Supplementary Information

Phenotypic diversification by enhanced genome restructuring after induction of multiple DNA double strand breaks

Muramoto et al.

Supplementary Fig. 1. Heat-dependent TaqI activation. (a) *In vitro* TaqI-activation assay. *NdeI*-linearized pUC19 plasmid DNA (2686-bp, second lane) was incubated with purified TaqI for 30 min at the indicated temperatures. (b) Rad51 foci formation in TAQed cells. TaqI expression was induced in wild-type cells expressing pTaqI (indicated as "TAQing") or vector controls ("Mock"), and foci formation was monitored by immunostaining. Arrowheads indicate Rad51 foci. Foci frequency is shown on the right. Bar, 2 μ m.

Supplementary Fig. 2. TAQed mutant showing various phenotypic changes. (**a**, **b**) Differences in chromosome size revealed by PFGE in (**a**) mock-treated or TAQed haploid (YPH499) and (**b**) fused diploid (WT14) strains. Arrowheads indicate chromosozsmal bands exhibiting size changes. (**c**) Workflow of TAQed-mutant selection. (**d**) Variability in cell area (upper) and roundness (lower) after TAQing treatment. n = 100, the center line is the median, bounds are the 25th and 75th percentiles and whiskers are ± 1.5 IQR.

Short gene conversion	Break induced repair			
ChrXI 0.7Mb	ChrVII 1Mb			
na Control Ministerily adopted and a state for an in the long with a fail or a state of the state of the state of the state	Tontrol			
¹⁴ 101 net plat for products a finish for a collector of the first of the first of the first of the second states in the stability is the first of	⁴⁹ 101 Milling also anti-antice also we down to be a state of the bit we get an any sets with better algorithm. Bit of a state of the state of the state of the bit of the bit of the state of the sta			
S799 XI YPH499 XI	S799 VII YPH499 VII			
Control Manufabili and declars decomposition date (data decomposition of a statistical and a statistical data (data (Control Alfand a block plant the set of the defined on the other			
149 101 ny militänteesähtänä teoristaisteläisyöntöö yhtäönyön patkastistaitä täytönepäikeesäätöisetä teoristaista teoris Illij				

Supplementary Fig. 3. Chromosome structures in TAQed yeast strains. Chromosome-wide mapping data for control (black) and TAQed strains (S799, blue; YPH499, red) exhibiting typical chromosomal rearrangements: SGCs and BIRs.

Supplementary Fig. 4. Genomic rearrangement of TAQed yeast strains. (a) Schematic diagrams of mutated chromosomes in TAQed strains 1, 73, 76, 83, 84, 97, 113, and 119. Only chromosomes with mutations or aneuploidies are shown. (b) aCGH analysis of the TAQed yeast strains used in this study. Genomic DNA from each strain was compared to controls (WT14: cell-fusion strain without TAQing treatment), and log_{10} DNA copy number ratios were plotted. Data were cropped at a log_{10} ratio of ~0.6 and averaged across each chromosome using a sliding window of 10 oligonucleotides.

Supplementary Fig. 5. Growth phenotype of cell-fusion mutants. (a) Schematic image of xylose-utilizable, thermotolerant TAQed-mutant selection. (b, c) Photos show growth phenotype on (b) xylose agar plates at 30°C and (c) YPD agar plates at 40°C for 48 h. Xylose-fermentable strain (W700M2), heat-resistant parental strain (N44D), and non-TAQed cell-fusion strains (CF1–6). (d) Summary of growth on agar plates in the presence of xylose or glucose at 30°C or 40°C after 10 rounds of plating. Growth phenotypes: extensive (+), moderate (\pm) , and weak (–).

Supplementary Fig. 6. Colchicine-induced tetraploidization was examined in true leaf cells derived from 3-week-old $TaqI^+(2n)$ and $TaqI^+(4n)$ plants by flow cytometry. Each peak indicates a nuclear phase (2C, 4C, 8C, and 16C).

Supplementary Fig. 7. Seed mass of TaqI⁺(2n) and TaqI⁺(4n) plants. Data show the yields of seeds from plants grown in soil for 14 weeks along with heat treatment (heated at 37°C for 24 h in 1-week-old plants) or without heat treatment (control). Data represent the mean \pm SEM (*n* = 7–10/strain).

Supplementary Fig. 8. Phenotypic divergence of TQ4 plants. (a) Representative TQ4 plant morphology. The upper left image shows wt(4n) plants, and the others show TQ4 mutant plants grown in soil for 49 days. Bars, 1 cm. (b) Divergence of stem length in TQ2 and TQ4 plants grown in soil for ~9 weeks. The stem length was measured and normalized to an average of 1.0. σ^2 represents the variance in the normalized stem length. The variance in the TQ4 plants was significantly larger than that in the TQ2 plants *P* < 0.01; *F*-test).

Supplementary Fig. 9. aCGH analysis of (**a**) TQ4 and (**b**) TQ2 plants. Genomic DNA from each strain was compared with that of controls [wt(2n) and wt(4n) for TQ2 and TQ4, respectively], and \log_{10} DNA copy number ratios were plotted. To interpret regions of large CNVs, data were cropped at a \log_{10} ratio of ± 0.6 and averaged across each chromosome using a sliding window of 10 oligonucleotides. Red arrowheads: increase in CNVs; blue arrowheads: decrease in CNVs.

