SUPPLEMENTAL FIGURE AND TABLE LEGENDS

Figure S1: Acetate rescues histone acetylation but not AMPK or UPR activation in low glucose. (A) Western blot detecting p-AMPK α in whole cell lysate after LN229 cells were treated for 24 hours under indicated conditions. (B) Relative mRNA levels of ER stress related genes as detected by RT-qPCR in LN229 cells. (***, p<0.001; ****, p<0.0001). (C) Detection of histone acetylation as determined by western blot of acid extracted histones after 24 hours of indicated treatment. (D) Relative adhesion onto 1% fibronectin after 24 hours of treatment with C646 or vehicle control (DMSO) (***, p<0.001).

Figure S2: Multiple sources of acetyl-CoA can promote adhesion. (A) Relative levels of citrate in LN229 cells. After treating overnight in 1 mM glucose, medium was replaced with indicated glucose and acetate concentrations. Cells were harvested and citrate measured by LC-MS at indicated timepoints. Significance of acetate conditions compared to 1 mM glucose (##, p<0.01; ####, p<0.0001). Significance of 10 mM glucose conditions compared to 1 mM glucose (*, p<0.05; **, p<0.01; ***, p<0.001). (B) Percent enrichment of citrate from 13 C-acetate under high glucose and low glucose conditions. Cells were starved in 1 mM glucose for 16 hours followed by readdition of 1 mM or 10 mM glucose for 6 hours, in the presence of ¹³C-acetate. (C) Adhesion assay on 1% fibronectin after treatment with indicated concentrations of pyruvate. (*, p<0.05; **, p<0.01; ***, p<0.001). (D) Adhesion assay on 1% fibronectin after treatment with BSA conjugated palmitic acid: oleic acid (FA). (**, p<0.01; ***, p<0.001; ****, p<0.0001. (E) mRNA expression in U251 cells after 24 hours treatment with 50 µM ACLYi. ***, p<0.001; ****, p<0.0001). (F) Tumor volume of tumors formed from parental LN229 cells (LCV2) and ACLY KO clone (sg3.8). For each condition, n = 7. (*, p<0.05; ***, p<0.001) (G) Tumor weight (***, p<0.001). (H) Relative mRNA expression of acetyl-CoA up-regulated genes in xenograft derived tumors. (*, p<0.05; ***, p<0.001; ****, p<0.0001).

Figure S3: ChIP-Rx reveals quantitative changes in H3K27 acetylation. (A) Summary of peak regions (left) and summary of distance of peaks to nearest gene transcription start site (TSS) (right). (B) Ratio of total aligned *Homo sapiens* reads: total aligned *Drosophila melanogaster* reads in H3K27ac and H3 ChIP samples, as well as in input, under each condition. (C) Venn diagram of the genes nearest to differential H3K27ac peaks (regions that gained acetylation over 1 mM glucose conditions) and acetyl-CoA up-regulated genes defined by RNA-seq. (D) Features of the regions that DiffBind defined as differentially H3K27ac bound in each indicated condition, as compared to 1 mM glucose condition (FDR < 0.01).

Figure S4: Examples of H3K27ac ChIP-seq tracks, comparing traditional normalization and reference genome normalization. (A) Tracks for *ITGA9*, an acetyl-CoA upregulated gene that exhibits differential H3K27ac peaks at multiple intronic loci (exons displayed as vertical solid blue

line). (B) Tracks for *MMP11*, an acetyl-CoA upregulated gene that exhibits reduced H3K27ac peak height surrounding the TSS. (C) Tracks for *RPL19*, a gene that is not responsive to acetyl-CoA.

Figure S5: **NFAT family proteins are predicted to bind near promoters of acetyl-CoA upregulated genes**. (A) Top motifs present within 2 Kb of the TSS of acetyl-CoA upregulated genes. (B) Heatmap representation of genes in NFAT signature in Figure 4A.

