
Supplementary Material for “Additive

Function-on-Function Regression”

This document contains six sections of supplementary material. Section A discusses

extension of our method to various realistic scenarios. Section B illustrates the transforma-

tions of the functional covariates required by our estimation procedure. Section C details

the settings of our simulation experiment, describes the evaluation criteria, and discusses

the fitting of these methods in practice, which includes the selection of the tuning pa-

rameters for our method, as well as for the competitive approaches. Additional simulation

results are presented in Section D. Section E includes additional investigation for the capital

bike share study. Section F discusses another data application, the yield curves study.

A Methodology Extensions

The methodology presented in Section 2 of the main paper is based on the assumption

that both the response and the covariate are observed on a fine and regular grid of points

and that covariates are observed without noise. However, extensions to diverse realistic

scenarios are possible as we describe now.

(i) We first consider the case of functional covariates observed on a fine and regular

grids of points but with error; i.e., Wik = Xi(sk) + δik, where the random deviations δik are

independent with a common variance τ 2 > 0. In functional data analysis (FDA), various

smoothing techniques have been applied to remove the observational errors δik; see for

example Ramsay and Silverman (2005) and the references therein. Zhang and Chen (2007)

proposed approximating the true latent process Xi(·) by smoothing each noisy trajectory

using local polynomial kernel smoothing, and they proved that the estimated curves, say

X̂i(·), are asymptotically identical to the true latent process. The mean and the covariance

function of the covariate Xi(sk) are then estimated by their sample estimators.



(ii) If the covariates are observed on a sparse and irregular grid of points with errors,

i.e., Wik = Xi(sik)+δik and τ 2 > 0, we estimate the underlying smooth curves, say X̂i(·), by

employing functional principal component analysis (FPCA) techniques for sparsely sampled

functional data (Yao et al. 2005). Their method uses local linear smoothers to estimate

the mean and covariance functions of the covariate Xi(sk), and then estimates the pairs of

eigenvalues/eigenfunctions by representing the random curves in a mixed model framework.

They predict FPC scores using conditional expectations and predict the latent trajectories

using finite Karhunen-Loève (KL) expansions. If the new covariate X0(s) is observed on

a sparse design, we first estimate eigenfunctions from the original observed data assuming

that X0(s) follows the same process as Xi(s), and then predict the FPC scores for the new

covariates via conditional expectation formula in Yao et al. (2005).

(iii) Finally, when the sampling design of the response is sparse, we follow the same ap-

proach used for the sparsely observed covariates, and then estimate the smooth underlying

curves for the response.

When Yi(·) are observed on a sparse and irregular grid of points, {ti1, . . . , timY,i
},

numerical integration may not provide an accurate approximate of the ξik’s. In this

case, we use best linear unbiased predictors (BLUPs) proposed by Yao et al. (2005). For

completeness, we review some of the results presented in Yao et al. (2005). Let Yi =

[Yi(ti1), . . . , Yi(timY,i
)]T , and let ΣY,i = [cov{Yi(tij), Yi(tij′)}]1≤j,j′≤mY,i

be the covariance

matrix evaluated corresponding to the observed time points tij and tij′ . For i = 1, . . . , n,

define the mY,i-dimensional vector φ̃ik = [φ̃k(ti1), . . . , φ̃k(timY,i
)]T , where φ̃k(·) is the esti-

mated eigenfunctions obtained from the spectral decomposition of the estimated covari-

ance matrix of response. The BLUPs of ξik can be found as ξ̃ik = σ̃2
kφ̃

T
ikΣ̃
−1
Y,iYi, where

σ̃2
k and Σ̃Y,i are the eigenvalues and the covariance matrix of marginal response estimated

using the entire data set. Then, it follows that ν̃kk = v̂ar(ξ̃ik) = σ̃2
kφ̃

T
ikΣ̃
−1
Y,iφ̃ikσ̃

2
k and

ν̃kk′ = ĉov(ξ̃ik, ξ̃ik′) = σ̃2
kφ̃

T
ikΣ̃
−1
Y,iφ̃ik′σ̃

2
k′ (k 6= k′). The inference procedure described in

Section 3 of the main paper is now available with ν̃kk and ν̃kk′ .

