

Yamani et al supp fig 1

Yamani et al supp fig 2

Yamani et al supp fig 3

Yamani et al supp fig 4

Yamani et al supp fig 5

Supplemental Figure Legends

Figure S1: VE^{Δ IL- $\frac{4}{R}\alpha$} mice lack the expression of IL-4R α chain on VE cells.

Immunofluorescence images of jejunum from VE IL-4R α^{WT} and VE^{ΔIL-4R α} mice. Anti- Panendothelial Cell Antigen staining with anti-rat monoclonal PLVAP antibody (MECA32) (red) identifies endothelial cells; anti-IL-4R α staining (shown in green) was performed with anti–IL-4R α (Santa Cruz, # sc-28361) and DAPI staining is shown in blue. White arrows show the presence of IL-4R α chain staining on endothelial cells of VE IL-4R α^{WT} mice and its absence on endothelial cells of VE^{ΔIL-4R α} mice.

Figure S2: IL-4C is biologically active in the VE^{Δ IL-4R α} mice.

Representative flow plots show the gating of the B220/MHC II population from lymphocytes (A). Histogram (B). Median florescence intensity (MFI) of FITC on PerCp/Cy5.5+ cells determined by flow cytometry (C). $VE^{IL-4R\alpha WT}$ and $VE^{\Delta IL-4R\alpha}$ mice were injected i.v. with vehicle or IL-4C (1 µg of IL-4 + 5 µg anti–IL-4 mAb). Mice were sacrificed the next day, and spleen cells were stained with anti-mouse MHC II (I-A), FITC, and anti-mouse/human CD45R/B220 PerCP/Cy5.5⁺ antibody. Data are represented as the mean ± SD; = 2 mice per group from n = 1 experiment.

Figure S3: The effect of vascular endothelial IL-4R α chain on hypovolemic shock is mast cell and immunoglobulin independent.

Intestinal MC counts (A), photomicrograph of CAE-stained intestinal section of iIL-9Tg VE^{IL-4R α WT} (B) and iIL-9Tg VE^{Δ IL-4R α} (C), serum Total serum IgE (D). Total serum IgG1 (E) of iIL-9Tg VE^{IL-4R α WT} and iIL-9Tg VE^{Δ IL-4R α} mice following treatment with anti-TNP IgE and with IL-4C or vehicle and with TNP-OVA. Serum was collected from untreated iIL-9Tg VE^{IL-4R α WT} and iIL-9Tg VE^{Δ IL-4R α} mice. Data are represented as the as the mean \pm SD; n = 4-5 mice per group (A, D-E). Photomicrograph 10X magnification; insert, 40X magnifications (B-C). ns > 0.05.

Figure S4: Histamine-induced VE-permeability in EA.hy926 cells is inhibited by Imatinib.

(A) Confluent monolayers of cell line EA.hy 296 (EVOM >100 ohms) were mounted in Ussing chambers and stimulated with different doses of histamine (0.1 – 10µM) for 30 min and TER was determined using Ohms law. EA.hy 296 cells were pretreated with different dose of imatinib (0 – 100µM) for 3 h, mounted in Ussing Chambers and treated with histamine (100 µM for 30 min) and TER (B) and HRP flux (C) was determined. Data are represented as the as the mean ± SD; n = 3 wells per group. **** P < 0.0001, *** P < 0.001, ** P < 0.01, * P < 0.05, ns > 0.05.

Figure S5: Hypovolemic shock induced by EM95 is dependent on VE ABL1. Experimental regimen (A), Maximum temperature change (B), Hematocrit percentage (C), and mMCPT-1 (D) in iIL-9Tg VE^{ΔABL1} (iIL-9^{WT} Tie2^{cre} ABL1^{fl/fl}) and iIL-9Tg VE^{ABL1 WT} (iIL-9^{WT} Tie2^{WT} Abl1^{fl/fl}; used as a WT control.) i.p. treated with vehicle or imatinib (1.25 mg/mice) 30 min before EM95 (i.v. 2 mg / 200 mL). iIL-9Tg VE^{$\Delta Abl1$} received EM95 only. Data are represented as the mean ± SD; n = 4-6 mice per group from n = 3 experiments. * P < 0.05, ns > 0.05.