Supplementary Materials for

Membrane protein insertion through a mitochondrial β-barrel gate

Alexandra I.C. Höhr, Caroline Lindau, Christophe Wirth, Jian Qiu, David A. Stroud, Stephan Kutik, Bernard Guiard, Carola Hunte, Thomas Becker, Nikolaus Pfanner,‡ Nils Wiedemann‡

Corresponding author. E-mail: nikolaus.pfanner@biochemie.uni-freiburg.de (N.P.); nils.wiedemann@biochemie.uni-freiburg.de (N.W.)

This PDF file includes:

Figs. S1 to S9 Tables S1 to S4 Caption for Model S1 References

Other supplementary material for this manuscript includes the following:

Model S1

Fig. S1. Characterization of yeast cells expressing Sam50 variants. (A) Growth analysis of yeast cells on agar medium containing the fermentable carbon source glucose (YPD) or nonfermentable glycerol (YPG) at 30°C. Cells expressing cysteine-free Sam50 (Sam50_{Cfree}) or Sam50 cysteine variants showed a growth behavior comparable to wild-type (WT) cells. (B) The import of radiolabeled Tom40 precursor into isolated mitochondria was analyzed by blue native PAGE and autoradiography. The biogenesis steps of [³⁵S]Tom40, including formation of SAM intermediates Ia and Ib, intermediate II (Int-II, dimeric Tom40) and formation of the mature TOM complex, were comparable between WT and Sam50_{Cfree} mitochondria. (C) Mitochondria from yeast strains expressing the indicated Sam50 variants were treated with bismaleimidohexane (BMH) and analyzed by SDS-PAGE, Western blotting and immunodecoration with antibodies against Sam50 and Tom70. The lateral Sam50 gate was efficiently crosslinked (Sam 50_X) with cysteine residues of β strand 1 and β strand 16 pointing into the inside of the Sam50 β -barrel channel.

Fig. S2. Interaction of Sam50 with the C-terminal β signal of Por1 and Tom40 precursors. (A) [35 S]Por1(β14-19)_{C276} and [35 S]Por1(β14-19)_{C280} were imported into mitochondria of yeast strains expressing the indicated Sam50 variants, followed by oxidation with 4-DPS. Samples were analyzed by non-reducing SDS-PAGE and autoradiography. Arrowheads, cysteine-specific Sam50-precursor adducts. Schematic model (bottom), disulfide bond formation of Sam50 β strand 1 with the β signal (β19) of the Porin precursor β14-19; thick and thin lines indicate strong and weak formation of Sam50-Por1 adducts, respectively. (B) Import of [35 S]Tom40_{C356} or [35 S]Tom40_{C358} precursor containing β strands 15-19 into isolated mitochondria of yeast strains expressing Sam50 variants was analyzed as in (A). Bottom, model of disulfide bond formation between Sam50 β strand 1 and the β signal (β19) of the Tom40 precursor β15-19.

Fig. S3. A mutant β signal impairs the interaction of Por1 constructs with Sam50. Radiolabeled Por1(β 14-19)_{C205}, Por1(β 14-19)_{C207} and the corresponding β -signal mutants (L279A) were incubated for 5 min with isolated Sam50 cysteine variant mitochondria, followed by oxidation with 4-DPS, non-reducing SDS-PAGE and autoradiography. Arrowheads, cysteine-specific Sam50-Por1 precursor adducts.

Fig. S4. Interaction of Por1 precursor with β strand 16 of Sam50. [³⁵S]Por1(β 14-19)_{C205} was incubated with mitochondria isolated from yeast expressing the indicated Sam50 variants, followed by oxidation with 4-DPS, non-reducing SDS-PAGE and autoradiography. Disulfide formation was observed between the Por1 precursor and Sam50- β 16 (arrowheads), but not between Por1 and Sam50- β 15.

Fig. S5. The POTRA domain of Sam50 is not required for interaction of the Porin precursor with Sam50. [35 S]Por1(β 14-19)_{C205} was incubated with mitochondria isolated from yeast expressing Sam50 cysteine variants, which lacked the POTRA domain where indicated, for the indicated time. Samples were oxidized using 4-DPS, analyzed by non-reducing SDS-PAGE and autoradiography. Arrowheads, cysteine-specific Sam50-Por1 precursor adducts.

Fig. S6

Fig. S6. Characterization of Sam50_{Δloop6} **mitochondria.** (A) Upper panel, Omp85 proteins were aligned based on their conserved IRGF motif (dark gray). The amino acid residues affected by the deletion of the conserved part of loop 6 in *S.c.* Sam50 are underlined in red (Sam50_{Δloop6}). *S.c., Saccharomyces cerevisiae; H.s., Homo sapiens; C.e., Caenorhabditis elegans* (P46576, SAM50-like protein gop-3); *E.c., Escherichia coli; N.g., Neisseria* gonorrhoeae; *H.d., Haemophilus ducreyi; B.p., Bordetella pertussis.* TamA (*19*); FhaC (*78*). Lower panel, growth of wild-type (WT, blue), Sam50↓ (*SAM50* down-regulated, black), Sam50↓ expressing *SAM50* WT (green) and Sam50↓ expressing Sam50_{Δloop6} (red) reveals that Sam50-loop 6 is essential. (**B**) Assembly of [³⁵S]Por1 and [³⁵S]Tom40 analyzed by blue native PAGE is blocked in Sam50_{Δloop6} mitochondria. Samples 19-22, the amounts of mitochondria were four-fold increased to compensate for the decreased levels of Sam50 in Sam50_{Δloop6} mitochondria. (**C**) Protein levels of WT and Sam50_{Δloop6} mitochondria were analyzed by SDS-PAGE and immunodecoration.

Fig. S7. Characterization of Sam50-loop 6 IRGF motif variants. (A) Growth of yeast cells expressing Sam50, Sam50_{AAAA} and Sam50_{R366A} on fermentable (YPD) and non-fermentable (YPG) medium at 30°C and 37°C. Cells expressing Sam50 with four alanine residues instead of the conserved IRGF motif showed a strong growth defect. Cells expressing Sam50_{R366A} showed a temperature sensitive growth behavior on YPG. (B) Growth of wild-type (WT) and $Sam 50_{R366A}$ cells at permissive temperature (24°C) yielded isolated mitochondria with comparable steady state protein levels of WT and mutant, as analyzed by SDS-PAGE and immunoblotting. (C) The outer membranes of both WT and Sam50_{R366A} mitochondria protected internal mitochondrial proteins against proteinase K (Prot. K) under isotonic conditions (- swelling). After disruption of the outer membrane under hypotonic conditions (+ swelling), the intermembrane space exposed protein Tim23 was degraded by the protease as revealed by SDS-PAGE and immunoblotting. The matrix protein Tim44 remained intact under both conditions. Thus, the outer membrane of Sam50_{R366A} mitochondria is intact, excluding an indirect inhibition of β -barrel biogenesis caused by a loss of intermembrane space chaperones (57, 58). (D) The presequence-carrying matrix precursors $[^{35}S]F_1\beta$ and $[^{35}S]Su9$ -DHFR, and the intermembrane space-targeted $[^{35}S]Tim9$ were imported into isolated mitochondria and subjected to SDS-PAGE (lanes 1-16) and blue native PAGE (lanes 17-22), respectively. p, precursor; m, mature; Mia40 Int., Tim9 precursor bound to Mia40.

Fig. S8. Interaction of Sam50-loop 6 with different regions of the Porin precursor. (A) Radiolabeled Por1(β 14-19)_{C205}, Por1(β 14-19)_{C206} and their corresponding β -signal mutant (F281Q) were incubated for 5 min with isolated Sam50 mutant mitochondria as indicated. Samples were treated with BMH and analyzed by non-reducing SDS-PAGE and autoradiography. (B) Radiolabeled Por1 constructs were imported for 5 min into mitochondria as indicated. Samples were treated as in (A). Arrowheads, cysteine-specific Sam50-Por1 precursor adducts.

Fig. S9. Characterization of Por1 precursor accumulated at SAM. (A) Radiolabeled Por1 constructs containing a TEV protease cleavage site were imported into Sam50_{Cfree} mitochondria for 15 min. Samples were crosslinked using bismaleimidoethane (BMOE). After cleavage by TEV protease, samples were analyzed on a non-reducing Nu-PAGE gel and autoradiography. (Right) Schematic model of the location of the TEV cleavage site and the cysteines used. (B) [³⁵S]Por1(β14-19)_{C213} and [³⁵S]Por1(β14-19)_{C269} were imported into mitochondria isolated from yeast cells expressing the indicated Sam50 variants for 5 min. Samples were crosslinked using either BMH. BMOE. 1,3-propanedivlbismethanethiosulfonat (M3M) and 1.1methanediylbismethanethiosulfonat (M1M) as indicated. The length of the crosslinkers is stated in parenthesis. Samples were analyzed by non-reducing SDS-PAGE and autoradiography. (C) Radiolabeled Por1 constructs were imported into Sam50 mutant mitochondria as indicated. Samples were treated as in (B). Arrowheads, cysteine-specific Sam50-Por1 adducts. The findings of (B) and (C) are summarized in Fig. 7B.

Table S1. List of plasmids used in this study.

Cf and Cfree, cysteine free.