B Transformation of Covariates

As discussed in Section 4 of the main paper, transformation of the covariates is particularly

important in our procedure. For completeness, we summarize the pointwise center/scaling

transformation of the functional covariate proposed by Kim et al. (2016). The pointwise

center/scaling transformation of X(t) is defined by X∗i (s) = {Xi(s)−µX(s)}/σX(s), where

µX(s) and σX(s) are mean and standard deviation of the covariate Xi(s). In practice, for

2



a fixed point sk, we estimate the mean and the standard deviation by the sample mean

µ̂X(sk) and the sample standard deviation σ̂X(sk), respectively, based on the covariates

{Xi(sk)}ni=1. The transformed version of the new covariates, X∗0 (s), is also needed in the

prediction of a new response curve; for a fixed point sk, we obtain a realization of the

transformed covariate X∗0 (sk) based on the sample mean µ̂X(sk) and the sample standard

deviation σ̂X(sk) obtained from the original observed data {Xi(sk)}ni=1. By applying the

transformation technique, we can avoid numerical stability issues, while still preserving

prediction accuracy.

C Details of the Simulation Setup

In this section, we describe the design of the numerical study and the evaluation criteria

used in Sections 4.2.1 and 4.2.2.

C.1 Simulation Design

We construct simulation data sets using the model

Y (t) =

∫
TX
F{X(s), s, t}ds+ εi(t), (1)

with the true covariate X(s) given by X(s) = a1 + a2
√

2 sin(πs) + a3
√

2 cos(πs), where

ap ∼ N(0, 2(1−p)2) for p = 1, 2, 3. Throughout the study, it is assumed that each covariate

Xi(t) is not observed directly due to noise. We construct noisy trajectories Wik by Wik =

Xi(sik)+Normal(0,τ 2) with a noise variance equal to τ = 0.5. Define φ1(t) = 1, φ2(t) =√
2 sin(2πt), φ3(t) =

√
2 cos(2πt), φ4(t) =

√
2 sin(4πt), and φ5(t) =

√
2 cos(4πt). Then, the

response Yi(t) is generated based on model (1) for all of the following factors:

(1) True function F (x, s, t):

(i) linear case: F1(x, s, t) = [
√

2 sin(2πt)s+
√

2 cos(2πt)2 cos(πs)]x

(ii) simple nonlinear case: F2(x, s, t) = φ1(t)xs+ φ2(t)(4− 2(x
5
)2 − 10s)

(iii) complex nonlinear case: F3(x, s, t) = φ1(t)xs+φ2(t)(4−2(x
5
)2−10s)+φ3(t) sin(2−

x− 2s) + φ4(t)2x cos(πs) + φ5(t)[exp{−(x
5
)2 − ( s−0.5

0.3
)2} − 0.5]

(2) Error process Ei = [εi(ti1), . . . , εi(timY,i
)]T :

(i) E1
i ∼Normal(0,σ2

ε ImY,i
)
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(ii) E2
i ∼ Normal(0,σ2

εΣ)+Normal(0, σ2
ε ImY,i

) where Σ has ARρ(1) structure

(iii) E3
i ∼ ωi1 + ωi2

√
2 sin(2πt)+ Normal(0, σ2

ε ImY,i
)

(iv) E4
i ∼ ωi1

√
2 cos(2πt) + ωi2

√
2 sin(4πt)+ Normal(0, σ2

ε ImY,i
)

We set σε = 0.3 and ρ = 0.1. The random variables ωi1 and ωi2 are uncorrelated and

are generated from N(0,0.152) and N(0, 0.12), respectively.

