Extended Materials and Methods

Nucleic Acid Isolation and Sequencing: mRNA was enriched from one microgram total RNA using RiboZero rRNA Removal (Bacteria) Kit. rRNA-depleted mRNA samples were purified by Agencourt AMPure[®] XP beads and viewed using Agilent High Sensitivity RNA ScreenTape. Double stranded cDNA synthesis was performed using Illumina TruSeq Stranded mRNA Library Prep Kit in accordance with the manufacturer's standard protocol. The amplified libraries were purified using Agencourt AMPure[®] XP beads. Quality and quantity were assessed using an Agilent DNA1000 ScreenTape and Picogreen assay kit, respectively. Libraries were made single-stranded and diluted to 0.18 pM, as per Illumina manufacturer's instructions. Cluster generation and sequencing was performed on an Illumina NextSeq500 using NextSeq 500/550 High Output v2 kit (75 cycles).

Analysis and Visualization of Genomic Sequence: Following reference assembly and analysis of genomic data, sequences were also inspected visually in order to confirm structural variants using the Integrated Genome Viewer (1). Once confirmed, Muller plot representation of population-level polymorphism data was created using the R library ggmuller (https://cran.r-project.org/web/packages/ggmuller/index.html).

Preparation of Samples for GC-MS: Standards were prepared from an 18 amino-acid mixture (AAS-18, Sigma Aldrich), 2-aminoisobutyric acid (AIB, Sigma), and DL-norvaline (NV, Sigma). 20 g/L methoxylamine hydrogen chloride (MOX, Sigma) was prepared weekly in pyridine (Sigma) that had been dried over 4A molecular sieves (JT Baker 2708-1). The samples were hydrolyzed to generate free amino acids by combining 10 μ L aliquots of spent media, 10 μ L of internal standard solution (4.04 μ g of AIB and 4.32 μ g of NV), and 75 μ L of 7.42 M HCl in polypropylene

vials with screw-caps and o-ring seals (Dot Scientific, Burton, MI). The tubes were purged with nitrogen and incubated for overnight @ 120 °C in an oven flushed continuously with nitrogen. The hydrosylates were dried overnight @ 45 °C in a vacuum centrifuge (LabConco).

T-butyl-dimethylsilyl (TBDMS) derivatives of the amino acids were generated by adding 40 µL of MOX/pyridine to the dried hydrosylates and flushing the tubes' headspaces with nitrogen prior to resealing them. They were shaken at 250 rpm for 90 minutes at 37 °C. The supernatants combined with 40 of N-Methyl-N-tertwere μL butyldimethylsilyltrifluoroacetamide + 1% N-tertbutyldimethylchlorosilane (MTBSTFA, Restek Inc., Bellafonte, PA) in 250 µL glass inserts (Agilent Technologies). The inserts were placed into 1.5 mL autosampler vials, the vials' headspaces purged with nitrogen, sealed with PTFE-Silicone-PTFE septum crimp caps (Agilent), and heated for 2 hrs @ 120 °C. The TBDMS derivatives were separated on an Agilent 6890/5973 GC-MS equipped with a 30 m long 0.25 mm i.d., 0.25 µm df ZB-5msi column (Phenomenex) using 1.2 mL/min He carrier gas. 1 µL was injected into a 300 °C injector port with a 1:25 split ratio and the oven program: hold 120 °C for 1 min, ramp 10 °C/min to 320°, hold for 0.5 min (21.5 min total); the transfer line was held @ 300 °C. The MS was operated in selected ion monitoring mode according to Table S5.

Supplementary References

 Thorvaldsdóttir H, Robinson JT, & Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. *Brief Bioinform* 14(2):178–192.

125-5

Figure S1. Wild-type progenitor cells (MG1655) and evolved clones (125-5, 125-6, 125-7, 125-8) streaked on Congo Red agar to confirm biofilm production. Cells producing biofilm polysaccharides adopt a red morphology on Congo Red, while cells not producing biofilm polysaccharides appear beige.

Figure S2: Maximum likelihood phylogenetic relationship of all clonal isolates. Colors represent populations from which individual clones were isolated (113: Red, 125: Lt. Purple, 126: Orange, 129: Dk. Green, 210: Cyan, 221: Gold, 233: Lt. Green, 326: Navy, 410: Dk. Purple, 417: Pink).

Figure S3: Average proportion of co-culture belonging to Haplotype B (Clones 125-2, 125-4, 125-5, 125-7, or 125-8) vs. Haplotype A (Clones 125-1, 125-3, or 125-6) over 168 hours (7 days).

Figure S4: Trees created from genomic and transcriptomic data resemble each other based on organization. A) Maximum-likelihood phylogenetic relationship between individual clones from Population 125. Tree is based on the 25 segregating sites accounting for all the SNPs between the clones. B) Dendrogram visualizing the gene-by-gene differences in FPKM between each clone from population 125.