Plasmid name	Expressed protein	Promoter	Vector	Primers for mutagenesis or source	Method	Template DNA or source	Number
pFL39	-	_	pFL39	-	-	66	X15
pFL39Sam50	Sam50	SAM50	pFL39	_	-	13	1699
pFL39Sam50 _{R366A}	Sam50 _{R366A}	SAM50	pFL39	R366A	Site-directed mutagenesis	pFL39Sam50	2072
pFL39Sam50 _{AAAA}	Sam50 _{AAAA}	SAM50	pFL39	АААА	Site-directed mutagenesis	pFL39Sam50	2073
$pFL39Sam50_{\Delta loop6}$	$Sam50_{\scriptscriptstyle \Delta 353\text{-}381}$	SAM50	pFL39	∆loop6	Site-directed mutagenesis	pFL39Sam50	2071
pFL39Sam50 _{Cfree}	Sam50 _{Cfree}	SAM50	pFL39	C76K; C245V; C252G; C292L; C354A; C430H	Site-directed mutagenesis	pFL39Sam50	2690
pFL39Sam50ΔPOTRA _{Cfree}	Sam50∆POTRA _{Cfree}	SAM50	pFL39	13	Site-directed mutagenesis	pFL39Sam50Cf	2773
pFL39Sam50ΔPOTRA _{C126}	Sam50∆POTRA _{C126}	SAM50	pFL39	K126C	Site-directed mutagenesis	pFL39Sam50 ΔPOTRA _{Cfree}	2774
pFL39Sam50ΔPOTRA _{C479}	Sam50∆POTRA _{C479}	SAM50	pFL39	L479C	Site-directed mutagenesis	pFL39Sam50 ΔPOTRA _{Cfree}	2775
pFL39Sam50APOTRA _{C480}	Sam50∆POTRA _{C480}	SAM50	pFL39	G480C	Site-directed mutagenesis	pFL39Sam50 ΔPOTRA _{Cfree}	2776
pFL39Sam50Cf _{C478/C126}	Sam50Cf _{C478/C126}	SAM50	pFL39	K126C	Site-directed mutagenesis	pFL39Sam50Cf _{C478}	2787
$pFL39Sam50Cf_{C478/C127}$	Sam50Cf _{C478/C127}	SAM50	pFL39	T127C	Site-directed mutagenesis	pFL39Sam50Cf _{C478}	2788
pFL39Sam50Cf _{C478/C128}	Sam50Cf _{C478/C128}	SAM50	pFL39	G128C	Site-directed mutagenesis	pFL39Sam50Cf _{C478}	2789
pFL39Sam50Cf _{C478/C129}	Sam50Cf _{C478/C129}	SAM50	pFL39	T129C	Site-directed mutagenesis	pFL39Sam50Cf _{C478}	2790
pFL39Sam50Cf _{C478/C130}	Sam50Cf _{C478/C130}	SAM50	pFL39	N130C	Site-directed mutagenesis	pFL39Sam50Cf _{C478}	2791
pFL39Sam50Cf _{C480/C126}	Sam50Cf _{C480/C126}	SAM50	pFL39	K126C	Site-directed mutagenesis	pFL39Sam50Cf _{C480}	2708
$pFL39Sam50Cf_{C480/C127}$	Sam50Cf _{C480/C127}	SAM50	pFL39	T127C	Site-directed mutagenesis	pFL39Sam50Cf _{C480}	2709
pFL39Sam50Cf _{C480/C128}	Sam50Cf _{C480/C128}	SAM50	pFL39	G128C	Site-directed mutagenesis	pFL39Sam50Cf _{C480}	2710
pFL39Sam50Cf _{C480/C129}	Sam50Cf _{C480/C129}	SAM50	pFL39	T129C	Site-directed mutagenesis	pFL39Sam50Cf _{C480}	2711
pFL39Sam50Cf _{C480/C130}	Sam50Cf _{C480/C130}	SAM50	pFL39	N130C	Site-directed mutagenesis	pFL39Sam50Cf _{C480}	2717
pFL39Sam50Cf _{C482/C126}	Sam50Cf _{C482/C126}	SAM50	pFL39	K126C	Site-directed mutagenesis	pFL39Sam50Cf _{C482}	2792
pFL39Sam50Cf _{C482/C127}	Sam50Cf _{C482/C127}	SAM50	pFL39	T127C	Site-directed mutagenesis	pFL39Sam50Cf _{C482}	2793
pFL39Sam50Cf _{C482/C128}	$Sam50Cf_{C482/C128}$	SAM50	pFL39	G128C	Site-directed mutagenesis	pFL39Sam50Cf _{C482}	2794

pFL39Sam50Cf _{C482/C129}	Sam50Cf _{C482/C129}	SAM50	pFL39	T129C	Site-directed mutagenesis	pFL39Sam50Cf _{C482}	2795
pFL39Sam50Cf _{C482/C130}	Sam50Cf _{C482/C130}	SAM50	pFL39	N130C	Site-directed mutagenesis	pFL39Sam50Cf _{C482}	2796
pFL39Sam50Cf _{C126}	Sam50Cf _{C126}	SAM50	pFL39	K126C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2691
pFL39Sam50Cf _{C127}	Sam50Cf _{C127}	SAM50	pFL39	T127C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2692
pFL39Sam50Cf _{C128}	Sam50Cf _{C128}	SAM50	pFL39	G128C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2693
pFL39Sam50Cf _{C129}	Sam50Cf _{C129}	SAM50	pFL39	T129C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2694
pFL39Sam50Cf _{C130}	Sam50Cf _{C130}	SAM50	pFL39	N130C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2695
pFL39Sam50Cf _{C369}	Sam50Cf _{C369}	SAM50	pFL39	Q369C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2718
pFL39Sam50Cf _{C371}	Sam50Cf _{C371}	SAM50	pFL39	F371C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2719
pFL39Sam50Cf _{C454}	Sam50Cf _{C454}	SAM50	pFL39	R454C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2800
pFL39Sam50Cf _{C455}	Sam50Cf _{C455}	SAM50	pFL39	F455C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2797
pFL39Sam50Cf _{C456}	Sam50Cf _{C456}	SAM50	pFL39	E456C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2798
pFL39Sam50Cf _{C457}	Sam50Cf _{C457}	SAM50	pFL39	L457C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2799
pFL39Sam50Cf _{C458}	Sam50Cf _{C458}	SAM50	pFL39	N458C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2801
pFL39Sam50Cf _{C478}	Sam50Cf _{C478}	SAM50	pFL39	G478C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2701
pFL39Sam50Cf _{C479}	Sam50Cf _{C479}	SAM50	pFL39	L479C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2702
pFL39Sam50Cf _{C480}	Sam50Cf _{C480}	SAM50	pFL39	G480C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2703
pFL39Sam50Cf _{C481}	Sam50Cf _{C481}	SAM50	pFL39	L481C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2704
pFL39Sam50Cf _{C482}	Sam50Cf _{C482}	SAM50	pFL39	A482C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2705
pFL39Sam50Cf _{C484}	Sam50Cf _{C484}	SAM50	pFL39	L484C	Site-directed mutagenesis	pFL39Sam50 _{Cfree}	2707
pFL39Por1	Por1	POR1	pFL39	_	-	Wiedemann/Pfanner Labs	1696
pFL39Por1 _{Cfree}	Por1 _{Cfree}	POR1	pFL39	-	-	39	1987
pFL39Por1TEV _{Cfree}	Por1TEV _{Cfree}	POR1	pFL39	TEV	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2780
pFL39Por1TEV _{C200/C225}	Por1TEV _{C200/C225}	POR1	pFL39	L200C; X225C	Site-directed	$pFL39Por1TEV_{Cfree}$	2781
pFL39Por1TEV _{C201/C224}	Por1TEV _{C201/C224}	POR1	pFL39	Q201C; R224C	Site-directed mutagenesis	pFL39Por1TEV _{Cfree}	2782
pFL39Por1Cf _{C51}	Por1Cf _{C51}	POR1	pFL39	D51C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2787
pFL39Por1Cf _{C220}	Por1Cf _{C220}	POR1	pFL39	E220C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2685
pFL39Por1Cf _{C221}	Por1Cf _{C221}	POR1	pFL39	F221C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2684
pFL39Por1Cf _{C204}	Por1Cf _{C204}	POR1	pFL39	A204C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2688
pFL39Por1Cf _{C205}	Por1Cf _{C205}	POR1	pFL39	K205C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2687
pFL39Por1Cf _{C206}	Por1Cf _{C206}	POR1	pFL39	A206C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2686
pFL39Por1Cf _{C207}	Por1Cf _{C207}	POR1	pFL39	T207C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2802