(3) Sampling design:

(i) dense: mY = 101 and mW = 81 equidistant time points in [0,1]

(ii) sparse:

mY,i
iid∼ Uniform({35, . . . , 44}) (preserve 34.7%∼43.6% of the data per curve)

mW,i
iid∼ Uniform({45, . . . , 54}) (preserve 55.6%∼66.7% of the data per curve)

We do not consider the cases where the sampling design of the covariate is sparse but

the response curves are sampled densely, and vice versa.

(4) Number of subjects: (i) n = 50, (ii) n = 100, and (iii) n = 300

Throughout this study, the covariate in the test data is observed with noise. We gen-

erated the covariates X0,i′(s) (i′ = 1, 2, . . . , n′) of the test data set assuming that the test

data follow the same distribution as the training data. We assessed the predictive perfor-

mance using the sample size setting n′ = 50, mY = 101, and mX = 81. When the coverage

performance was assessed, we increased the sample size in the test data to n′ = 100.

C.2 Evaluation Criteria

For each scenario, we used Monte-Carlo simulations with N = 1000 replications. Our

performance measures are the in-sample and out-of-sample root mean squared prediction

error (RMSPE) and the average coverage probability (ACP) of the pointwise prediction

intervals. We define the in-sample RMSPE by

RMSPEin = N−1
∑N

r=1

[
n−1

∑n
i=1mY,i

−1∑mY,i

j=1 {Y
(r)
i (tij)− Ŷ (r)

i (tij)}2
] 1

2
,

where Y
(r)
i (tij) and its estimate Ŷ

(r)
i (tij) are from the rth Monte Carlo simulation. We

define the out-of-sample RMSPE by

RMSPEout = N−1
∑N

r=1

[
(50 · 101)−1

∑50
i′=1

∑101
j=1{Ỹ

(r)
0,i′ (tj)− Ŷ

(r)
0,i′ (tj)}

2
] 1

2
,
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where Ỹ
(r)
0,i′ (t) =

∫
TX
F{X(r)

0,i′(s), s, t}ds and Ŷ
(r)
0,i′ (tj) are from the rth Monte Carlo simula-

tion. The RMSPEout captures prediction errors, and one would expect that the values of

RMSPEout converge to zero as the sample size increases.

Finally, we approximate (1−α) level pointwise prediction intervals to observe coverage

probabilities at the nominal level. We define the ACP of the prediction intervals at the

(1− α) level by

ACPp(1− α) = (100 · 101 ·N)−1
∑N

r=1

∑100
i′=1

∑101
j=1I{Y0,i′(tj) ∈ P

(r)
1−α,i′(tj)},

where P
(r)
1−α,i′(tj) are the pointwise prediction intervals from the rth Monte Carlo simulation,

and I(·) is the indicator function. In this calculation the prediction intervals are constructed

using the same fixed test data set over the Monte Carlo replications.

C.3 Implementation

In this section we detail the implementation of our additive function-on-function based on

principal components regression model (AFF-PC ) as well as comment on the implemen-

tation for the competing approaches. The description includes the selection of the tuning

parameters that was used throughout the simulation study.

The additive function-on-function principal component-based regression model (AFF-

PC ) was fit using Kx = Ks = 7 dimension cubic B-splines for x and s. The number of

eigenbasis functions K was selected to have 95% of the variance explained, and so K can

vary between data sets. The smoothing parameters λx and λs were selected by restricted

maximum likelihood (REML) implemented with the gam() function in the mgcv package

(Wood 2006), and the integration was approximated by Simpson’s rule. Also, the FPC

decompositions were implemented using fpca.sc function in the refund (Huang et al.

2015) R package. The number of basis functions in x and s directions were such that

the product KxKs is smaller than the smallest sample size considered in the simulation

experiment (which is n = 50); this constraint is needed for computational feasibility.

The functional linear model (FLM) was also fit using the sff() function n the refund

package; the bivariate coefficient function, β(s, t), was modeled using the tensor product of

two univariate spline bases one for each direction. We used seven cubic B-splines for each

direction and the two corresponding smoothness parameters were selected using REML.