Supplementary Fig. 10. Estimated chromosome structure in each TQ4 plant based on genome-rearrangement analysis.

Supplementary Fig. 11. Uncropped blots. (a) Uncropped blots from Fig. 1b. (b) Uncropped blots from Fig. 1c.

Supplementary Fig. 12. Workflow of variant detection in the *Arabidopsis* genome. Sequenced reads of TAQed plant genomes were mapped using commercial software (CLC Genomics Workbench v8.5; Qiagen).

Supplementary Fig. 13. Bioinformatics workflow of yeast parental haploid-genome sequencing. *De novo* assembly was performed using PacBio data and corrected using MiSeq data.

		Number of		
		SNP	InDel	
S288c) 0.05%	5,088	810	
└── YPH499	0.72%	79,006	8,196	

Supplementary Fig. 14. Numbers of SNPs and InDels between parental haploid strains. Genomic differences between S288c and YPH499, and YPH499 and S799 are shown.

Supplementary Fig. 15. Distribution of SNPs and InDels between strains. SNP and InDel density among the 16 chromosomes between (**a**) S799 and YPH499 (average: 6.5 SNPs/kb and 0.7 InDels/kb) and b) YPH499 and S288c (average: 0.4 SNPs/kb and 0.07 InDels/kb).

TAQing Mutation Detection

Supplementary Fig. 16. Bioinformatics workflow describing mutation detection in TAQed yeast. Genomic rearrangements were classified according to sequence features and copy number information.

Supplementary Fig. 17. Validation of structural variants. To verify structural variants, we adopted a strategy involving three-step breakpoint confirmation, detection of CNV region using variant-call tools, and collection of soft-clipped sequence information, and detection of broken paired-end reads. Structural variants also detected in the control strains were excluded because of their potential as false positives.

	55. 82.			
strain	rearrangement type	chromsome	-	
81	Chromosomal duplication	YPH499Chr05		
113	Chromosomal deletion	S799Chr01		
113	Chromosomal deletion	YPH499Chr05		
117	Chromosomal deletion	S799Chr05		
119	Chromosomal deletion	YPH499Chr08		
strain	rearrangement type	chromsome	position	mutation
1	insertion	YPH499Chr14	307525	G->GA
1	SNP	YPH499Chr15	470253	A->G
73	SNP	S799Chr11	286372	G->C
76	SNP	S799Chr15	773938	A->G
76	SNP	S799Chr15	979734	G->A
81	SNP	YPH499Chr11	109779	C->T
83	SNP	YPH499Chr01	153350	G->C
84	SNP	YPH499Chr02	584251	G->A
84	SNP	YPH499Chr06	195908	C->T
84	insertion	YPH499Chr07	698814	C->CA
97	SNP	YPH499Chr07	211054	C->G
97	SNP	YPH499Chr07	1083671	C->A
97	insertion	S799Chr15	96926	T->TATA
97	insertion	YPH499Chr06	187330	G->GATA
101	SNP	S799Chr08	159700	A->G
101	SNP	S799Chr09	391001	G->A
101	SNP	YPH499Chr05	495128	G->A
101	SNP	YPH499Chr05	495149	C->T
101	insertion	S799Chr10	336446	G->GA
101	insertion	S799Chr12	636809	C->CA
107	SNP	YPH499Chr04	138021	C->A
107	SNP	YPH499Chr04	138034	A->C
117	SNP	S799Chr13	208484	G->T
strain	rearrangement type	chromsome	start	end
1	SGC	YPH499Chr11	352300	358300
73	SGC	S799Chr02	673200	681200
73	SGC	S799Chr04	180000	188500
73	SGC	S799Chr04	1320800	1323800
73	SGC	YPH499Chr04	180600	181600
83	deletion	S799Chr12	857796	857822
84	SGC	S799Chr04	1207300	1215000
84	SGC	YPH499Chr06	204000	209500
84	SGC	YPH499Chr07	694300	698600
84	SGC	S799Chr11	563400	577100
84	SGC	YPH499Chr13	454000	480000
84	SGC	YPH499Chr14	501600	516700
84	SGC	S799Cbr15	58800	73400
84	SGC	YPH499Chr16	693000	697000
97	SGC	YPH499Chr06	154200	156400
101	500	VPH499Chr02	324500	327800
101	800	\$7000k-05	105600	400700
101	300	3/3300000	400000	400/00

Supplementary Table 1-1. Structural variants of yeast strains.