pFL39Por1Cf _{C159}	Por1Cf _{C159}	POR1	pFL39	A159C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2779
pFL39Por1Cf _{C213}	Por1Cf _{C213}	POR1	pFL39	P213C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2783
pFL39Por1Cf _{C229}	Por1Cf _{C229}	POR1	pFL39	A229C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2786
pFL39Por1Cf _{C253}	Por1Cf _{C253}	POR1	pFL39	P253C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2785
pFL39Por1Cf _{C269}	Por1Cf _{C269}	POR1	pFL39	S269C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2784
pFL39Por1Cf _{C276}	Por1Cf _{C276}	POR1	pFL39	G276C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2677
pFL39Por1Cf _{C277}	Por1Cf _{C277}	POR1	pFL39	W277C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2676
pFL39Por1Cf _{C278}	Por1Cf _{C278}	POR1	pFL39	S278C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2675
pFL39Por1Cf _{C280}	Por1Cf _{C280}	POR1	pFL39	S280C	Site-directed mutagenesis	pFL39Por1 _{Cfree}	2673
pFL39Tom40 _{Cfree}	Tom40 _{Cfree}	TOM40	pFL39	-	-	39	2104
pFL39Tom40Cf _{C356}	Tom40Cf _{C356}	TOM40	pFL39	G356C	Site-directed mutagenesis	pFL39Tom40 _{Cfree}	2720
pFL39Tom40Cf _{C87/C358}	Tom40Cf _{C87/C359}	TOM40	pFL39	-	_	39	2010
pGEM-4Z-Tom40	Tom40	SP6	pGEM- 4Z	_	_	Wiedemann/Pfanner Labs	1495
pGEM-4Z-Por1	Por1	SP6	pGEM- 4Z	_	-	Wiedemann/Pfanner Labs	P14
pSP64-F1β	F1β	SP6	pSP64	_	_	Wiedemann/Pfanner Labs	F01
pGEM-4Z-Mdm10	Mdm10	SP6	pGEM- 4Z	_	_	Wiedemann/Pfanner Labs	2148
pGEM-4Z-Su9-DHFR	Su9-DHFR	SP6	pGEM- 4Z	-	-	Wiedemann/Pfanner Labs	S02
pGEM-4Z-Tim9	Tim9	SP6	pGEM- 4Z	-	-	Wiedemann/Pfanner Labs	JR59
pGEX-4T-1-GST-β-signalPor1	GST-β-signal _{Por1}	tac	pGEX- 4T-1	-	-	13	1719
pGEX-4T-1-GST-β- signalPor1F281Q	GST-β- signal _{Por1F281Q}	tac	pGEX- 4T-1	-	-	13	1720
pFA6AHis3MX6-pGal1	-	-	pFA6	_	_	68	1439

Table S2. List of primers.

For cloning (codons causing amino acid exchange are underlined).

Mutation			D. 1	
Gene	Position	Primer forward	Primer reverse	
	D266A	GGTGGGCCCAGCGACATT <u>GC</u>	TTGAAACCC <u>CGC</u> AATGTCGC	
	KJOOA	<u>G</u> GGGTTTCAA	TGGGCCCACC	
-		CAGAGTGGTGGGCCCAGCG	GGGCCTAACCCAAATGTTTG	
	AAAA	AC <u>GCTGCGGCGGCT</u> CAAACA	AGCCGCCGCAGCGTCGCTGG	
		TTTGGGTTAGGCCC	GCCCACCACTCTG	
	Alexand	CTCACAACAATCCTTGCCTG	CAAAAGCATCACCACCTACA	
	Дюоро	TAGGTGGTGATGCTTTTG	GGCAAGGATTGTTGTGAG	
	CZCV	TAAGAGATTG <u>AAG</u> CAACAC	TGTGGTGTTG <u>CTT</u> CAATCTCT	
	C/6K	CACATTG	ТАТТТААС	
	C2451	TTTAGAGACCGTCTGGAGAT	GGATCTCCAGACGGTCTCTA	
	C245V	CC	AC	
		CACTAAGATAGGTTCACAAG	CCTTGTGAACCTATCTTAGTG	
	C252G	G		
	C292L	TCATATTATGCTCCCTACTA	ACCCTTAGTAGGGAGCATAA	
		AG	TATGATC	
	C354A	TGTACATATAGCTGATAAGT	TGAAACTTATCAGCTATATG	
		TTC	TAC	
		GTTGGGTAATCACATAGGAC	CTGTCCTATGTGATTACCCA	
	C430H	A	A	
		GTTTACAGCGTGCACAGGGA	GTCCCTGTGCACGCTGTAAA	
SAM50	K126C	CAAATTTTGGG	CGTTTTAGGAG	
		CAGCGAAGTGCGGGACAAA	CCAAAATTTGTCCGCACTTC	
	1127C	TTTTGGGAACGATAATG	GCTGTAAACGTTTTAGG	
		GAAGACATGCACAAATTTTG	CCAAAATTTGTGCATGTCTTC	
	GI28C	GGAACGATAATG	GCTGTAAACG	
	T129C	GACAGGGTGCAATTTTGGGA	CCAAAATTGCACCCTGTCTT	
		ACGATAATGATGC	CGCTGTAAACG	
		GGACATGTTTTGGGAACGAT	CCAAAACATGTCCCTGTCTT	
	N130C	AATGATGC	CGCTG	
		GGGTTTTGTACATTTGGGTT	CAAATGTACAAAACCCCCGA	
	Q369C	AGG	ATG	
		CAAACATGTGGGTTAGGCCC	CTAACCCACATGTTTGAAAC	
	F371C		CC	
		CACCCAATGGCATGTTTCGA	GTTTAGCTCGAAACATGCCA	
	R454C	GCTAAACTTTACTTTGC	TTGGGTGCCTTAG	
		CAATGGCAAGATGCGAGCT	GTTTAGCTCGCATCTTGCCAT	
	F455C	AAACTTTAC	TGGGTG	
		GCAAGATTCTGTCTAAACTT	GTAAAGTTTAGACAGAATCT	
	E456C	TACTTTGCC	TGCCATTGG	
		GCAAGATTCGAGTGTAACTT	GTAAAGTTACACTCGAATCT	
	L457C	TACTTTGCC	TGCCATTG	