Figure S6: NFAT inhibition reduces cell adhesion. (A) Relative adhesion of U251 cells onto 1% fibronectin after 24 hour treatment with CsA (20 μ M). (****, p<0.0001). (B) Relative mRNA levels of each NFAT family member in LN229. (C) Representative image of immunofluorescent staining of NFAT1 demonstrating knockdown efficiency. (D) Relative expression of genes after knockdown of NFAT1 with siRNA in LN229 cells. (*, p<0.05; **, p<0.01; ****, p<0.0001).

Figure S7. NFAT1 regulation by glucose and ACLY. (A) Western blot analyzing exogenously expressed HA-tagged NFAT1 after 16 hour of treatment in indicated glucose and acetate conditions followed by 15 minutes of treatment with 1 μ M ionomycin or vehicle before harvest. (B) Western blot of exogenously expressed HA-tagged NFAT1 after 16 hours of treatment in 10 mM glucose and indicated concentrations of ACLYi followed by 15 minutes of treatment with 1 μ M ionomycin or vehicle before harvest.

Figure S8: Mitochondrial function is needed for NFAT1 nuclear localization. (A) LC-MS quantification of phosphoenolpyruvate (PEP). (****, p<0.0001, Mean +/- SD). (B) LN229 cells expressing HA-NFAT1 (WT) were treated +/- rotenone (0.5 μ M), piericidin (0.5 μ M), or both and nuclear and cytosolic fractions prepared and analyzed by western blot.

 Table S1: List of primer sequences.

PDK3 ENAH ITGAT PLACI PTCH1

Hs reads/ Dm reads

Features

Α.

TF Motif	FDR q-value
TGGAAA_V\$ NFAT _Q4_01	9.52E-24
CTTTGT_V\$ LEF1 _Q2	5.93E-21
GGGTGGRR_V\$ PAX4 _03	7.81E-19
GGGAGGRR_V\$ MAZ _Q6	9.94E-18
TTGTTT_V\$ FOXO4 _01	1.04E-17
CAGGTG_V\$ E12_Q6	1.63E-17
AACTTT_UNKNOWN	2.60E-17
GGGCGGR_V\$ SP1 _Q6	1.19E-14
CTGCAGY_UNKNOWN	6.09E-14
CAGCTG_V\$ AP4 _Q5	1.33E-13

В.					tate	ate	tate	tate					
	alc	alc	alc	alc	lc+ace	c+acet	lc+ace	lc+ace	lc	J	J	0	
	-10mM	-10mM	1-10mM	10mM	-1mM a	-1mMal	-1mM a	-1mMal					
	12	11	10	6	~	7-	-9	5	4-	h	2	-	SampleName
													CAPN6 IL22RA1
													FGF7 PPP1R1B
													SCN3A PLAC1 STAC2
													PDGFRA HAND2
				F									SLITRK5 IGFBP5
													PTCH1 HOXD10
													DCN VWA1
													S0X5 FAM81A SEBTAD4
													NDRG2 LRRTM4
													CALHM2 KLHL13
													SKP2 HS6ST2
													TRPM3 GSTA4
													CHN1 Clorf21 TRERE1
													ZMYND8 PDK3
		F		F									GAS/ C5orf13 CACNB3
													VCAN PDE4B
													SIEAP2 SLC25A12 C20orf112
													MAML3 ARHGEF25 ESRPC
													INPP5F GNA01
													MEIS1 CTSK C11orf41
													NFATC4 C1RL
													ITGA7 DAAM2
													MRC2 ERBB3 SEPT4
													DBN1 SYTL4
													TRDMT1 ANP32A
													TRIM46 EXTL2 S100PBP
													CAMK2G PTK7
													COL16A1 ITM2C
		Í											MSH5 MCAM H1F0
													LIF HCFC1R1
													ST8S1A4 KLF13 SDCBP
													COLEC12 SGK1 ETS2
													RUNX1T1 FTH1
													TFE3 CDKN1A BCAR3
													RHOB NR4A1
													SEPHS2 SCG2
													HSPH1 PIM1
													CITED2 XBP1
											_		F0XG1 NUAK2 RGS3
													HIST2H2BE KLF5 TGEBP3
													MAFF KCNJ2
													NFIL3 RGS2 DPE3
													MIR22HG NR4A3
													IL23A KRT17
													OSCAR NOG MAR2113
													CALB1

Supplemental_Fig_S6

shCon shNFAT1 #47

FAT1 DAP

C.