The B-spline based estimation, labeled AFF-S, (Scheipl et al. 2015) was fit using the

sff() function in the refund package with six cubic B-splines for direction t and five cubic

B-splines for directions x and s. The three corresponding smoothness parameters were

selected using REML.
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Table 1: Summary of (1) RMSPEin and (2) RMSPEout based on 1000 simulated data sets.

Ei = E1
i Ei = E2

i Ei = E3
i Ei = E4

i Ei = E1
i Ei = E2

i Ei = E3
i Ei = E4

i

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

n method F (x, s, t) = F2(x, s, t), moderately sparse design F (x, s, t) = F3(x, s, t), moderately sparse design

50 FLM 0.328 0.149 0.445 0.150 0.372 0.156 0.372 0.155 0.514 0.461 0.595 0.463 0.543 0.465 0.544 0.464

AFF-PC 0.310 0.100 0.429 0.099 0.348 0.095 0.352 0.110 0.345 0.207 0.456 0.213 0.384 0.220 0.385 0.224

100 FLM 0.330 0.143 0.446 0.144 0.375 0.146 0.375 0.146 0.522 0.442 0.602 0.443 0.550 0.442 0.551 0.442

AFF-PC 0.309 0.081 0.429 0.077 0.350 0.071 0.353 0.083 0.339 0.167 0.453 0.172 0.380 0.173 0.380 0.176

300 FLM 0.331 0.138 0.447 0.138 0.377 0.140 0.377 0.139 0.522 0.427 0.602 0.428 0.552 0.428 0.552 0.428

AFF-PC 0.306 0.058 0.428 0.057 0.352 0.051 0.353 0.056 0.332 0.133 0.448 0.136 0.377 0.138 0.377 0.139

The functional additive models, labeled FAM, (Müller and Yao 2008) was implemented

using the FPCfam() function in PACE package written in Matlab. For the estimation of the

additive model components, a Gaussian kernel was used and the bandwidth was selected

via generalized cross-validation (GCV); these choices are the default for fitting FAM.

D Additional Simulation Results

D.1 Additional Simulations for Irregular and Sparse Design

We further investigated predictive performance for sparse design with a different level of

sparseness. In this experiment, we generated the data using increased number of time points

for s and t; for convenience, we call this setting moderately sparse design. Although the

simulations in the main paper used smaller numbers of time points per curve, we continue

to call this setting sparse design. For the response trajectories, mY,i = 55–66 points were

randomly selected from [0, 1] interval for each curve, while the simulations in the main

paper used only mY,i = 35–44 points for t. For covariate trajectories, we randomly selected

mW,i = 50–62 points from [0, 1] interval for each curve, while the settings in the main paper

used mW,i = 45–54 points for s. Results are shown in Table 1 and show improved prediction

performance with AFF-PC over FLM for both in-sample and out-of-sample prediction.
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Table 2: Summary of (1) RMSPEin and (2) RMSPEout based on 1000 simulated data sets.

Results are obtained by applying the AFF-PC model.

dense design sparse design

PVE=95% PVE=99% PVE=95% PVE=99%

n (1) (2) (1) (2) (1) (2) (1) (2)

50 0.374 0.201 0.369 0.194 0.387 0.229 0.382 0.221

100 0.372 0.161 0.366 0.150 0.386 0.186 0.380 0.176

300 0.370 0.131 0.364 0.116 0.380 0.143 0.375 0.129

Table 3: Summary of ACP for the new response Y0(t)|X0(·), i.e., ACPp, at nominal significance

levels 1 − α =0.85, 0.90, and 0.95. Results are based on 1000 simulated data sets with 100

bootstrap replications per data.

dense design sparse design

PVE=95% PVE=99% PVE=95% PVE=99%

n 0.85 0.90 0.95 0.85 0.90 0.95 0.85 0.90 0.95 0.85 0.90 0.95

50 0.912 0.947 0.978 0.910 0.946 0.977 0.931 0.958 0.982 0.937 0.962 0.984

100 0.895 0.935 0.972 0.893 0.934 0.971 0.903 0.941 0.975 0.908 0.944 0.976

300 0.870 0.916 0.962 0.868 0.914 0.960 0.879 0.923 0.966 0.877 0.922 0.965

D.2 Sensitivity Analysis

We also investigated the finite sample performance of our method using a different choice

of K. Both prediction and inference performances were assessed for the cases where

