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Details of the model

We extend the evolutionary model in a constant environment by Doebeli & Ispolatov
(2014) to a fluctuating environment. The model takes as a starting point logistic popu-
lation growth where the strength of density dependence depends on phenotype-mediated
interactions,

∂N(y, t)
∂ t

= rN(y, t)
(

1−
∫

α(y,x)N(x, t)dx
K(y)

)
, (S1)

where N(y, t) is the number of individuals of type y at time t. The phenotype of an in-
dividual is represented by a vector x (or y) of length d, the number of traits under selec-
tion; d is called the dimensionality or complexity of the organism (Doebeli & Ispolatov,
2014). Interactions are mediated by phenotypes: an interaction kernel α(y,x) represents
the fitness effects of interactions with individuals of phenotype x on individuals of phe-
notype y. These interactions can either be positive (e.g. cooperation) or negative (e.g.
competition) depending on the sign of α (negative and positive, respectively). The in-
teraction kernel is standardized such that α(y,y) = 1 for all y, but the exact form of
the interaction kernel does not have to be specified at the moment. Another component
of fitness is due to adaptation to the current environmental condition. It takes the form
of a phenotype-dependent carrying capacity K, causing stabilizing selection towards a
multivariate optimal phenotype θ . Specifically, we have

K(x) = exp

(
−1

4

d

∑
i=1

(xi−θi)
4

)
. (S2)

We use a quartic function because it is the form assumed by Doebeli & Ispolatov (2014).
A more general form could include weights for the different traits, and even interactions
between the traits, but we want to stay close to their original model.

The size of the entire population is assumed to be large; reproduction is clonal; muta-
tions are rare, and of small phenotypic effect. To study the evolution of the mean pheno-
type in the population, and to facilitate comparison of our results with those of Doebeli
& Ispolatov (2014), we conform to their adaptive dynamics approach (also known as
invasion analysis). Under this framework, the population is always fixed for a given phe-
notype, and evolution happens through a series of invasions of a population of resident
phenotypes by better adapted mutants that differ by infinitesimally small phenotypic ef-
fects (Dieckmann & Law, 1996; Geritz et al., 1998). Since mutations are assumed to be
rare, population dynamics are faster than evolutionary dynamics, such that the population
size equilibrates at the carrying capacity of the resident before any new mutant invades
(in other words, ecological and evolutionary time scales are decoupled).

Using the adaptive dynamics assumptions above, Doebeli & Ispolatov (2014) demon-
strate that the invasion fitness f (y,x) of a mutant with phenotype y in a population fixed
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for the resident phenotype x, can be written as

f (y,x) = 1− α(y,x)K(x)
K(y)

. (S3)

The rate and direction of evolutionary change at any time is then proportional to the
selection gradient, i.e. the partial derivative of invasion fitness (per capita growth rate
of a rare mutant) with respect to the invader’s phenotype (Dieckmann & Law, 1996;
Geritz et al., 1998). If mutation effects are independent and of variance equal to one for
all traits (which can be obtained by proper rescaling and change of coordinates, Mar-
tin & Lenormand, 2006; Doebeli & Ispolatov, 2014), the dynamics of evolution in the
multidimensional phenotypic space depends solely on the multivariate selection gradient
s(x) = (s1(x),s2(x), · · · ,sd(x)). Each component si(x) of this vector is the partial deriva-
tive of the invasion fitness in equation (S3) relative to trait i of the mutant, evaluated at
the resident phenotype for that trait, which leads to

si(x) =
∂ f (y,x)

∂yi

∣∣∣∣
y=x

=− ∂α(y,x)
∂yi

∣∣∣∣
y=x

+
∂ ln [K(x)]

∂xi
. (S4)

Following Doebeli & Ispolatov (2014), we assume that the interaction kernel in equa-
tion (S3) is such that its derivative in equation (S4) is a quadratic function of phenotypes.
Note that this implies that α(y,x) itself (rather than its derivative with respect to y) is a
third-order function of phenotypes, i.e. includes interactions between three traits, at least
one of which belongs to the focal individual and one to its interactor. For simplicity, we
do not consider interactions of even higher orders; including them would increase the
likelihood of chaotic behavior due to the more complex feedbacks in the system (Ispola-
tov et al., 2015).