В.

Table S1: List of primers

cDNA Primers	5' -> 3'
ENAH_F	GGACCATCAGGTCGTGATAAA
ENAH_R	CCATACACCTGTCTAGCATCTC
<i>FGF7</i> _F	GGCCTCCATCCCTCTTACTC
FGF7_R	AGCTGCGTGACCTTAGGTGT
ICAM1_F	GTCATCATCACTGTGGTAGC
ICAM1_R	GGCCTGTTGTAGTCTGTATTT
<i>MMP11</i> _F	GGCAGAGGCCCTAAAGGTAT
MMP11_R	CGAAGTCGATCATGATGTCAG
VCAN_F	GGCACCTGTTATCCTACTGAAA
VCAN_R	GCTCCATTACGACAGGGATTAG
<i>ITGA2B</i> _F	CCCTGGAAGAAGATGATGAAGAG
<i>ITGA2B</i> _R	GGAGGCAACTTGTTGGAGAA
ITGA4_F	GCCACCCTGAGTCAGTAAATAG
ITGA4_R	CTGGAACTTCCTTGCCCTTAT
ITGA9_F	ACCAGGAATTTCTTGCCTAAC
ITGA9_R	CTGTGTTCAGCAGCATGTA
PDGFRA_F	GAAGAAGAGAGCTCCGATGTG
PDGFRA_R	TAGCAAGTGTACAACCCTGTG
MCAM_F	CTGTTGGAGACAGGTGTTGAA
MCAM_R	CTGGTGTGAGGGTGGTTAAAT
PDK3_F	ATACCAACCGCATCTCTTTC
PDK3_R	GGTGGGATCGATACTTCCTA
ZMYND8_F	CGCAGGACACATCAACAA
ZMYND8_R	GTGAGTGGCTGCTTCATATAG
PTCH1_F	GTTGTGGGGCCTCCTCATATT
PTCH1_R	GACTTACTCGTCCTCCAACTTC
PLAC1_F	GCCCAGAAGGATGAGAAATG
PLAC1_R	ACCTGGGTATGCTCTTCTT
HAND2_F	TACATCGCCTACCTCATGGA
HAND2_R	ТССТТСТТССТСТТСТССТСТТ
CAMK2G_F	CGCAGGTGTGTGAAGAAA
CAMK2G_R	CGTTCTAGTTTCTGGTGATCC
<i>RPL19</i> _F	CAAGAAGGAGGAGATCATCAAG
<i>RPL19</i> _R	ATCACAGAGGCCAGTATGTA
<i>PTGS2</i> _F	TTGACAGTCCACCAACTTAC
<i>PTGS2_</i> R	GGAGGAAGGGCTCTAGTATAA
<i>NFATC2</i> _F	GTGGCAGAATCGTCTCTTTAC

NFATC2_R		GCTGTCTGTGTCTTGTCTTT
<i>GPC6</i> _F		GTCAGCATTACCCTACACTATC
<i>GPC6</i> _R		AGGCAAGTATCTGGCTTTG
ChIP prim	ers	5' -> 3'
PDGFRA	TSS_F	ATCCCATCTGGTCTGCTTCT
	TSS_R	AGATTGCGCCTTCGCTTT
	-1Kb_F	GGGAGAAGGATGAAGGATGAC
	-1Kb_R	GATGCTCCAGGAACCAGAC
	+1Kb_F	CTGCGGGACAAGCAGAG
	+1Kb_R	CACCTCACTGACCCAACAAA
	-0.5Kb_F	CATATTGGACTCAACAGTTTGCC
	-0.5Kb_R	TCTACAAACTCGGCCCAAC