GenePositionPrimer forwardPrimer reverseN458CGATTCGAGCTATGCCAAAGTAAAGCATAGCTCGA ATCTTGCCATTGGGG478CCCAGTTTGTCTTGGTCTGG CATTTGACCAAGACAAAACTGGAAT CCTTTCL479CCCAGTTTGGTTGTGGTGG CATTTTATAAGCCAGACCACAACAAACTGGAAT CCTTTTCSAM50G480CGGTCTTTGTCTGGCATTTTA GGTCTTGGTGGCATTTTATA AGAATACGCAGACAAAAACGCCACAACCAAACTGGAACCAAACTGGAAT GAATCCL481CCTTGGTTGCGCATTTTATA AGAATACATTCCTTATAAAAATGCGCAACCAAACTGGAACCAAACTGAACCAAACCAAACTGAACCAAACTGAACCAAACCAAACCAAACCAAACTGAACCAAACCAAACTGAACCAAACTGAACCAAACCAAACTGAACCAAACTGAACCAAA
N458CGATTCGAGCTATGC TTGCCTATTACCGCTCCAAAGTAAAGCA ATCTTGCCATTGGGG478CCCAGTTT CATTTCCAGTTTGGTCTGG CATTTGACCAAGACA CACTAAACTGGAAT CCTTTCL479CCCAGTTTGGT CATTTTATAAGCCAGACCACAACCAAACTGGA CATTTTCSAM50G480CGGTCTT TAAGAATACGGCCAGACAAAAACTGGCAACCAAACTGGAAT GAATCCL481CCTTGGT TGGT TGGCAATTCCTTATAAAAATGC GCAACCAAACTG
N458C TTGCCTATTACCGCTC ATCTTGCCATTGGG G478C CCAGTTT <u>GT</u> CTTGGTCTGG GACCAAGACAAAACTGGAAT CATTT CCTTTTC L479C CCAGTTTGGT <u>TGT</u> GGGTCTGG CCAGACCACAACCAAACTGG CATTTTATAAG AATCCTTTC G480C GGTCTT <u>TGT</u> CTGGCATTTTTA GCCAGACAAAGACCAAACTGG L481C CTTGGT <u>TGC</u> GCATTTTTATA CTTATAAAAATGC <u>GCA</u> ACCA AGAATACATTC AGACCAAACTG
$SAM50 \begin{array}{ c c c c c c c } \hline G478C & CCAGTTTTGTCTTGGTCTGG & GACCAAGACAAAACTGGAAT & CCTTTC & CCATTT & CCAGTTGGTTGTGGGTCTGG & CCAGACCACAACCAAACTGGAAT & CCTTTTC & CCAGTTTTATAAG & AATCCTTTTC & AATCCTTTTC & AAGAATAC & GAATCC & CTTGGTTGCGCATTTTTATA & CTTATAAAAATGCGCAACCA & AGACCAAACTG & CTTGATACATTC & AGACCAAACTG & CTTATAAAAATGCGCAACCA & AGACCAAACTG & CTTATAAAAATGCGCAACCA & CTAACAATCC & CTTATAAAAATGCGCAACCA & CTAACAACTG & CTTATAAAAATGCGCAACCA & CCAGACCAAACTG & CTTATAAAAATGCGCAACCAAACTG & CTTATAAAAATGCGCAACCAAACTG & CTTATAAAAATGCGCAACCAAACTG & CTTATAAAAATGCGCAACCAAACTG & CTTATAAAAATGCGCAAACTG & CTTATAAAAATGCGCAAACTG & CTTATAAAAATGCGCAACCAAACTG & CTTATAAAAATGCGCAAACTG & CTTATAAAAATGCGCAACCAAACTG & CTTATAAAAATGCGCAAACTG & CTTATAAAAATGCGCAAACTG & CTTATAAAAATGCGCAAACTG & CTTATAAAAATGCGCAACCAAACTG & CTTATAAAAATGCGCGCAACCAAACTG & CTTATAAAAATGCGCAAACTG & CTTATAAAAATGCGCAAACTG & CTTATAAAAATGCGCGCAACCAAACTG & CTTATAAAAATGCGCAAACTG & CTTGTTTATA & CTTATAAAAATGCGCAAACTG & CTTGTTATAAAAATGCGCAAACTG & CTTGTTTATAAAAATGCGCAAACTG & CTTGTTTATAAAAATGCGCAAACTG & CTTGTTTATAAAAATGCGCAAACTG & CTTGTTTATAAAAATGCGCAAACTG & CTTGTTTGTTATAAAAATGCGCAAACTG & CTTGTTTATAAAAATGCGCAAACTG & CTTGTTTATAAAAATGCGCAAACTG & CTTGTTTTTTATAAAAATGCGCAAACTG & CTTGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT$
G478C CATTT CCTTTTC L479C CCAGTTTGGTTGTGGGCGTCTGG CCAGACCACACCAACCAACTGC CATTTTTATAAG AATCCTTTTC SAM50 G480C GGTCTTTGTCTGGCATTTTA G480C GGTCTTTGTCTGGCATTTTA GCCAGACAAAGACCAAACTCC L481C CTTGGTTGCGCATTTTATA CTTATAAAAATGCGCAACCA AGAATACATTC AGACCAAACTG
L479CCCAGTTTGGTTGTGGTCTGG CATTTTATAAGCCAGACCACAACCAAACTGC AATCCTTTCSAM50G480CGGTCTTTGTCTGGCATTTTAA TAAGAATACGCCAGACAAAGACCAAACTC GAATCCL481CCTTGGTTGCGCATTTTATA AGAATACATTCCTTATAAAAATGCGCAACCAACTG
SAM50 CATTTTTATAAG AATCCTTTC G480C GGTCTT <u>TGT</u> CTGGCATTTTA GCCAG <u>ACA</u> AAGACCAAACTC TAAGAATAC GAATCC L481C CTTGGT <u>TGC</u> GCATTTTTATA CTTATAAAAATGC <u>GCA</u> ACCA AGAATACATTC AGACCAAACTG
SAM50G480CGGTCTTTGTCTGGCATTTTTAGCCAGACAAAGACCAAACTCTAAGAATACGAATCCL481CCTTGGTTGCGCATTTTATACTTATAAAAATGCGCAACCAAGAATACATTCAGACCAAACTG
SAMSU G480C TAAGAATAC GAATCC L481C CTTGGT <u>TGC</u> GCATTTTTATA CTTATAAAAATGC <u>GCA</u> ACCA AGAATACATTC AGACCAAACTG
L481C CTTGGT <u>TGC</u> GCATTTTTATA CTTATAAAAATGC <u>GCA</u> ACCA AGAATACATTC AGACCAAACTG
AGAATACATTC AGACCAAACTG
GGTCTG <u>TGC</u> TTTTTATAAGA CTTATAAAAA <u>GCA</u> CAGACCA
ATACATTCC AGACCAAACTG
I 484C GGCATTT <u>TGT</u> TAAGAATACA GTATTCTTA <u>ACA</u> AAATGCCA
TTCCTTTTAATG GACCAAGAC
GAACTCCAAACTACCTGAAA GTTGACATTGGAGTTACCTT
TEV ATTTGTATTTTCAAGGTAAC GAAAATACAAATTTTCAGGT
TCCAATGTCAACATCGAATT AGTTTGGAGTTCATTGTAGC
CGCCAC CTTAG
D51C CAGCCTGTCAAA <u>TGC</u> GGTCC CAGTGGACC <u>GCA</u> TTTGACAG
ACTGTCTACTAAC GCTGTTTAGCCTTC
G203C CTTTTTACAGGTC <u>TGT</u> GCTA GTAGCCTTAGC <u>ACA</u> GACCTG
AGGCTACAATGAAC TAAAAAGGCGTTG
A204C CAGGTCGGT <u>TGT</u> AAGGCTAC CATTGTAGCCTT <u>ACA</u> ACCGA
AATGAACTCC CCTGTAAAAAGG
K205C GGTCGGTGCT <u>TGT</u> GCTACAA GTTCATTGTAGC <u>ACA</u> AGCAC
TGAACTCCAAAC CGACCTGTAAAAAGG
A206C GGTGCTAAG <u>TGT</u> ACAATGAA GGAGTTCATTGT <u>ACA</u> CTTAG
CICCAAACIACC CACCGACCIG
T207C GTCGGTGCTAAGGCT <u>TGT</u> AT GTTTGGAGTTCAT <u>ACA</u> AGCC
POR1 GAACICCAAACIACCIAAC TIAGCACCGACCIG
A159C CGATATCAGC <u>TGC</u> GGTTCCA GAAATGGAACC <u>GCA</u> GCTGAT
L200C CAACGCCIIIIGCAGGICG CACCGACCIG <u>ACA</u> AAAGGCC
Q201C GCCTTTTAIGIGICGGIGCI GCACCGACACATAAAAAGGC
P213C CICCAAACIAIGIAACICCA CAIIGGAGIIACAIAGIIIG
E220C E220C EACATATTTCCC
$\begin{bmatrix} F221C \\ ATTTGCCTGATC \\ CACATTCCAC \\ CACA$
$\begin{bmatrix} R224C \\ TGATGCATCTTC \\ AATTCCATCTTC \\ AATTCCATC$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Mutation			n :		
Gene	Position	Primer forward	Primer reverse		
	A 229C	TATTTGCCTGAT <u>TGC</u> TCTTCC	CTTGGGAAGA <u>GCA</u> ATCAGGC		
	A229C	CAAGTTAAGG	AAATATCTAG		
	V253C	ATTGTTAAGA <u>TGT</u> GGCGTCA	GAGTGACGCC <u>ACA</u> TCTTAAC		
	V255C	CTCTGGGTG	AATTGCTTG		
	52600	CTTTGAAGTTG <u>TGT</u> GAACCT	GAACAGGTTC <u>ACA</u> CAACTTC		
	5209C	GTTCACAAGCTAG	AAAGCATCGAAAG		
DOD1	62760	CACAAGCTA <u>TGT</u> TGGTCTTT	CAAAGACCA <u>ACA</u> TAGCTTGT		
FUNI	G276C	GTCCTTCGAC	GAACAGGTTCAG		
	W277C	CTAGGT <u>TGT</u> TCTTTGTCCTTC	GGACAAAGA <u>ACA</u> ACCTAGCT		
	W2//C	GACGCTTG	TGTGAACAGG		
	S278C	GCTAGGTTGG <u>TGT</u> TTGTCCT	CGAAGGACAA <u>ACA</u> CCAACCT		
		TCGACGCTTG	AGCTTGTGAAC		
	52800	GTCTT <u>TGT</u> GCTTCGACGCTT	CGTCGAAGC <u>ACA</u> AAGACCAA		
	5280C	GAACGTATATATC	CCTAGCTTG		
TOMA	C256C	GATTGGTTTC <u>TGT</u> CTACAAT	CAAATTGTAG <u>ACA</u> GAAACCA		
10///40	03300	TTGAAACTGCTGG	ATCTTGGTATCG		
			GAAAATTGGCATCGGGCTGT		
	DЭ		CTAAGGAAATCTCATTATCA		
	K2	_	ACACCAGATGATGAGGTCAT		
HIS3-			TTTGAGATCCGGGTTTT		
Gal1 _{pr}		GGATGCGTTTTACGTGGCAA			
	F4	AAGTTTTGATGCCAAATAGA			
	Г4	CAAAAGTAGCTCAATTCAAC	_		
		GAATTCGAGCTCGTTTAAAC			

For in vitro transcription.

Name	Sequence	Primer range (full amino acids)	Gene	Cys
WG-Por1-rev	TGATGATGAGAACCCCCCC-TTA-	278 283	DOD 1	
(only Fig. 1C)	AGCGTCGAAGGACAAAGAC	278-283	TOKI	-
WG-Por1-b15(C210)-fw	CTTTAAGAAGGAGATATACC-ATG-	210 216	DOD 1	210
(only Fig. 1C)	<i>TGC</i> AAACTACCTAACTCCAATG	210-210	FORT	210
rWC Dor1 rov	TGATGATGAGAACCCCCCC-TCA-CATCATCAT-	292 772		
IwG-Poll-lev	AGCGTCGAAGGACAAAGACCAAC	277-285	PORT	-
rWC Dort b15 fry	CTTTAAGAAGGAGATATACC-ATG-	211 216	DODI	
rwG-Por1-b15-tw	AAACTACCTAACTCCAATGTC	211-210	PORT	-
rWG-Por1-b14-fw	CTTTAAGAAGGAGATATACC-ATG-ATGATG-	105 201		
	AACGTCAACGCCTTTTTACAG	195-201	PORI	-
WC D 1112 C	CTTTAAGAAGGAGATATACC-ATG-ATGATG-	194 100		
1WG-P011-013-1W	AACGAGCAAATAACTACCGTTG	184-190	PORT	-
-WC D-s1 12(C100) for	CTTTAAGAAGGAGATATACC-ATG-ATGATG-	194 104		100
1wG-P011-013(C190)-1w	AACGAGCAAATAACTACC <i>TGT</i> GACTTCTTCC	184-194	PORT	190
-WC D-s1 12(C101) for	CTTTAAGAAGGAGATATACC-ATG-ATGATG-	194 104		101
rwG-Por1-D13(C191)-IW	AACGAGCAAATAACTACCGTT <i>TGC</i> TTCTTCC	184-194	PORI	191
WC D 1112 C	CTTTAAGAAGGAGATATACC-ATG-ATGATG-	172 170		
rwG-Por1-b12-IW	GCCAAAGACTACTCCTTGG	1/3-1/8	PORI	-
WC D. 1112(C170) (CTTTAAGAAGGAGATATACC-ATG-ATGATG-	172 102	DODI	170
rwG-Por1-b12(C1/9)-fw	GCCAAAGACTACTCCTTG <i>TGC</i> GCTACATTGAAC	1/3-183	PORI	1/9
WC D. 1112(C190) C	CTTTAAGAAGGAGATATACC-ATG-ATGATG-	172 102		100
rwG-Pori-b12(C180)-fw	GCCAAAGACTACTCCTTGGGC <i>TGT</i> ACATTGAAC	1/3-183	PORI	180