Figure S5: Average cell counts of liquid culture aspirated from the top and bottom halves of the culture tube. Aerobic cells were incubated on LB plates at 37° C with no atmospheric adjustments while anaerobic cells were incubated on LB plated at 37° C in an anaerobic jar treated with a gas generating sachet resulting in an environment containing >1% O₂.

Table S1.

Genes accumulating SNPs or indels in 5 or more populations.

	# of	
Cono	populations	Drotain
<u>dene</u>	anected 10	fused asstaldebude CoA debudrogenese
acrP	10	nuseu acetaluenyue-coa uenyurogenase
UCIB prfR*	9	nutidrug eniux system protein
pijb troB	9	fused trabaloso(maltoso) specific DTS angume
UED	9	lused trenaiose(martose)-specific PTS enzyme
cytR	8	Anti-activator for CytR-CRP nucleoside utilization regulon
dcuS	8	sensory histidine kinase
ompF	8	outer membrane porin 1a
rpsG*	8	30S ribosomal subunit protein S7
fimH	7	minor component of type 1 fimbriae
hsdR	7	endonuclease R Type I restriction enzyme
асеВ	6	malate synthase A
clpA	6	ATP-dependent protease specificity component and chaperone
clpB	6	protein disaggregation chaperone
eptB	6	KDO phosphoethanolamine transferase
fdnG	6	formate dehydrogenase-N, alpha subunit, nitrate-inducible
gsiA	6	glutathione transporter ATP-binding protein
narY	6	nitrate reductase 2 (NRZ), beta subunit
nlpD	6	activator of AmiC murein hydrolase activity
potE	6	putrescine/ornithine antiporter
trkH	6	potassium transporter
xdhA	6	xanthine dehydrogenase
уејМ	6	lipid A production and membrane permeability factor
yfeA	6	putative diguanylate cyclase
yggN	6	DUF2884 family predicted periplasmic protein
aas	5	fused 2-acylglycerophospho-ethanolamine acyl transferase
amn	5	AMP nucleosidase
betT	5	choline transporter of high affinity
cusA	5	copper/silver efflux system
dcuD	5	putative transporter
есрС	5	ECP production outer membrane protein
elfC	5	putative outer membrane fimbrial subunit export usher protein
fadE	5	acyl coenzyme A dehydrogenase
feoB	5	fused ferrous iron transporter

fhIA	5	formate hydrogenlyase transcriptional activator
fhuE	5	ferric-rhodotorulic acid outer membrane transporter
fiu	5	catecholate siderophore receptor Fiu
flu	5	antigen 43 phase-variable biofilm formation autotransporter
gcd	5	glucose dehydrogenase
glmU	5	fused N-acetyl glucosamine-1-phosphate uridyltransferase
hyfB	5	hydrogenase 4, membrane subunit
ileS	5	isoleucyl-tRNA synthetase
kdpD	5	sensory histidine kinase
lacl	5	transcriptional repressor of the lac operon
mreB	5	dynamic cytoskeletal protein MreB
mscK	5	mechanosensitive channel protein
тscM	5	mechanosensitive channel protein
narG	5	nitrate reductase 1, alpha subunit
рааН	5	3-hydroxyadipyl-CoA dehydrogenase
proA	5	gamma-glutamylphosphate reductase
rhsC	5	Rhs family putative polymorphic toxin
rseB	5	anti-sigma E factor
eoti	5	SoxR iron-sulfur cluster reduction factor component
setB	5	lactose/glucose efflux system
speG	5	spermidine N1-acetyltransferase
sstT	5	serine / threonine:Na ⁺ symporter
tamB	5	translocation and assembly module for autotransporter export
tolB	5	periplasmic protein
trkA	5	NAD-binding component of TrK potassium transporter
trpB	5	tryptophan synthase, beta subunit
xylB	5	xylulokinase
yahJ	5	putative metallo-dependent hydrolase domain deaminase
ydhS	5	putative oxidoreductase
ydiK	5	inner membrane protein
yegE	5	putative diguanylate cyclase
yghJ	5	DUF4092 family putative lipoprotein peptidase
yhcG	5	DUF1016 family protein in the PD-(D/E)XK nuclease superfamily
yjgR	5	DUF853 family protein with NTPase fold

*mutation resulted in reversion

Table S2.

