

Figure S1. In vitro Cleavage Activities of WT AsCpf1 and AsCpf1 Variants, Related to Figure 1

(A and B) PAM specificities of the RVR (A) and RR (B) variants. The AsCpf1-crRNA complex (100 nM) was incubated at 37°C for 10 min with a linearized plasmid target with the different PAMs.

(C) Fourth PAM nucleotide preferences of WT AsCpf1 and the RVR and RR variants. The AsCpf1-crRNA complex (100 nM) was incubated at 37°C for 10 min with a linearized plasmid target with the TTTN PAMs.



**Figure S2. Comparison of the PAM Specificities of WT AsCpf1 and AsCpf1 Variants, Related to Figure 1** The AsCpf1-crRNA complex (100 nM) was incubated at 37°C for 5 min with a linearized plasmid target with the different PAMs. For comparison, the cleavage data for the RVR (Figure 1A) and RR (Figure 1B) variants are shown below those for WT AsCpf1.



## Figure S3. PAM Recognition by the AsCpf1 Variants, Related to Figure 3

(A) Conformational differences between the PAM nucleotides. The  $dT(-1^*)$  nucleotide was modeled into the WT AsCpf1 structure (Yamano et al., 2016) (PDB: 5B43). Superimposition of the nucleotides  $-5^*$  to  $-2^*$  (gray) onto the nucleotides  $-4^*$  to  $-1^*$  (purple) highlights the displacement of the fourth PAM nucleotide (at  $-1^*$  position), due to the interaction with the PI domain (shown as a surface representation).

(B) Differences in the distances between the 5-methyl group of the T nucleotide and its adjacent phosphate group at each PAM position. The dT(-1\*) nucleotide was modeled into the WT AsCpf1 structure (Yamano et al., 2016) (PDB: 5B43). The distances are given in Å.

(C)  $mF_{o} - DF_{c}$  omit electron density map for the key residues and nucleotides in the RVR variant (contoured at 4 $\sigma$ ).

(D) Hydrogen-bonding interactions between Arg552 and the PAM duplex. The  $mF_o - DF_c$  omit electron density map is shown as a gray mesh (contoured at 5 $\sigma$ ). Hydrogen bonds are shown as dashed lines, and the distances are given in Å.

(E)  $mF_{o} - DF_{c}$  omit electron density map for the key residues and nucleotides in the RR variant (contoured at 4 $\sigma$ ).

(F) Hydrophobic interactions between Arg607 and the PAM duplex.



Figure S4. In vitro Cleavage Activity of the VR Variant, Related to Figure 4

The AsCpf1-crRNA complex (100 nM) was incubated at 37°C for 5 or 10 min with a linearized plasmid target with the different PAMs. For comparison, the cleavage data for the RVR variant (Figures 1A and S1A) are shown below those for the VR variant.

| Table S1 | Oligonuc | leotides |
|----------|----------|----------|
|----------|----------|----------|

| Oligonucleotides used to generate the AsCpf1 variant                          |                                    |                               |  |
|-------------------------------------------------------------------------------|------------------------------------|-------------------------------|--|
| Mutation                                                                      | Forward primer                     | Reverse primer                |  |
| RR_S542R                                                                      | AGAGGCTGGGACGTGAATAAGGAGAAGA       | GGCCAGTGTAGGCATCTGAAAGTTC     |  |
| RR_K607R                                                                      | ATCCCAAGATGCAGCACCCAGCTGAAG        | GCTGCATCTTGGGATCATCTTGGCGGC   |  |
| RVR_S542R                                                                     | AGAGGCTGGGACGTGAATGTTGAGAAGA       | GGCCAGTGTAGGCATCTGAAAGTTC     |  |
| RVR_K548V_N552R                                                               | GAACAGAGGCGCCATCCTGTTTGTGAAGAAC    | TTCTCAACATTCACGTCCCAGCCAGAGGC |  |
| DNA oligonucleotides used for crystallization                                 |                                    |                               |  |
| PAM sequence                                                                  | Target DNA strand                  | Non-target DNA strand         |  |
| TCCA                                                                          | GGTTGCCAAGCGCACCTAATTTCCTGGAGGACTG | CAGTCCTCCA                    |  |
| ТАТА                                                                          | GGTTGCCAAGCGCACCTAATTTCCTATAGGACTG | CAGTCCTATA                    |  |
| crRNA                                                                         |                                    |                               |  |
| AsCpf1 crRNA AAUUUCUACUCUUGUAGAUGGAAAUUAGGUGCGCUUGGCAACC                      |                                    |                               |  |
| Oligonucleotides used to generate the target plasmids with the different PAMs |                                    |                               |  |
| PAM sequence                                                                  | Forward primer                     | Reverse primer                |  |
| ATTA                                                                          | TTTAGGAAATTAGGTGCGCTTGGCAACC       | GTATTTAGAAAAATAAACAAATAGGG    |  |
| ТТТТ                                                                          | TTTTGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TTTG                                                                          | TTTGGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TTTC                                                                          | TTTCGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TCCC                                                                          | TCCCGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| ACCC                                                                          | ACCCGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| GCCC                                                                          | GCCCGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| CCCC                                                                          | CCCCGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TACC                                                                          | TACCGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TTCC                                                                          | TTCCGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TGCC                                                                          | TGCCGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TCAC                                                                          | TCACGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| тстс                                                                          | TCTCGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TCGC                                                                          | TCGCGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TCCA                                                                          | TCCAGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| тсст                                                                          | TCCTGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TCCG                                                                          | TCCGGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| ТАТА                                                                          | TATAGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| AATA                                                                          | AATAGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| GATA                                                                          | GATAGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| CATA                                                                          | CATAGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TGTA                                                                          | TGTAGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| ТСТА                                                                          | TCTAGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| ТААА                                                                          | TAAAGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TAGA                                                                          | TAGAGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TACA                                                                          | TACAGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TATT                                                                          | TATTGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TATG                                                                          | TATGGGAAATTAGGTGCGCTTGGCAACC       |                               |  |
| TATC                                                                          | TATCGGAAATTAGGTGCGCTTGGCAACC       |                               |  |