SI Materials and Methods

Whole Genome Re-sequencing of Wild Barley Genotypes from the Tabigha Evolution Slope. Genomic DNA was extracted from the third fully expended leaves of 13 barley plants using QIAamp Plant DNA Mini Kit (Qiagen, Germantown, MD, USA). DNA concentration and quality was analyzed using Qubit dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA, USA) and agarose gels. DNA libraries were constructed using an Illumina Nextera DNA Library Prep Kit (Illumina, San Diego, CA, USA). DNA paired-end libraries were subjected to 2×150 bp sequencing using a whole genome shotgun sequencing strategy (Illumina Hiseq X Ten sequencing platform, San Diego, CA, USA).

Variant Calling. Clean reads of each sample were aligned against the reference genome of barley, cv. Zangqing320 (1) using BWA v0.7.5a-r405 (2). SAM files were sorted, converted to BAM files, and duplicated reads removed using Picard v1.9 (http://picard.sourceforge.net). Uniquely mapped reads were used for the SNVs and *InDels* calling with the Genome Analysis ToolKit (GATK) v3.6 (3). Raw SNVs were filtered according to the criterion that there were at most 3 and 2 gaps in wild barley populations inhabiting Terra Rossa and Basalt soils, respectively. As a result, we obtained 19,615,087 high-quality SNVs randomly distributed on all chromosomes for further population structure analysis and genetic divergence analysis.

Drought Treatment and Sampling of Wild Barley Genotypes from Evolution Canyon I in Mount Carme (ECI). Ten wild barley genotypes from ECI (Table S3) were used to perform transcriptome analysis under drought treatment: five genotypes from Station 2 (African Slope, AS) and five genotypes from Station 6 (European Slope, ES) (4). Seeds of all genotypes were sown in plastic pots (170 mm \times 220 mm) filled with peat in a net house on November 14th 2015. All the pots were well watered before sown and stopped watering after the third leaf stage, except the control. All of the plants continued to grow for another 80 days in winter. During the 80 days growth, the water content of the peat was reduced slowly and treated plants were exposed to a long-term mild drought treatment. After treatment, the fully expended leaves of both control and treated plants were sampled with three biological replicates, and flash frozen in liquid nitrogen for RNA extraction. Sampling time for all samples occurred four hours into the light phase.

Transcriptome Sequencing Analysis. Total RNA extraction, purification, qualitychecking, library construction and paired-end (2×150 bp) sequencing were performed as described previously (5-7). After removing all adaptor sequences, empty reads and low quality reads (Q < 30 and length < 50 bp) from raw reads, clean reads were obtained. Hisat2 v2.0.4 (8) was used to map clean reads to the reference genome of barley, cv. Zangqing320 (1), with parameters of '--dta --score-min L,0,-0.8 -5 10 -3 10'. SAM files created by Hisat2 were converted to BAM files using SAM-tools view (9), and then BAM files were analyzed using bam_stat.py of RSeQC v 2.6.4 (10) for quality control analysis, which includes the statistics of unmapped reads, splice reads, and reads mapped in proper pairs. Raw SNVs and *InDels* were called with SAM-tools mpileup and bcftools (9) and then filtered with mapping quality scores ≥25 and reads coverage >2. HTSeq v 0.6.1 (11) was used to count the mapped reads based on the SAM files created by Hisat2. The edgeR package (version 3.14.0) (12) was used for differential expression analysis of transcripts based on counts generated by HTSeq. Read counts were normalized using the method of counts per million (CPM), and differentially expressed genes (DEGs) were selected according to the criterion of "FDR < 0.01 and $|\log 2(\text{fold-change})| > 2$ ". Fold-change referred to the ratio of [CPM (drought treatment)] / [CPM (control)] or [CPM (control)] / [CPM (drought treatment)]. Volcano plots were constructed using -log10(FDR) versus the log₂(fold change), and the red points located in the upper-left and upper-right quadrants represented DEGs (Fig. S3). The genes, differentially expressed in at least four samples from the AS (or ES), but not differentially expressed in samples from the other slope were identified as DEGs. Gene annotation was conducted using Blast2GO v4.1.5 (13). In order to determine the genetic divergence of the two populations from ECI, we constructed a data set containing 120,474 SNVs with homozygous loci and without missing data in the ten wild barley genotypes to avoid unreliable inferences caused by missing and multiple variation sites.

Gas exchange measurement

For phenotypic analysis, seeds of ten wild barley genotypes (see Fig. S1) from the Evolution Canyon I were sown in 4 L pots with potting mixture (peat:vermiculite = 1:1). Seedlings were thinned to 5 healthy and uniform plants per pot 10 days after sowing with 3 replicates for both control and drought treatment. Plants were grown in a greenhouse at $22 \pm 2 \ C$ (day) and $20 \pm 2 \ C$ (night) ~60 % relative humidity (RH), 12 h/12 h light/dark cycle with the average photo-synthetically active radiation (PAR) of ~400 µmol m⁻² s⁻¹. All plants were well-watered to maintain a water holding capacity

(~50% v/v) before drought treatment. Slow release fertilizer was applied before sowing and after tillering. Drought treatment was commenced at Week 5 by controlled watering (50 ml H₂O in each pot every other day) until the water holding capacity decreased to 10% (v/v), which was maintained for 3 weeks. Leaf samples were used for gas exchange measurement (14, 15) at Week 8. Net CO₂ assimilation (*A*) and stomatal conductance (g_s) were measured on third fully expanded leaves using an LI-6400 infrared gas analyzer (Li-Cor Inc., Lincoln, NE, USA). The measurements were conducted at both control (three days before drought) and treatment (nine days after drought) with six replicates for each genotype and treatment. Intrinsic leaf water use efficiency was calculated as A/g_s . The conditions in measuring chamber were controlled at a flow rate of 500 mol s⁻¹, a saturating PAR of 1500 mol m⁻² s⁻¹, 400 mmol mol⁻¹ CO₂, and a relative humidity of 60%.