A final important point about this model is that, if the interaction kernel depended
only on the phenotypic difference between interactors rather than on their actual pheno-
types, that is, if we had α(y,x) = f (z) (where z = y−x and f is a function that does not
involve x nor y), then the corresponding term of the selection gradient in equation (S4)
would be f ′(0), which is not a function of z and thus cannot be a function of x and y.
Hence the first two sums in eq. (1) in the main text would be null if α(y,x) = f (y−x),
which would preclude the occurrence of chaotic dynamics, since stabilizing selection
alone does not produce chaos in such a model.

The Lyapunov exponent

Chaotic dynamical systems can be identified by their Lyapunov exponents, which mea-
sure the rate of exponential increase in the distance between initially close trajectories in
phenotype space (Ott, 2002). The main characteristic of chaotic systems is that, regard-
less of how close a set of trajectories start, trajectories initially diverge with time if they
do not have the same exact initial state. Chaotic systems are, therefore, characterized by
positive Lyapunov exponents (i.e. exponential rates of divergence). Dynamics that con-
verge to cycles and fixed equilibrium states have zero and negative Lyapunov exponents,
respectively. In multivariate systems, divergence can happen at different rates in different
directions, but a positive rate of divergence in a single direction is sufficient for a system
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to be chaotic. Therefore, knowledge of the largest Lyapunov exponents is sufficient to
identify chaos.

We numerically estimate the largest Lyapunov exponents of all our simulated tra-
jectories as described by Sprott (2001). Given a previously simulated trajectory {x(0),
x(dt),x(2dt), · · ·}, we start by picking a point z0 positioned in a random direction at a
distance δ0 = 10−3 from x(0). We then integrate the system from z0 for a single timestep
dt the same way as done for the original trajectory. After this calculation, the distance δ f

between the reached point z f and x(dt) is recorded. We finally reset point z0 to lie in the
same direction that separates z f and x(dt), at a distance δ0 = 10−3 from x(dt), and pro-
ceed the integration from this point for another timestep. This process is iterated along
the whole trajectory up to its end. The rate of divergence at each time step is calculated
as

λ =
1
dt

ln
(

δ f

δ0

)
. (S5)