Name	Sequence	Primer range (full amino acids)	Gene	Cys
rWG-Por1-b11-fw	CTTTAAGAAGGAGATATACC-ATG-ATGATG- ATCAGCGCCGGTTCCATTTC	157-162	POR1	-
rWG-Por1-b10-fw	CTTTAAGAAGGAGATATACC-ATG-ATGATG- GAAGGTATTGTTGGTGGCGCAGAG	145-152	POR1	-
rWG-Por1-b9-fw	CTTTAAGAAGGAGATATACC-ATG-ATGATG- TCACCAACATTTGTTGGTGACTTAAC	133-139	POR1	-
rWG-Por1-b8-fw	CTTTAAGAAGGAGATATACC-ATG-ATGATG- CAACCTTTCTTCACCGCAAG	118-123	POR1	-
rWG-Por1-b7-fw	CTTTAAGAAGGAGATATACC-ATG-ATGATG- ACTCCAGGCGTCGCCAAG	103-108	POR1	-
rWG-Por1-b6-fw	CTTTAAGAAGGAGATATACC-ATG-ATGATG- AACTTGACCCCTGGTCTAAAG	89-95	POR1	-
rWG-Por1-b5-fw	CTTTAAGAAGGAGATATACC-ATG-ATGATG- AACACAAACAACTTGCAAACCAAATTAGAGTTTG	77-87	POR1	-
rWG-Por1-b4-fw	CTTTAAGAAGGAGATATACC-ATG-ATGATG- GACAAGCAAACCGGCTTGG	63-69	POR1	-
rWG-Por1-b3-fw	CTTTAAGAAGGAGATATACC-ATG-ATGATG- GGTCCACTGTCTACTAACG	52-57	POR1	-
rWG-Por1-b2-fw	CTTTAAGAAGGAGATATACC-ATG-ATGATG- ACAACCGCCAATGGCATTAAG	34-40	POR1	-
rWG-Por1-full-length-fw	CTTTAAGAAGGAGATATACC-ATG-ATGATG- TCTCCTCCAGTTTACAGCGATATC	1-9	POR1	-
rWG-Por1-b1(C280)-rev	TGATGATGAGAACCCCCCCC-TTA-CATCATCAT- AGCGTCGAA <i>GCA</i> CAAAGAC	277-283	POR1	280
rWG-Por1-b1(C278)-rev	TGATGATGAGAACCCCCCC-TTA-CATCATCAT- AGCGTCGAAGGACAA <i>ACA</i> CCAAC	277-283	POR1	278
rWG-Por1-b1(C277)-rev	TGATGATGAGAACCCCCCCC-TTA-CATCATCAT- AGCGTCGAAGGACAAAGA <i>ACA</i> AC	277-283	POR1	277
rWG-Por1-F281Q-rev	TGATGATGAGAACCCCCCC-TCA-CATCATCAT- AGCGTCGAA <i>GAA</i> CAAAGACCAAC	277-283	POR1	-
rWG-Por1-L279A-rev	TGATGATGAGAACCCCCCC-TTA-CATCATCAT- AGCGTCGAAGGACGACCAACC	276-283	POR1	-
rWG-Por1-(C276)L279A- rev	TGATGATGAGAACCCCCCC-TTA-CATCATCAT- AGCGTCGAAGGACGCAGACCAACA	276-283	POR1	276
rWG-Por1-(C280)L279A- rev	TGATGATGAGAACCCCCCC-TTA-CATCATCAT- AGCGTCGAA <i>GCACGC</i> AGACCAACC	277-283	POR1	280
rWG-Tom40-rev	TGATGATGAGAACCCCCCC-TTA-CATCATCAT- CAATTGAGGAAGAGCTTGCAATGG	380-378	TOM40	-
rWG-Tom40-b15-fw	CTTTAAGAAGGAGATATACC-ATG-ATGATG- CAAGCTGGTATGGTTCCTATTACTG	284-276	TOM40	-

Table S3. List of *S. cerevisiae* strains used in this study.

pr, promoter.

Strain name	Strain No.	Genotype	Parental strain	Method used	Source
<i>sam50</i> ∆ (shuffling strain)	2636	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [Yep352-MET25pr-Sam50- CYC1t]	ҮРН499	_	7
Wild-type (WT) for <i>sam50</i> mutants	2630	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50]	sam50∆	Plasmid shuffling	13
Sam50 _{R366A}	3986	$\begin{array}{l} MATa\ ura3-52\ lys2-801_amber\\ ade2-101_ochre\ trp1-\Delta63\ his3-\\ \Delta200\ leu2-\Delta1\ sam50::ade2\\ [pFL39-Sam50_{R366A}] \end{array}$	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{AAAA}	3987	$\begin{array}{c} MATa\ ura3-52\ lys2-801_amber\\ ade2-101_ochre\ trp1-\Delta63\ his3-\\ \Delta200\ leu2-\Delta1\ sam50::ade2\\ [pFL39-Sam50_{AAAA}] \end{array}$	sam50∆	Plasmid shuffling	This study
Sam50 _{Cfree}	4867	$\begin{array}{l} MATa \; ura3-52 \; lys2-801 \; amber\\ ade2-101 \; ochre \; trp1-\Delta 63 \; his3-\\ \Delta 200 \; leu2-\Delta 1 \; sam50::ade2\\ [pFL39-Sam50_{Cfree}] \end{array}$	sam50∆	Plasmid shuffling	This study
Sam50∆POTRA _{Cfree}	5056	$\begin{array}{c} MATa \ ura3-52 \ lys2-801 \ amber\\ ade2-101 \ ochre \ trp1-\Delta 63 \ his3-\\ \Delta 200 \ leu2-\Delta 1 \ sam50::ade2\\ [pFL39-Sam50\Delta POTRA_{Cfree}] \end{array}$	sam50∆	Plasmid shuffling	This study
Sam50∆POTRA _{C126}	5057	$\begin{array}{c} MATa\ ura3-52\ lys2-801\ amber\\ ade2-101\ ochre\ trp1-\Delta63\ his3-\\ \Delta200\ leu2-\Delta1\ sam50::ade2\\ [pFL39-Sam50\DeltaPOTRA_{C126}] \end{array}$	sam50∆	Plasmid shuffling	This study
Sam50∆POTRA _{C479}	5058	$\begin{array}{l} MATa\ ura3-52\ lys2-801\ amber\\ ade2-101\ ochre\ trp1-\Delta63\ his3-\\ \Delta200\ leu2-\Delta1\ sam50::ade2\\ [pFL39-Sam50\DeltaPOTRA_{C479}] \end{array}$	sam50∆	Plasmid shuffling	This study
Sam50∆POTRA _{C480}	5059	$\begin{array}{l} MATa \ ura3-52 \ lys2-801 \ amber\\ ade2-101 \ ochre \ trp1-\Delta 63 \ his3-\\ \Delta 200 \ leu2-\Delta 1 \ sam50::ade2\\ [pFL39-Sam50\Delta POTRA_{C480}] \end{array}$	sam50∆	Plasmid shuffling	This study
Sam50 _{C126}	4868	$\begin{array}{c} MATa \; ura3-52 \; lys2-801 \; amber \\ ade2-101 \; ochre \; trp1-\Delta 63 \; his3- \\ \Delta 200 \; leu2-\Delta 1 \; sam50::ade2 \\ [pFL39-Sam50Cf_{C126}] \end{array}$	sam50∆	Plasmid shuffling	This study
Sam50 _{C127}	4869	<i>MAT</i> a ura3-52 lys2-801_amber ade2-101_ochre trp1- Δ 63 his3- Δ 200 leu2- Δ 1 sam50::ade2 [pFL39-Sam50Cf _{C127}]	sam50∆	Plasmid shuffling	This study