Population	adhE	acrB	prfB	treB	cytR	dcuS	ompF	rpsG	fimH	trkH	fimE/fimS	hns-tdk
113	5	n/a	2	n/a	3	6	1	1	5	1	1	n/a
125	6	3	5	1	6	n/a	2	n/a	n/a	n/a	1	1
126	2	1	6	4	4	1	1	2	4	1	1	n/a
129	3	2	n/a	1	6	2	3	6	n/a	n/a	1	1
210	2	2	1	1	3	3	2	3	4	1	1	1
221	6	6	2	3	n/a	n/a	n/a	4	n/a	2	n/a	1
233	5	1	5	2	1	5	2	3	3	1	1	1
326	3	1	1	2	n/a	2	n/a	5	6	n/a	n/a	2
410	6	1	1	5	5	2	5	2	6	1	1	4
417	2	2	1	2	2	5	4	n/a	6	n/a	1	n/a
Median	4	2	2	2	3.5	2.5	2	3	5	1	1	1

Sampling point at which select parallel mutations were first detected within each population.

Table S3.

		# of
	Structural	Populations
Locus	Variant	Affected
gat operon	Deletion	6
hns-tdk	Transposition	6
CPS-53 prophage	Deletion	3
DLP-12 prophage	Deletion	3
fimE	Transposition	3
fimE-fimA	Transposition	3
lptD-djlA	Transposition	3
metA-aceB	Transposition	3
nlpD	Transposition	3
tnaA	Transposition	3
tnaC-tnaA	Transposition	3
cra-mraZ	Transposition	2
cyoA-ampG	Transposition	2
cytR	Transposition	2
e-14 prophage	Deletion	2
glf	Transposition	2
nlpD	Deletion	2
tdcA	Transposition	2
tnaA-tnaB	Transposition	2
tnaB	Transposition	2
tomB-acrB	Transposition	2
yadC	Transposition	2
ydfJ	Transposition	2
ynfB	Transposition	2

Summary of structural variants shared by 2 or more populations.

Table S4

		Experiment	G-Score Rank	G-Score Rank
Gene	Description	observed	(mutator)	(non-mutator)
cusA	copper/silver efflux system, membrane component	Kinnersley et al., 2014	64	N/A
cytR	DNA-binding transcriptional dual regulator	Kinnersley et al., 2014	7	24
dcuS	sensory histidine kinase in two-component regulatory system with DcuR, regulator of anaerobic fumarate respiration	Kinnersley et al., 2014	12	6
fdnG	formate dehydrogenase-N, alpha subunit, nitrate-inducible	Kinnersley et al., 2014	1660	N/A
fhlA	DNA-binding transcriptional activator	Kinnersley et al., 2014	49	N/A
fimH	minor component of type 1 fimbriae	Kinnersley et al., 2014	5	17
fiu	catecholate siderophore receptor Fiu	Kinnersley et al., 2014	788	N/A
rpsG	30S ribosomal subunit protein S7	Kinnersley et al., 2014	8	1
setB	lactose/glucose efflux system	Kinnersley et al., 2014	80	27
sslE	Putative secreted and surface- associated lipoprotein mucinase	Barrick et al., 2009	196	N/A
xylB	xylulokinase	Kinnersley et al., 2014	691	N/A
yegE	predicted diguanylate cyclase, GGDEF domain signaling protein	Kinnersley et al., 2014	2576	N/A

* N/A denotes gene was not mutated in this genetic background

Amino Acid	SIM Group	lon m/z	Dwell Time	Ret. Time (min)	
		101111/2	(msec)		
Ala	1	260	30	6.707	
Gly	1	246	30	6.936	
2-AIB	1	172	30	7.323	
Val	1	186.1	30	7.99	
NV	1	186.1	30	8.123	
Leu	1	200.1	30	8.436	
lle	1	200.1	30	8.775	
Pro	1	184.1	30	9.166	
Met	2	292.1	30	11.183	
Ser	2	288.1	30	11.41	
Thr	2	303.1	50	11.716	
Phe	2	302.1	50	12.35	
Asp	2	418.1	30	12.91	
Cys*	2	302.1	50	13.392	
Glu	3	330.1	30	13.956	
Arg (as Orn)	3	286.1	50	14.01	
Lys	3	300.1	30	14.864	
His	3	196.1	30	16.533	
Tyr	3	302.0	30	16.903	
Cys-Cys*	3	348.0	50	20.64	

Table S5: Table showing SIM group, SIM ion, dwell time, and retention time information for all amino acids monitored in this study.

*Cysteine and Cystine (Cys-Cys) were both monitored but not quantified as the levels varied greatly due to random disulfide bond formation/reduction.

Dataset S1 (separate file)

Small mutations identified in all sequenced clones.

Dataset S2 (separate file)

Structural variants identified in all sequenced clones.

Dataset S3 (separate file)

G scores for individual genes in wildtype and $\Delta mutL$ populations.

Dataset S4 (separate file)

Ratios of amino acid concentrations for five sequenced clones vs. initial amino acid concentration over a period of six hours.

Dataset 5 (separate file)

Gene Expression Values for genes that were either significantly upregulated or downregulated at mid-log phase.