The estimate of the largest Lyapunov exponent is given by the asymptotic value of the
average Lyapunov exponent as the number of considered time points tends to infinity,
λ̄∞. However, since we are interested in identifying transitions from chaotic to either
periodic or equilibrium behavior, we used a local estimate of rates of divergence, λ̄ (t),
defined as the average λ in a window of 200 time units preceding time t (Supplementary
Fig. S1). The length of this window was chosen such that there is enough smoothing
of the short-term fluctuations of λ , while allowing for identification of transitions (as in
Figure S1B). For simplicity, we refer to this measure in the main text as the Lyapunov
exponent λ , omitting both the bar and t. Chaotic trajectories were easily distinguished
from non-chaotic ones by visual inspection. Based on this criterion, we were able to
categorize chaotic trajectories at a given time t if λ̄ (t) was larger than a threshold µ =
0.05 under a constant optimum, and µ = 0.02 under an oscillating optimum. Trajectories
were classified as converging to an equilibrium if λ̄ (t) < −µ , or to a periodic cycle if∣∣λ̄ (t)∣∣< µ .
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Fig. S1. Calculation of the window-averaged Lyapunov exponent λ̄ (t). (A) The evo-
lutionary trajectory for one single trait in a system of d = 70 is represented in black,
under a constant optimum (orange). The dynamics transitions from chaos to a fixed point
around time t = 700. (B) The Lyapunov exponent computed at each time point with
equation (S5) varies substantially (gray line). However, when averaged over a window
of 200 time units (in blue; calculated as described in the supporting text), the transition
from chaos (λ > 0) to a fixed equilibrium (λ < 0) can be identified with some time lag.
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Fig. S2. The proportion of trajectories categorized as chaotic (according to their window-
averaged Lyapunov exponent λ̄ (t)), out of 250 simulations under a constant optimum,
decreases with time as some of them transition to either periodic cycles or fixed equilib-
ria. Models of exponential decrease (red solid lines) were fit to the observed frequencies
(as described in the Methods), and used to predict the asymptotic proportion of truly
chaotic trajectories in infinite time (red dashed lines). Models were not fitted to dimen-
sionalities d = 2 and 5 because of their insufficient number of chaotic trajectories. The
black line in d = 5 is flat because the single chaotic trajectory observed did not transition
during the simulation. The black lines in the other panels are jagged because the λ̄ (t) of
individual trajectories are only estimates that can switch between chaos and non-chaos
in time.
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Fig. S3. Organismal complexity and the probability of (transient) chaos in a constant
environment. The proportion of trajectories identified as fixed point, periodic or chaotic
at the beginning of the simulations (classified by their λ̄ (250)) is represented in solid
lines, with the standard errors of binomial proportions shown as shading. The proportion
of trajectories identified as chaotic decreases with time, as transiently chaotic trajectories
reach their eventual equilibrium fixed point or limit cycle. The red dashed line shows
the asymptotic proportion of chaotic trajectories (at infinite time), as estimated from the
exponential decrease, over t = 1200 time units, of the proportion of trajectories identi-
fied as chaotic (as described in the Methods and shown in Figure S2). Note that this
curve is more noisy than the others, owing to error in estimation of the asymptotic values
represented in Fig. S2. For each explored value of dimensionality d, estimations of fre-
quencies of each type of dynamics were made based on 250 trajectories that were run up
to t = 1200, as described in the main text.
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Fig. S4. Correction of phenotypic lag in the regression of the phenotype on the opti-
mum. (A) Even for a chaotic evolutionary trajectory (black line), part of the variation
is caused by tracking of the optimal phenotype that moves in response to the oscillating
optimum (orange line). This tracking happens with a certain temporal lag (represented
by the shaded interval). (B) By regressing the phenotype x̂t at time t on the optimum
θ̂t−τ at an earlier time t− τ (both projected on the direction of environmental change in
the optimum), the lag can be estimated by maximizing the R2 of the regression (marked
with a star) with respect to τ , over half a period of optimum oscillation. (C) The re-
lationship between x̂t and θ̂t−τ corrected by the lag is represented for simulated values
(dots), together with the corresponding regression line shown in green. The slope of this
line is expected to equal the ratio between the amplitude of the tracking component of
phenotype and that of the oscillating optimum.
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Fig. S5. Estimating the regression slope from the spectral density. On the x-axis, the
regression slope of the phenotype on the optimum (after correction for the lag, as ex-
plained in Figure S4) is expected to approximate the ratio between the amplitudes of the
tracking component of the phenotype, identified by the linear regression model, and the
amplitude of optimum oscillation (as shown in Figure S4C). In the spectral analysis of
the phenotypic time series, the peak spectral density can be used to identify the period
of the tracking component, which equals that of the oscillating phenotype (as shown in
Figure 3C and D). Given that the spectral density at any period equals half the squared
amplitude of the trajectory’s oscillation at that period, the amplitude of the tracking com-
ponent of the trajectories can be estimated from this peak spectral density—as well as
the ratio between this amplitude and that of the oscillating optimum. Here we show
that this estimation, done for each trajectory independently (points, colored according
to the period of optimum oscillation), closely approximates the slope of the regression
models. However, this is only possible by interpolating the time-series of phenotype to