Sam50 _{C128}	4870	$\begin{array}{c} MATa \ ura3-52 \ lys2-801_amber\\ ade2-101_ochre \ trp1-\Delta 63 \ his3-\\ \Delta 200 \ leu2-\Delta 1 \ sam50::ade2\\ [pFL39-Sam50Cf_{C128}] \end{array}$	sam50Δ	Plasmid shuffling	This study
Sam50 _{C129}	4871	$\begin{array}{l} MATa \; ura3-52 \; lys2-801_amber\\ ade2-101_ochre \; trp1-\Delta63 \; his3-\\ \Delta200 \; leu2-\Delta1 \; sam50::ade2\\ [pFL39-Sam50Cf_{C129}] \end{array}$	sam50∆	Plasmid shuffling	This study
Sam50 _{C130}	4872	$\begin{array}{l} MATa \; ura3-52 \; lys2-801_amber\\ ade2-101_ochre\; trp1-\Delta 63 \; his3-\\ \Delta 200 \; leu2-\Delta 1 \; sam50::ade2\\ [pFL39-Sam50Cf_{C130}] \end{array}$	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C369}	4908	$\begin{array}{l} MATa\ ura3-52\ lys2-801_amber\\ ade2-101_ochre\ trp1-\Delta63\ his3-\\ \Delta200\ leu2-\Delta1\ sam50::ade2\\ [pFL39-Sam50Cf_{C369}] \end{array}$	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C371}	4909	$\begin{array}{l} MATa\ ura3-52\ lys2-801\ amber\\ ade2-101\ ochre\ trp1-\Delta 63\ his3-\\ \Delta 200\ leu2-\Delta 1\ sam50::ade2\\ [pFL39-Sam50Cf_{C371}] \end{array}$	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C454}	5074	$\begin{array}{l} MATa \; ura3-52 \; lys2-801_amber\\ ade2-101_ochre\; trp1-\Delta 63 \; his3-\\ \Delta 200 \; leu2-\Delta 1 \; sam50::ade2\\ [pFL39-Sam50Cf_{C454}] \end{array}$	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C455}	5070	$\begin{array}{l} MATa\ ura3-52\ lys2-801_amber\\ ade2-101_ochre\ trp1-\Delta63\ his3-\\ \Delta200\ leu2-\Delta1\ sam50::ade2\\ [pFL39-Sam50Cf_{C455}] \end{array}$	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C456}	5071	$\begin{array}{c} MATa \; ura3-52 \; lys2-801_amber\\ ade2-101_ochre \; trp1-\Delta 63 \; his3-\\ \Delta 200 \; leu2-\Delta 1 \; sam50::ade2\\ [pFL39-Sam50Cf_{C456}] \end{array}$	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C457}	5072	$\begin{array}{l} MATa \; ura3-52 \; lys2-801_amber\\ ade2-101_ochre\; trp1-\Delta 63 \; his3-\\ \Delta 200 \; leu2-\Delta 1 \; sam50::ade2\\ [pFL39-Sam50Cf_{C457}] \end{array}$	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C458}	5073	$\begin{array}{l} MATa \; ura3-52 \; lys2-801_amber\\ ade2-101_ochre\; trp1-\Delta 63 \; his3-\\ \Delta 200 \; leu2-\Delta 1 \; sam50::ade2\\ [pFL39-Sam50Cf_{C458}] \end{array}$	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C478}	4873	$\begin{array}{l} MATa\ ura3-52\ lys2-801\ amber\\ ade2-101\ ochre\ trp1-\Delta63\ his3-\\ \Delta200\ leu2-\Delta1\ sam50::ade2\\ [pFL39-Sam50Cf_{C478}] \end{array}$	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C479}	4874	$\begin{array}{l} MATa\ ura3-52\ lys2-801_amber\\ ade2-101_ochre\ trp1-\Delta63\ his3-\\ \Delta200\ leu2-\Delta1\ sam50::ade2\\ [pFL39-Sam50Cf_{C479}] \end{array}$	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C480}	4875	$\begin{array}{l} MATa \; ura3-52 \; lys2-801_amber\\ ade2-101_ochre\; trp1-\Delta 63 \; his3-\\ \Delta 200 \; leu2-\Delta 1 \; sam50::ade2\\ [pFL39-Sam50Cf_{C480}] \end{array}$	sam50Δ	Plasmid shuffling	This study

Sam50 _{C481}	4876	$\begin{array}{c} MATa \; ura3-52 \; lys2-801_amber\\ ade2-101_ochre \; trp1-\Delta 63 \; his3-\\ \Delta 200 \; leu2-\Delta 1 \; sam50::ade2\\ [pFL39-Sam50Cf_{C481}] \end{array}$	sam50∆	Plasmid shuffling	This study
Sam50 _{C482}	4877	$\begin{array}{c} MATa \; ura3-52 \; lys2-801_amber\\ ade2-101_ochre \; trp1-\Delta63 \; his3-\\ \Delta200 \; leu2-\Delta1 \; sam50::ade2\\ [pFL39-Sam50Cf_{C482}] \end{array}$	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C484}	4878	$\begin{array}{l} MATa \; ura3-52 \; lys2-801_amber\\ ade2-101_ochre \; trp1-\Delta 63 \; his3-\\ \Delta 200 \; leu2-\Delta 1 \; sam50::ade2\\ [pFL39-Sam50Cf_{C484}] \end{array}$	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C478/C126}	5060	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50Cf _{C478/C126}]	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C478/C127}	5061	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50Cf _{C478/C127}]	sam50∆	Plasmid shuffling	This study
Sam50 _{C478/C128}	5062	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50Cf _{C478/C128}]	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C478/C129}	5063	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50Cf _{C478/C129}]	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C478/C130}	5064	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50Cf _{C478/C130}]	sam50∆	Plasmid shuffling	This study
Sam50 _{C480/C126}	4879	$\begin{array}{c} MATa \; ura3-52 \; lys2-801_amber\\ ade2-101_ochre \; trp1-\Delta63 \; his3-\\ \Delta200 \; leu2-\Delta1 \; sam50::ade2\\ [pFL39-Sam50Cf_{C480/C126}] \end{array}$	sam50∆	Plasmid shuffling	This study
Sam50 _{C480/C127}	4880	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50Cf _{C480/C127}]	sam50∆	Plasmid shuffling	This study
Sam50 _{C480/C128}	4881	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50Cf _{C480/C128}]	sam50∆	Plasmid shuffling	This study
Sam50 _{C480/C129}	4882	$\begin{array}{c} MATa \; ura3-52 \; lys2-801_amber\\ ade2-101_ochre \; trp1-\Delta63 \; his3-\\ \Delta200 \; leu2-\Delta1 \; sam50::ade2\\ [pFL39-Sam50Cf_{C480/C129}] \end{array}$	sam50Δ	Plasmid shuffling	This study
Sam50 _{C480/C130}	4883	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50Cf _{C480/C130}]	sam50∆	Plasmid shuffling	This study

Sam50 _{C482/C126}	5065	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50Cf _{C482/C126}]	sam50∆	Plasmid shuffling	This study
Sam50 _{C482/C127}	5066	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50Cf _{C482/C127}]	sam50∆	Plasmid shuffling	This study
Sam50 _{C482/C128}	5067	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50Cf _{C482/C128}]	sam50∆	Plasmid shuffling	This study
Sam50 _{C482/C129}	5068	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50Cf _{C482/C129}]	$sam50\Delta$	Plasmid shuffling	This study
Sam50 _{C482/C130}	5069	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1 sam50::ade2 [pFL39-Sam50Cf _{C482/C130}]	$sam50\Delta$	Plasmid shuffling	This study
YPH499 (WT, Fig. 6, S6, S7)	1501	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3- Δ200 leu2-Δ1	_	_	67
Gal1Sam50	2396	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1- Δ 63 his3- Δ 200 leu2 SAM50 _{pr} ::SAM50 _{pr} - HIS3-Gal1 _{pr}	ҮРН499	Homologous recombination (Template 1439, Primers R2 + F4)	13
Sam50↓	3988	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1- Δ 63 his3- Δ 200 leu2 SAM50 _{pr} ::SAM50 _{pr} - HIS3-Gal1 _{pr} [pFL39]	Gal1Sam50	Growth on selective medium	This study
Sam50↓+WT	3989	$\begin{array}{l} MATa\ ura3-52\ lys2-801\ amber\\ ade2-101\ ochre\ trp1-\Delta 63\ his3-\\ \Delta 200\ leu2\ SAM50_{pr}::SAM50_{pr}-\\ HIS3-Gal1_{pr}\ [pFL39-Sam50] \end{array}$	Gal1Sam50	Growth on selective medium	This study
Sam50↓+ Sam50 _{∆loop6}	3990	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1- Δ 63 his3- Δ 200 leu2 SAM50 _{pr} ::SAM50 _{pr} - HIS3-Gal1 _{pr} [pFL39- Sam50 _{Δloop6}]	Gal1Sam50	Growth on selective medium	This study

Antigen	Dilution	Number
Cox4	1:500 TBS + 5% milk	GR578-5
Cyc1	1:1000 TBS + 5% milk	GR541-6
Dic1	1:200 TBS + 5% milk	GR2055-2
Mdm10	1:250 TBS + 5% milk	GR1145-3
Om45	1:100 TBS-T + 5% milk	GR1391-4
Por1	1:1000 TBS + 5% milk	94D
Sam50	1:250 TBS + 5% milk	312-6
Sam37	1:500 TBS-T + 5% milk	161-6
Sam35	1:250 TBS + 5% milk	GR551-7
Tim44	1:1000 TBS 5% milk	127-2
Tim23	1:500 TBS + 5% milk	133-9
Tim22	1:500 TBS + 5% milk	164-6
Tim10	1:500 TBS-T + 5% milk	217-3
Tom70	1:250 TBS + 5% milk	GR657-5
Tom40	1:500 TBS-T + 5% milk	168-4
Tom22	1:5000 TBS + 5% milk	GR3227-2
Tom20	1:5000 TBS + 5% milk	GR3225-7
Tom7	1:250 TBS + 5% milk	230-13
Tom5	1:500 TBS + 5% milk	GR3420-7

Table S4. List of antibodies used in this study.

Model S1. Model of Sam50 β -barrel domain (PDB format).