Blue data represent the approximate rearrangement regions, whereas black data represent precise positions. (SNP; Single Nucleotide Polymorphisms, SGC; Short Gene Conversion, BIR; Break induced repair, TL; translocation)

strain	rearrangement type	chromsome	start	end	
101	SGC	S799Chr09	379600	390600	
101	SGC	YPH499Chr11	355400	385400	
101	SGC	YPH499Chr14	316400	320000	
106	SGC	S799Chr15	366300	369900	
106	SGC	S799Chr15	775000	780000	
107	SGC	S799Chr02	490400	496800	
107	SGC	YPH499Chr04	134300	137700	
107	SGC	S799Chr15	959600	972700	
107	SGC	YPH499Chr14	596600	620900	
107	SGC	YPH499Chr16	162500	175200	
107	SGC	YPH499Chr16	885300	888600	
113	SGC	S799Chr06	212000	219500	
113	SGC	YPH499Chr11	46900	54500	
113	SGC	YPH499Chr11	347000	348000	
113	SGC	YPH499Chr11	633000	635200	
113	SGC	S799Chr11	277600	278400	
113	SGC	S799Chr07	159300	160000	
113	SGC	YPH499Chr10	419800	421700	
113	SGC	S799Chr13	373800	378000	
113	SGC	S799Chr15	19800	22000	
113	SGC	S799Chr15	44300	46300	
113	SGC	S799Chr15	909000	912600	
119	SGC	YPH499Chr11	330800	333900	
119	SGC	YPH499Chr10	167000	168000	
strain	rearrangement type	Left arm	Right arm	rearranged posit	ion
1	BIR	S799Chr04	YPH499Chr04	987500	
1	BIR	S799Chr14	YPH499Chr14	280500	
83	BIR	YPH499Chr02	S799Chr02	264600	
83	BIR	YPH499Chr12	S799Chr12	rDNA	
84	BIR	S799Chr16	YPH499Chr16	700100	
97	BIR	YPH499Chr11	S799Chr11	316500	
101	BIR	S799Chr07	YPH499Chr07	929500	
101	BIR	YPH499Chr09	S799Chr09	385400	
106	BIR	S799Chr12	YPH499Chr12	rDNA	
106	BIR	YPH499Chr14	S799Chr14	649000	
106	BIR	YPH499Chr14	S799Chr14	649000	
107	BIR	S799Chr15	YPH499Chr15	114500	
strain	rearrangement type	chromsome	region	chromsome	region
73	TL (homologous)	S799Chr12	rDNA	YPH499Chr12	rDNA
76	TL (nonhomologous)	S799Chr06	134761	YPH499Chr06	33331
76	TL (nonhomologous)	S799Chr12	78284	S799Chr08	21091
81	TL (nonhomologous)	S799Chr05	361265	YPH499Chr15	42040
84	TL (homologous)	YPH499Chr04	1000000	S799Chr16	77350
101	TL (nonhomologous)	YPH499Chr04	445948	YPH499Chr13	26055
106	TL (nonhomologous)	YPH499Chr14	674104	YPH499Chr04	29515
107	TL (nonhomologous)	YPH499Chr15	47643	S799Chr14	62263
			440000	070001 45	

Supplementary Table 1-2. Structural variants of yeast strains.

Blue data represent the approximate rearrangement regions, whereas black data represent precise positions. (SNP; Single Nucleotide Polymorphisms, SGC; Short Gene Conversion, BIR; Break induced repair, TL; translocation)

sample	SV no.	rearrangement type	region	Taql	Transposons on breakpoint	Transposon super family
	SV1	Inter-chromosomal	Chr1:23227210	0	ND	
			Chr5:16328954	0	AT5TE58950	RC/Helitron
T01 h	SV2	Deletion	Chr3:38491	0	ND	
104_0			Chr3:524640	0	ND	
•	SV4	Inter-chromosomal	Chr3:524640	0	ND	
			Chr4:1476226	0	ND	
TQ4_c	SV1	Deletion	Chr1:3047208	0	ND	
			Chr1:5077993	0	ND	
	S\/1	Inter-chromosomal	Chr1:7401166	0	ND	
	301		Chr4:17530659	0	ND	
TO4 a	S1/2	Deletion	Chr2:4022542	169	AT2TE17040	RC/Helitron
104_6	372		Chr2:4291943	32	AT2TE18015	LTR/Gypsy
	SV4	Intra-chromosomal	Chr4:2020501	0	ND	
			Chr4:17530659	0	ND	
	SV1	SV1 Inter-chromosomal	Chr1:101475	315	ND	
			Chr2:13702700	18	ND	
	SV2	Inter-chromosomal	Chr1:101880	720	ND	
			Chr2:11519791	33	ND	
TQ4_d -	SV3	Inter-chromosomal	Chr1:105950	2	ND	
			Chr2:10649312	10	AT2TE45655	DNA/HAT
	SV4	Inter-chromosomal	Chr1:2667845	573	ND	
			Chr2:13319792	37	ND	
	SV5	5 Inter-chromosomal	Chr3:627333	0	ND	
			Chr4:17055078	0	ND	
	SV7	Duplication	Chr5:508246	0	ND	
		(tandem)	Chr5:2845500	0	ND	

Supplementary Table 2. Structural variants of TQ4 plants.

SV: structural variant; ND: not detected.

Supplementary Data 1. Variant and strain lists of TQ2 and TQ4 plants. ->Excel file

Supplementary Data 2. Strain lists of yeasts and plants used in this study. ->Excel file

Supplementary Data 3. Statistics associated with yeast haploid-genome assembly and mapping information.

->Excel file