increase the number of data points and, thus, improve the estimation of the spectral den-
sity at the period of optimum oscillation as done by the Fast-Fourier algorithm used here
(as described in the Methods). We have made several of these estimations, each time
linear-interpolating the time-series to a larger number of timepoints, one extra timepoint
at a time up to the double of the original number of points. For each of these interpo-
lated time-series, the peak spectral density was calculated, and the largest of these values
(among all interpolated time-series of a single trajectory) was selected to estimate the
amplitude of the component of phenotypic evolution that tracks the moving optimum.
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Fig. S6. Predictability of evolution in a system of lower dimensionality. Here we repli-
cate the oscillating optimum analyses presented in the main text, but for systems of
d = 40. (A) Similarly to results for d = 70, the proportion of trajectories that are chaotic
is decreased in relation to that of constant environment for conditions of short periods
and large amplitudes of oscillation (complete loss of chaos even occurred for amplitude
5.99 and periods 1.5 and 2). This proportion increased for longer periods as for d = 70,
but this increase was not monotonic (compare with Figure 2 of the main text). Results
for (B) the predictability of chaotic dynamics, (C) relative amplitude of tracking, and (D)
variance of chaos, are qualitatively similar to those for d = 70. The dashed lines in A
have the same meaning as in Figure 2, and the variables represented in B-D are defined as
in Figure 4. We show the average (lines and points) and standard error (shading) over 100
simulations for each combination of amplitude and period of optimum oscillation. The
100 sets of interaction coefficients and initial phenotypes used here were taken arbitrarily
from the 250 sets used in constant environment simulations for the same dimensionality.
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Fig. S7. Effect of the strength of environmental forcing. We used a version of the model
without frequency-dependent selection (interaction coefficients bi j and ai jk were set to
zero) to measure how different patterns of optimum oscillation translate into intensities
of environmental forcing on the system. Under frequency-independent selection, the
evolutionary dynamics are led exclusively by the rightmost term in equation (S4). We
defined forcing as |ŝi(x)|, i.e. the absolute value of the scalar projection of the selec-
tion gradient in equation (S4) on the direction of environmental change (the diagonal
of the phenotype space). This effectively measures the average magnitude of the selec-
tion pressure to which trajectories are submitted by the moving optimum. We solved the
evolutionary dynamics numerically (as done in simulations with frequency dependence)
until time t = 200, and computed the average forcing that trajectories experienced under
the combinations of amplitudes and periods of optimum oscillation described in the main
text. (A) A combination of short periods and large amplitudes of oscillation leads to the
strongest forcing scenario. To assess whether this measure of forcing can partly explain
our results with frequency-dependent selection, we plotted against it (B) the decrease in
proportion of chaos (relative to a constant environment), (C) the predictability of evolu-
tionary dynamics, (D) the relative amplitude of tracking, and (E) the variance of chaos.
The dashed lines in B are the same as in Figure 2, and the variables represented in C-E
are defined as in Figure 4. Each point represent the results for a single combination of
amplitude and period of optimum oscillation. Points are colored by their respective am-
plitudes. We show the average (lines and points) and standard error (shading) over 100
simulations for each combination of amplitude and period of optimum oscillation.
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Fig. S8. Linear regression of phenotype on the moving optimum against the average
speed of optimum oscillation. The average speed of optimum oscillation (calculated
from eq. (2) of the main text as 4‖A‖/T ) is higher for conditions of short period and
high amplitude of oscillations. Predictability, relative amplitude of tracking and variance
of chaos were measured as in Fig. 4 of the main text. We show the average (lines
and points) and standard error (shading) over 100 simulations for each combination of
amplitude and period of optimum oscillation.

Fig. S9. The repeatability of chaotic trajectories. The ratio of the variance through time
of the mean trajectory (mean phenotype averaged across replicates) to the total variance
of trajectories (across time and replicates) is shown for each condition of environmental
oscillation. We used univariate phenotypic values obtained by scalar projections of the
trajectories on the direction of optimum oscillation. The pattern observed is much similar
to that of the predictability measured by the R2 of the linear regression of the phenotype
on the optimum (Fig. 4 in the main text). Repeatability differs from our measure of
predictability because it does not rely on knowledge of the optimal phenotype.
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Fig. S10. The average spectral density of evolutionary trajectories in constant environ-
ment describes the typical range of periods at which the phenotype oscillates. Among all
explored values of period of optimum oscillation (vertical lines) those that led to reduc-
tion in the proportion of chaos in relation to the constant environment (as seen in Figure
2, and here marked by vertical dashed lines) are much shorter than the typical oscilla-
tions of the system in constant environment. The mean spectral density (solid wiggly
line) and its associated standard error of the mean (shading) were calculated based on the
250 trajectories run in constant environment for d = 70. The spectrum was calculated as
described in the main text, for the projection of the phenotypic vector along the diagonal
of the phenotype space.
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