F (x, s, t) = F3(x, s, t) and Ei = E3. We compared selection of K so that 95% or 99%

of the variance is explained. Simulation results are presented in Table 2 and Table 3. Ta-

ble 2 summarizes the in-sample and out-of-sample RMSPEs obtained by fixing the percent

of variance explained (PVE) to 95% and 99%. The choice of K slightly affects the values

of RMSPE, but the overall predictive performance does not change significantly. Table 3

summarizes the ACP of the pointwise prediction intervals obtained by fixing the PVE to

95% and 99%. The coverage performance is not affected by the choice of K.
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Figure 1: The histogram of the standardized average humidity.

E Further Investigation of Capital Bike Share Study

E.1 Histogram of Standardized Average Humidity

This section provides additional figures for the bike share data application in Section 6 of

the main paper. Figure 1 presents a histogram of standardized average humidity.

Next we present another perspective to visualize the estimated surface for the bike data

application study. Figure 2 shows the surface plots of the estimated surface, F̂ (x, s, 0) (left),

F̂ (x, s, 12) (middle) and F̂ (x, s, 20) (right), while the solid line corresponds to s = 10. The

nonlinear shape of the curve is indicative of nonlinearity of the surface as function of x.

E.2 Sensitivity to the choice of tuning parameters

As the Associate Editor and one anonymous Reviewer remarked, choosing the number of

basis functions to be “sufficiently large” is not trivial in practice. Theoretically, the basis

dimension is required to be “large enough” to capture the features of the underlying func-

tion; though its exact value is not important and cannot be too large, see Li and Ruppert

(2008) and Kauermann and Opsomer (2011). As expected, there are practical limitations:

the number of basis functions is generally selected to be smaller than the sample size (or

else we could have numerical problems), and the computational burden increases with a

larger number of basis functions. Only a few studies have investigated when in practice the

basis dimension is “large enough”; Ruppert (2002) and Pya and Wood (2016) shed some
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Figure 2: Displayed are surface plots of the estimated surface, F̂ (x, s, 0) (left), F̂ (x, s, 12) (middle)

and F̂ (x, s, 20) (right). The solid line corresponds to s = 10.

light in this direction. Ruppert (2002) compared using GCV to determine the number of

knots of a penalized spline with using a fixed number of knots. Pya and Wood (2016) pro-

posed two approaches, hypothesis testing and residual-based smoothing, to check whether

the spline basis dimension is adequate when univariate B-splines functions or thin-plate

functions are used. Their ideas are implemented in the check.gam() function in the mgcv

package (Wood 2006).

We carried out a sensitivity analysis for the data application. For Kx = Ks we con-

sidered values from 5 to 9, and we selected K so that PVE=95% and 99%; the possible

choices for Kx = Ks are limited by the sample size of the training set, n = 89. Table 4

and Table 5 show the results for PVE=95% and PVE=99%, respectively. The study shows

that AFF-PC is not very sensitive to the choices of the tuning parameters; the results

presented in the main manuscript are based on Kx = Ks = 7 and K̂ = 3, corresponding to

PVE=95%. The tables also illustrate how the computational cost scales with the choice of

the number of basis functions for the AFF-PC, as well as for FLM and AFF-S .

E.3 Bootstrap-based prediction intervals construction

Algorithm 2 below is a modification of Algorithm 1 in Section 3.2 of the main paper.

