as previous described (Kawaguchi et al., 2008). Total RNA isolated from the
83	cells was used for quantitative reverse transcriptase PCR (qPCR) analysis to determine
84	mRNA levels in wild-type and recombinant cells after 11 and 23 h of cultivation
85	compared with levels in wild-type cells after 11 h of cultivation. qPCR was performed
86	using QuantStudio 3 (Thermo Fisher Scientific, Waltham, MA) and PowerUp SYBR
87	Green Master Mix (Thermo Fisher Scientific) according to the manufacturer's
88	instructions. Oligonucleotides used for qPCR analysis are listed in Table S3 (primers 13
89	through 36). The comparative cycle threshold method was used to quantify relative
90	expression. Cycle threshold values were computed by determining the average of
91	triplicate values.
92	

Nome		
iname	Target gene	Sequence (5'-5')
primer 13	araA	GCGCCAATGACAACGTCAT
primer 14	araA	TCATTAGCCTGGGTGTGAAGGT
primer 15	araB	TCGAACTGGATCGAGCTCTT
primer 16	araB	GTAGACCTCGTCGATACTGTTG
primer 17	araD	GATCATCGGTGACGACTCT
primer 18	araD	GTGGTTCTTCATCAGCACA
primer 19	araE	TAGCGTCCGCTGAATAGGGT
primer 20	araE	GCCATCGATTCCGAGCTCAA
Prime r21	ptsG	TATCCCATTGCTCTACCCA
primer 22	ptsG	CCCTGAATGAAGTCGTAACC
primer 23	ptsI	CGAACTGTGCTTCCTTTCC
primer 24	ptsI	ACAACGACCTTGGACTCT
primer 25	pfk	CACCGTTATTCCAGAAGTACC
primer 26	pfk	GACGATAATGCCGTACTTCTC
primer 27	gapA	GCAGTCAACATCGTTCCT
primer 28	gapA	TAACTGGAACGCGAAGTG
primer 29	pyk	GGACTTTATTGCACTGTCCTTC
primer 30	pyk	CTTGGCGATCACAGGAACA
primer 31	tal	TCCAAGATCCACTCTGTGGCTT
primer 32	tal	AAAGCCTCATCGGATCCGATTG
primer 33	tkt	CATCCTCAACGGCATTTCCCT
primer 34	tlt	CCATGAGAGCTGCAAGACGAA
primer 35	16S rRNA	CAGGTCTCTGGGCAGTAACTGA
primer 36	16S rRNA	CGTTTACGGCATGGACTACCA

Table S3 Oligonucleotides used for qPCR in this study

95 **Reference**

- 96 Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. Engineering of an L-
- 97 arabinose metabolic pathway in *Corynebacterium glutamicum*. Appl Microbiol
- 98 Biotechnol. 2008;77:1053–62. doi:10.1007/s00253-007-1244-x.