References

- S. A. Paschen, T. Waizenegger, T. Stan, M. Preuss, M. Cyrklaff, K. Hell, D. Rapaport, W. Neupert, Evolutionary conservation of biogenesis of β-barrel membrane proteins. *Nature* 426, 862–866 (2003).
- 2. R. Voulhoux, M. P. Bos, J. Geurtsen, M. Mols, J. Tommassen, Role of a highly conserved bacterial protein in outer membrane protein assembly. *Science* **299**, 262–265 (2003).
- 3. N. Wiedemann, V. Kozjak, A. Chacinska, B. Schönfisch, S. Rospert, M. T. Ryan, N. Pfanner, C. Meisinger, Machinery for protein sorting and assembly in the mitochondrial outer membrane. *Nature* **424**, 565–571 (2003).
- 4. T. Wu, J. Malinverni, N. Ruiz, S. Kim, T. J. Silhavy, D. Khane, Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. *Cell* **121**, 235–245 (2005).
- 5. C. L. Hagan, T. J. Silhavy, D. Kahne, β-Barrel membrane protein assembly by the Bam complex. *Annu. Rev. Biochem.* **80**, 189-210 (2011).
- T. Jores, A. Klinger, L. E. Gro
 ß, S. Kawano, N. Flinner, E. Duchardt-Ferner, J. W
 öhnert, H. Kalbacher, T. Endo, E. Schleiff, D. Rapaport, Characterization of the targeting signal in mitochondrial β-barrel proteins. *Nat. Commun.* 7, 12036 (2016).
- 7. V. Kozjak, N. Wiedemann, D. Milenkovic, C. Lohaus, H. E. Meyer, B. Guiard, C. Meisinger, N. Pfanner, An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. *J. Biol. Chem.* **278**, 48520–48523 (2003).
- 8. I. Gentle, K. Gabriel, P. Beech, R. Waller, T. Lithgow, The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. *J. Cell Biol.* 164, 19–24 (2004).
- 9. D. Ishikawa, H. Yamamoto, Y. Tamura, K. Moritoh, T. Endo, Two novel proteins in the mitochondrial outer membrane mediate β -barrel protein assembly. *J. Cell Biol.* **166**, 621–627 (2004).
- D. Milenkovic, V. Kozjak, N. Wiedemann, C. Lohaus, H. E. Meyer, B. Guiard, N. Pfanner, C. Meisinger, Sam35 of the mitochondrial protein sorting and assembly machinery is a peripheral outer membrane protein essential for cell viability. *J. Biol. Chem.* 279, 22781– 22785 (2004).
- T. Waizenegger, S. J. Habib, M. Lech, D. Mokranjac, S. A. Paschen, K. Hell, W. Neupert, D. Rapaport, Tob38, a novel essential component in the biogenesis of β-barrel proteins of mitochondria. *EMBO Rep.* 5, 704–709 (2004).
- 12. V. Robert, E. B. Volokhina, F. Senf, M. P. Bos, P. Van Gelder, J. Tommassen, Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. *PLoS Biol.* **4**, e377 (2006).
- S. Kutik, D. Stojanovski, L. Becker, T. Becker, M. Meinecke, V. Krüger, C. Prinz, C. Meisinger, B. Guiard, R. Wagner, N. Pfanner, N. Wiedemann, Dissecting membrane insertion of mitochondrial β-barrel proteins. *Cell* 132, 1011–1024 (2008).
- C. Stubenrauch, M. J. Belousoff, I. D. Hay, H.-H. Shen, J. Lillington, K. L. Tuck, K. M. Peters, M.-D. Phan, A. W. Lo, M. A. Schembri, R. A. Strugnell, G Waksman, T. Lithgow, Effective assembly of fimbriae in Escherichia coli depends on the translocation assembly module nanomachine. *Nat. Microbiol.* 1, 16064 (2016).
- J. Lee, M. Xue, J. S. Wzorek, T. Wu, M. Grabowicz, L. S. Gronenberg, H. A. Sutterlin, R. M. Davis, N. Ruiz, T. J. Silhavy, D. E. Kahne, Characterization of a stalled complex on the β-barrel assembly machine. *Proc. Natl. Acad. Sci. U.S.A.* 113, 8717–8722 (2016).

- N. Noinaj, A. J. Kuszak, J. C. Gumbart, P. Lukacik, H. Chang, N. C. Easley, T. Lithgow, S. K. Buchanan, Structural insight into the biogenesis of β-barrel membrane proteins. *Nature* 501, 385–390 (2013).
- B. Clantin, A.-S. Delattre, P. Rucktooa, N. Saint, A. C. Méli, C. Locht, F. Jacob-Dubuisson, V. Villeret, Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. *Science* 317, 957–961 (2007).
- 18. F. Gruss, F. Zähringer, R. P. Jakob, B. M. Burmann, S. Hiller, T. Maier, The structural basis of autotransporter translocation by TamA. *Nat. Struct. Mol. Biol.* **20**, 1318–1320 (2013).
- J. Selkrig, K. Mosbahi, C. T. Webb, M. J. Belousoff, A. J. Perry, T. J. Wells, F. Morris, D. L. Leyton, M. Totsika, M.-D. Phan, N. Celik, M. Kelly, C. Oates, E. L. Hartland, R. M. Robins-Browne, S. H. Ramarathinam, A. W. Purcell, M. A. Schembri, R. A. Strugnell, I. R. Henderson, D. Walker, T. Lithgow, Discovery of an archetypal protein transport system in bacterial outer membranes. *Nat. Struct. Mol. Biol.* **19**, 506–510 (2012).
- 20. C. Baud, J. Guérin, E. Petit, E. Lesne, E. Dupré, C. Locht, F. Jacob-Dubuisson, Translocation path of a substrate protein through its Omp85 transporter. *Nat. Commun.* **5**, 5271 (2014).
- R. Albrecht, M. Schütz, P. Oberhettinger, M. Faulstich, I. Bermejo, T. Rudel, K. Diederichs, K. Zeth, Structure of BamA, an essential factor in outer membrane protein biogenesis. *Acta Crystallogr. D Biol. Crystallogr.* **70**, 1779–1789 (2014).
- D. Ni, Y. Wang, X. Yang, H. Zhou, X. Hou, B. Cao, Z. Lu, X. Zhao, K. Yang, Y. Huang, Structural and functional analysis of the β-barrel domain of BamA from Escherichia coli. *FASEB J.* 28, 2677–2685 (2014).
- 23. J. Bakelar, S. K. Buchanan, N. Noinaj, The structure of the β-barrel assembly machinery complex. *Science* **351**, 180–186 (2016).
- 24. Y. Gu, H. Li, H. Dong, Y. Zeng, Z. Zhang, N. G. Paterson, P. J. Stansfeld, Z. Wang, Y. Zhang, W. Wang, C. Dong, Structural basis of outer membrane protein insertion by the BAM complex. *Nature* **531**, 64–69 (2016).
- L. Han, J. Zheng, Y. Wang, X. Yang, Y. Liu, C. Sun, B. Cao, H. Zhou, D. Ni, J. Lou, Y. Zhao, Y. Huang, Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. *Nat. Struct. Mol. Biol.* 23, 192–196 (2016).
- M. G. Iadanza, A. J. Higgins, B. Schiffrin, A. N. Calabrese, D. J. Brockwell, A. E. Ashcroft, S. E. Radford, N. A. Ranson, Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM. *Nat. Commun.* 7, 12865 (2016).
- 27. P. A. Doerner, M. S. Sousa, Extreme dynamics in the BamA β -barrel seam. *Biochemistry* 56, 3142-3149 (2017).
- A. Klein, L. Israel, S. W. K. Lackey, F. E. Nargang, A. Imhof, W. Baumeister, W. Neupert, D. R. Thomas, Characterization of the insertase for β-barrel proteins of the outer mitochondrial membrane. J. Cell Biol. 199, 599-611 (2012).
- 29. B. van den Berg, Lateral gates: β-barrels get in on the act. *Nat. Struct. Mol. Biol.* **20**, 1237–1239 (2013).
- D. Gessmann, Y. H. Chung, E. J. Danoff, A. M. Plummer, C. W. Sandlin, N. R. Zaccai, K. G. Fleming, Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. *Proc. Natl. Acad. Sci. U.S.A.* 111, 5878–5883 (2014).
- 31. N. Noinaj, A. J. Kuszak, C. Balusek, J. C. Gumbart, S. K. Buchanan, Lateral opening and exit pore formation are required for BamA function. *Structure* **22**, 1055–1062 (2014).
- 32. J. H. Kleinschmidt, Folding of β-barrel membrane proteins in lipid bilayers Unassisted and assisted folding and insertion. *Biochim. Biophys. Acta* **1848**, 1927–1943 (2015).