Algorithm 2 allows additional covariates and can be used to construct a 100(1−α)% point-
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Table 4: Results from the example in Section 6 of the main paper. Displayed are the sum-

maries of (1) RMSPEin, (2) RMSPEout and (3) computation time (in seconds) when regressing

log(1+countij) on temperature and average humidity with PVE set at 0.95.

log-transformed data original data

method (Kx, Ks, Kt) (1) (2) (1) (2) (3)

FLM (NA,5,5) 0.746 0.613 64.965 45.787 1.23

AFF-S (5,5,5) 0.648 0.506 37.689 32.389 3.94

AFF-PC (5,5, K̂ = 3) 0.638 0.491 37.846 30.979 0.82

FLM (NA,7,7) 0.740 0.606 62.079 43.603 2.12

AFF-S (7,7,7) 0.637 0.494 37.275 28.826 25.36

AFF-PC (7,7, K̂ = 3) 0.635 0.493 38.184 31.715 1.97

FLM (NA,9,9) 0.737 0.603 60.853 42.251 1.53

AFF-S (9,9,9) 0.625 0.523 38.221 31.587 177.76

AFF-PC (9,9, K̂ = 3) 0.634 0.493 38.261 31.242 3.34

Table 5: Results from the example in Section 6 of the main paper. Displayed are the summaries

of (1) RMSPEin, (2) RMSPEout and (3) computation time (in seconds) obtained by regressing

log(1+countij) on temperature and average humidity and PVE is set as 0.99.

log-transformed data original data

method (Kx, Ks, Kt) (1) (2) (1) (2) (3)

FLM (NA,5,5) 0.746 0.613 64.965 45.787 1.40

AFF-S (5,5,5) 0.648 0.506 37.689 32.389 4.56

AFF-PC (5,5, K̂ = 5) 0.637 0.491 37.587 30.970 1.12

FLM (NA,7,7) 0.740 0.606 62.079 43.603 2.36

AFF-S (7,7,7) 0.637 0.494 37.275 28.826 25.51

AFF-PC (7,7, K̂ = 5) 0.635 0.493 38.174 31.512 4.81

FLM (NA,9,9) 0.737 0.603 60.853 42.251 1.75

AFF-S (9,9,9) 0.625 0.523 38.221 31.587 178.57

AFF-PC (9,9, K̂ = 5) 0.634 0.493 38.261 31.079 12.38

wise prediction interval for the new response curve CB0(t) as ĈB0(t)± Zα/2ŜE{ĈB0(t)−
CB0(t)}, where Zα/2 is the α/2 upper quantile of the standard normal distribution and

SE{ĈB0(t) − CB0(t)} = [v̂ar{ĈB0(t) − CB0(t)}]1/2 is obtained by bootstrapping as in

Algorithm 2.
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Algorithm 2 Inference in the Presence of Multiple Predictors

1: for b = 1 to B do

2: Bootstrap the subjects with replacement. Let {b1, . . . , bn} be the subject index of the

bootstrap sample.

3: Define the covariate and the response curves in the bth bootstrap sample as {Temp(b)i (·) =

Tempbi(·)}ni=1 and {CB(b)
i (·) = CBbi(·)}ni=1, respectively. Also, define {AHum(b)

i =

AHumbi}ni=1 for the additional covariate. The bootstrap data for the ith subject is obtained

by collecting the trajectories {Temp(b)i (sk), sk}mW
k=1, {AHum(b)

i } and {CB(b)
i (tj), tj}mY

j=1.

4: Apply FPCA to {CB(b)
i (·)}ni=1 and obtain estimate of the eigenbasis {φ(b)k (·)}K(b)

k=1 , where

K(b) is the finite truncation estimated using PVE and the pre-specified threshold level.

5: For l = 1, . . . ,Kx, l′ = 1, . . . ,Ks, and k = 1, . . . ,K(b), obtain parameter estimates β̂
(b)
k , ζ̂

(b)
k

and θ̂
(b)
l,l′,k by fitting the AFF-PC model based on {Temp(b)i (sk), sk}mW

k=1, {AHum(b)
i } and

{CB(b)
i (tj), tj}mY

j=1.

6: For new covariates Temp0(s) and AHum0, obtain the predicted response by ĈB
(b)

0 (t) =∑K(b)

k=1 φ̃
(b)
k (t)

[
β̂
(b)
k +AHum0ζ̂

(b)
k +

∑Kx
l=1

∑Ks
l′=1θ̂

(b)
l,l′,k

∫
TX BX,l{Temp0(s)}BS,l′(s)ds

]
.

7: Compute V (b)(t) = v̂ar{ĈB
(b)

0 (t)|η̃b} using the model-based formula in (10) in the main

paper.

8: end for

9: Approximate the marginal variance of predicted response by

v̂ar{ĈB0(t)} ≈
1

B

∑B
b=1V

(b)(t) +
1

B

∑B
b=1{ĈB

(b)

0 (t)− CB0(t)}2,

where CB0(t) is the sample mean of ĈB
(b)

0 (t)’s.

F Yield Curves Data

Here, we consider an application to yield curves. The yield at maturity T years is the

average interest rate that is earned on a bond maturing in T years (Ruppert and Matteson

2015). The yield curve for a given type of bond is the plot of yield against maturity,

and the shape of a yield curve changes each day. Maturities range from short-term (e.g.,

less than 2 years) to long-term (e.g., 20 years, 30 years). The curves can take three

primary shapes: positive slope (so-called “normal”), negative slope (so-called “inverted”),

and flat curve. The slope of the yield curve is a powerful indication of the future economic

growth (Plosser and Rouwenhorst 1994). If the slopes are positive, one can expect strong
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Figure 3: The gray lines are changes in the US yield curves (left panel) and in the European

yield curves (right panel) during the period from January 2, 2006 to December 30, 2011. The

measurements taken in three different days are indicated by solid, dashed, and dotted black lines.

future economic growth and higher interest rates. The negative slopes indicate slow future

economic growth and a rise in unemployment.

The changes in US yield curves are often discussed in relation to the changes of yield

curves in other countries (see e.g., Plosser and Rouwenhorst 1994; Mehl 2009). In partic-

ular, Plosser and Rouwenhorst (1994) studied linkages between the real economic growth

in the United States and interest-rates across other countries including Germany and the

UK. Motivated by these studies, we consider the problem of predicting the changes in the

US daily yield curves using the changes in the European yield curves on the same day.

Our data consist of US and European daily yields during the period from January 2, 2006

to December 30, 2011 - a total of 1286 days. Figure 3 presents changes in the US yield

curves (left panel) and European yield curves (right panel), each curve corresponding to

a particular day. Simple visual inspection reveals that the changing patterns between the

US and the European yield curves are very similar.

Let Yij = Yi(tj) be the changes in the US yield curves corresponding to ith day (i =

1, . . . , 1286) measured at maturity tj (j = 1, . . . , 30), where the maturities tj range from

1 year to 30 years. Let Wik = Xi(sk) + δik be the changes in the European yield curves

12



corresponding to ith day measured at maturity sk (k = 1, . . . , 30), and δik is the white

noise random deviation. We considered two modeling approaches, the AFF-PC model and

the functional linear model, and assessed both the in-sample and out-of-sample prediction

accuracy based on RMSPE. For the AFF-PC model, the functional covariate was processed

using the methods described in Section 4. The first 1000 days were taken as a training data

set, and the last 286 days were taken as the test data. Thus, our models were estimated

based on the past changes in the yield curves, while the model assessment was for future

changes. To fit the AFF-PC model, we used Kx = Ks = 7 dimension cubic B-spline bases

for x and s, and the number of eigenbasis K was selected to have 95% of the variance

explained. In the functional linear model, the bivariate coefficient function, β(s, t), was

modeled using a 7 dimensional cubic B-spline basis for each variable. Both the AFF-PC

model and the functional linear model provided the similar values for the in-sample and

out-of-sample predication errors (RMSPEin=0.059 and RMSPEout=0.064), indicating that

a simple linear association is appropriate. The coverage performance was also assessed

for pointwise prediction intervals constructed using 1000 bootstrap replications. For the

nominal levels of 0.85, 0.90, and 0.95, the average coverage probabilities were 0.847, 0.885,

0.920, respectively.
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