- 33. N. Noinaj, S. E. Rollauer, S. K. Buchanan, The β-barrel membrane protein insertase machinery from Gram-negative bacteria. *Curr. Opin. Struct. Biol.* **31**, 35–42 (2015).
- 34. X. C. Zhang, L. Han, How does a β-barrel integral membrane protein insert into the membrane? *Protein Cell* **7**, 471-477 (2016).
- 35. N. Noinaj, J. C. Gumbart, S. K. Buchanan, The β-barrel assembly machinery in motion. *Nat. Rev. Microbiol.* **15**, 197-204 (2017).
- 36. R. S. Bamert, K. Lundquist, H. Hwang, C. T. Webb, T. Shiota, C. J. Stubenrauch, M. J. Belousoff, R. J. A. Goode, R. B. Schittenhelm, R. Zimmerman, M. Jung, J. C. Gumbart, T. Lithgow, Structural basis for substrate selection by the translocation and assembly module of the β-barrel assembly machinery. *Mol. Microbiol.* **106**, 142-156 (2017).
- L. Estrada Mallarino, E. Fan, M. Odermatt, M. Müller, M. Lin, J. Liang, M. Heinzelmann, F. Fritsche, H.-J. Apell, W. Welte, TtOmp85 a β-barrel assembly protein, functions by barrel augmentation. *Biochemistry* 54, 844–852 (2015).
- 38. Y. Gu, Y. Zeng, Z. Wang, C. Dong, BamA β16C strand and periplasmic turns are critical for outer membrane protein insertion and assembly. *Biochem. J.* **474**, 3951–3961 (2017).
- 39. J. Qiu, L.-S. Wenz, R. M. Zerbes, S. Oeljeklaus, M. Bohnert, D. A. Stroud, C. Wirth, L. Ellenrieder, N. Thornton, S. Kutik, S. Wiese, A. Schulze-Specking, N. Zufall, A. Chacinska, B. Guiard, C. Hunte, B. Warscheid, M. van der Laan, N. Pfanner, N. Wiedemann, T. Becker, Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. *Cell* 154, 596–608 (2013).
- T. Shiota, K. Imai, J. Qiu, V. L. Hewitt, K. Tan, H.-H. Shen, N. Sakiyama, Y. Fukasawa, S. Hayat, M. Kamiya, A. Elofsson, K. Tomii, P. Horton, N. Wiedemann, N. Pfanner, T. Lithgow, T. Endo, Molecular architecture of the active mitochondrial protein gate. *Science* 349, 1544–1548 (2015).
- L.-S. Wenz, L. Ellenrieder, J. Qiu, M. Bohnert, N. Zufall, M. van der Laan, N. Pfanner, N. Wiedemann, T. Becker, Sam37 is crucial for formation of the mitochondrial TOM–SAM supercomplex, thereby promoting β-barrel biogenesis. *J. Cell Biol.* 210, 1047–1054 (2015).
- S. Hiller, R. G. Garces, T. J. Malia, V. Y. Orekhov, M. Colombini, G. Wagner, Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. *Science*. 321, 1206–1210 (2008).
- 43. M. Bayrhuber, T. Meins, M. Habeck, S. Becker, K. Giller, S. Villinger, C. Vonrhein, C. Griesinger, M. Zweckstetter, K. Zeth, Structure of the human voltage-dependent anion channel. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 15370–15375 (2008).
- 44. R. Ujwal, D. Cascio, J.-P. Colletier, S. Faham, J. Zhang, L. Toro, P. Ping, J. Abramson, The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 17742–17747 (2008).
- 45. D. A. Stroud, T. Becker, J. Qiu, D. Stojanovski, S. Pfannschmidt, C. Wirth, C. Hunte, B. Guiard, C. Meisinger, N. Pfanner, N. Wiedemann, Biogenesis of mitochondrial β-barrel proteins: the POTRA domain is involved in precursor release from the SAM complex. *Mol. Biol. Cell.* 22, 2823-2833 (2011).
- 46. S. Kim, J. C. Malinverni, P. Sliz, T. J. Silhavy, S. C. Harrison, D. Khane, Structure and function of an essential component of the outer membrane protein assembly machine. *Science* **317**, 961–964 (2007).
- 47. P. Z. Gatzeva-Topalova, T. A. Walton, M. C. Sousa, Crystal structure of YaeT: conformational flexibility and substrate recognition. *Structure* **16**, 1873–1881 (2008).

- T. J. Knowles, M. Jeeves, S. Bobat, F. Dancea, D. McClelland, T. Palmer, M. Overduin, I. R. Henderson, Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes. *Mol. Microbiol.* 68, 1216–1227 (2008).
- 49. M. P. Bos, V. Robert, J. Tommassen, Functioning of outer membrane protein assembly factor Omp85 requires a single POTRA domain. EMBO Rep. **12**, 1149–1154 (2007).
- 50. S. J. Habib, T. Waizenegger, A. Niewienda, S. A. Paschen, W. Neupert, D. Rapaport, The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial β-barrel proteins. *J. Cell Biol.* **176**, 77–88 (2007).
- 51. A.-K. Pfitzner, N. Steblau, T. Ulrich, P. Oberhettinger, I. B. Autenrieth, M. Schütz, D. Rapaport, Mitochondrial-bacterial hybrids of BamA/Tob55 suggest variable requirements for the membrane integration of β -barrel proteins. *Sci. Rep.* **6**, 39053 (2016).
- 52. T. Maier, B. Clantin, F. Gruss, F. Dewitte, A.-S. Delattre, F. Jacob-Dubuisson, S. Hiller, V. Villeret, Conserved Omp85 lid-lock structure and substrate recognition in FhaC. *Nat. Commun.* **6**, 7452 (2015).
- 53. A.-S. Delattre, B. Clantin, N. Saint, C. Locht, V. Villeret, F. Jacob-Dubuisson, Functional importance of a conserved sequence motif in FhaC, a prototypic member of the TpsB/Omp85 superfamily. *FEBS J.* **277**, 4755–4765 (2010).
- 54. M. Leonard-Rivera, R. Misra, Conserved residues of the putative L6 loop of Escherichia coli BamA play a critical role in the assembly of β -barrel outer membrane proteins, including that of BamA itself. *J. Bacteriol.* **194**, 4662–4668 (2012).
- 55. A. I. C. Höhr, S. P. Straub, B. Warscheid, T. Becker, N. Wiedemann, Assembly of β-barrel proteins in the mitochondrial outer membrane. *Biochim. Biophys. Acta.* **1853**, 74–88 (2015).
- 56. N. W. Rigel, D. P. Ricci, T. J. Silhavy, Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β -barrel assembly in Escherichia coli. *Proc. Natl. Acad. Sci. U.S.A.* **110**, 5151–5156 (2013).
- 57. N. Wiedemann, K. N. Truscott, S. Pfannschmidt, B. Guiard, C. Meisinger, N. Pfanner, Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: intermembrane space components are involved in an early stage of the assembly pathway. *J. Biol. Chem.* **279**, 18188–18194 (2004).
- 58. S. C. Hoppins, F. E. Nargang, The Tim8-Tim13 complex of *Neurospora crassa* functions in the assembly of proteins into both mitochondrial membranes. *J. Biol. Chem.* **279**, 12396–12405 (2004).
- 59. J. G. Sklar, T. Wu, D. Khane, T. J. Silhavy, Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev. **21**, 2473–2484 (2007).
- 60. J. W. Fairman, N. Noinaj, S. K. Buchanan, The structural biology of β-barrel membrane proteins: a summary of recent reports. *Curr. Opin. Struct. Biol.* **21**, 523–531 (2011).
- 61. T. Ulrich, D. Rapaport, Biogenesis of beta-barrel proteins in evolutionary context. Int. J. Med. Microbiol. 305, 259–264 (2015).
- 62. G. J. Patel, J. H. Kleinschmidt, The lipid bilayer-inserted membrane protein BamA of Escherichia coli facilitates insertion and folding of outer membrane Protein A from its complex with Skp. *Biochemistry* **52**, 3974–3986 (2013).
- 63. E. J. Danoff, K. G. Fleming, Membrane defects accelerate outer membrane β-barrel protein folding. *Biochemistry* **54**, 97–99 (2015).
- 64. B. Schiffrin, A. N. Calabrese, A. J. Higgins, J. R. Humes, A. E. Ashcroft, A. C. Kalli, D. J. Brockwell, S. E. Radford, Effects of periplasmic chaperones and membrane thickness on BamA-catalysed outer membrane protein folding. *J. Mol. Biol.* 23, 3776–3792 (2017).

- 65. R. Sikdar, J. H. Peterson, D. E. Anderson, H. D. Bernstein, Folding of a bacterial integral outer membrane protein is initiated in the periplasm. *Nat. Commun.* **8**, 1309 (2017).
- 66. N. Bonneaud, O. Ozier-Kalogeropoulos, G. Y. Li, M. Labouesse, L. Minvielle-Sebastia, F. Lacroute, A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. *Yeast* 7, 609–615 (1991).
- 67. R. S. Sikorski, P. Hieter, A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. *Genetics* **122**, 19–27 (1989).
- M. S. Longtine, A. McKenzie III, D. J. Demarini, N. G. Shah, A. Wach, A. Brachat, P. Philippsen, J. R. Pringle, Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. *Yeast* 14, 953–961 (1998).
- 69. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* **72**, 248–254 (1976).
- 70. C. Meisinger, N. Pfanner, K. N. Truscott, Isolation of yeast mitochondria. *Methods. Mol. Biol.* **313**, 33–39 (2006).
- 71. A. Hildebrand, M. Remmert, A. Biegert, J. Söding, Fast and accurate automatic structure prediction with HHpred. *Proteins* 77, 128–132 (2009).
- 72. B. Webb, A. Sali, Comparative protein structure modeling using MODELLER. *Curr. Protoc. Bioinformatics* **47**, 1–32 (2014).
- 73. S.C. Lovell, I.W. Davis, W.B. Arendall III, P.I.W. de Bakker, J.M. Word, M.G. Prisant, J.S. Richardson, D.C. Richardson, Structure validation by C α geometry: ϕ,ψ and C β deviation. *Proteins* **50**, 437-450 (2003).
- 74. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 486-501 (2010).
- 75. D. Stojanovski, N. Pfanner, N. Wiedemann, Import of proteins into mitochondria. *Methods Cell Biol.* **80**, 783–806 (2007).
- 76. H. Schägger, G. von Jagow, Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. *Anal. Biochem.* **199**, 223-231 (1991).
- 77. W. N. Burnette, "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. *Anal. Biochem.* **112**, 195-203 (1981).
- 78. R. J. L. Willems, C. Geuijen, H. G. J. van der Heide, G. Renauld, P. Bertin, W. M. R. van den Akker, C. Locht, F. R. Mooi, Mutational analysis of the Bordetella pertussis fim/fha gene cluster: identification of a gene with sequence similarities to haemolysin accessory genes involved in export of FHA. *Mol. Microbiol.* **11**, 337–347 (1994).