References

- Dai F, et al. (2018) Assembly and analysis of a *qingke* reference genome demonstrate its close genetic relation to modern cultivated barley. *Plant Biotechnol* J DOI: 10.1111/pbi.12826.
- Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows– Wheeler transform. *Bioinformatics* 26:589-595.
- 3. McKenna A, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* 20:1297-1303.
- 4. Nevo E, et al. (2005) Genomic microsatellite adaptive divergence of wild barley microclimatic stress in "Evolution Canyon", Israel. *Biol J Linn Soc* 84:205-224
- 5. Cai S, et al. (2017) Evolutionary conservation of ABA signaling for stomatal closure. *Plant Physiol* 174:732-747.
- 6. Dai F, et al. (2014) Transcriptome profiling reveals mosaic genomic origins of

modern cultivated barley. P Natl Acad Sci USA 111:13403-13408.

- 7. Wang XL, et al. (2016) Identification of mild freezing shock response pathways in barley based on transcriptome profiling. *Front Plant Sci* 7:106.
- Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. *Nat Methods* 12:357-360.
- Li H, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25:2078-2079.
- Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. *Bioinformatics* 28:2184-2185.
- 11. Anders S, Pyl PT, Huber W (2015) HTSeq-a Python framework to work with high-throughput sequencing data. *Bioinformatics* 31:166-169.
- Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 26:139-140.
- 13. Conesa A et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics* 21:3674-3676.
- Chen ZH, et al. (2016) Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in *Arabidopsis*. *New Phytol* 209:1456-1469.
- **15.** Liu X, et al. (2017) QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley. *BMC Genomics* 18:9.

Figure S1. Phylogenetic tree of wild barley genotypes from the two slopes at Evolution Canyon I (ECI) at Mount Carmel, Israel. ECI-2: Station 2 of ECI on the African Slope. ECI-6: Station 6 of ECI on the European Slope. Phylogenetic tree was constructed using the neighbor-joining methods and the percentages of trees from 1,000 bootstrap replications in which the associated taxa clustered together are shown next to the branches.

Figure S2. Venn diagrams of common and specific genes in wild barley. (A) Common and specific differentially expressed genes (DEGs) under drought stress in wild barley populations from the African and European Slope of Evolution Canyon I at Mount Carmel (ECI), Israel. U: up-regulated; D: down-regulated. (B) Common and unique genes between the 2,577 selected genes in the selected regions of genotypes from Terra Rossa and Basalt soil types at the Tabigha Evolution Slope and 502 DEGs in the populations of the African and European Slopes of ECI.

Figure S3. Volcano plot of differentially expressed genes in genotypes from Evolution Canyon I at Mount Carmel.

Figure S4. Photosynthetic performance of ten different barley genotypes from Evolution Canyon I (ECI) at Mount Carmel with contrasting drought tolerance. Stomatal conductance (g_s , A) and intrinsic leaf water use efficient (B) were measured in the control and under drought treatment. Data are averages of five genotypes from both African Slope (blue bars) and European Slope (red bars). *P<0.05.

Sample	Raw Reads	Raw Data (Gb)	Clean Reads	Clean Data (%)	Mapped Ratio (%)	SNVs/InDels	Data Accession
Terra Rossa110	835,596,946	125.34	806,351,052	87.83	86.79	24,783,387	SRR6281634
Terra Rossa169	781,935,470	117.29	758,477,406	88.29	88.4	26,237,698	SRR6281638
Terra Rossa104	749,858,260	112.48	712,365,346	86.49	89.21	25,031,804	SRR6281632
Terra Rossa109	767,760,476	115.16	745,495,422	88.29	85.99	26,637,793	SRR6281633
Terra Rossa122	767,090,304	115.06	740,242,144	88.24	85.96	24,710,134	SRR6281635
Terra Rossa161	834,786,770	125.22	805,569,234	89.32	88.24	26,270,537	SRR6281636
Terra Rossa166	752,785,468	112.92	703,854,412	87.67	89.2	26,937,684	SRR6281637
Basalt63	724,028,218	108.6	684,206,666	88.5	89.42	16,053,119	SRR6281626
Basalt59	714,752,782	107.21	675,441,378	90.72	91.01	18,847,951	SRR6281627
Basalt99	710,181,162	106.53	671,121,198	90.32	89.95	17,492,176	SRR6281631
Basalt60	727,748,214	109.16	687,722,062	90.1	88.3	27,020,003	SRR6281628
Basalt76	684,304,838	102.65	646,668,070	90.47	88.99	25,684,369	SRR6281629
Basalt77	692,651,544	103.9	654,555,708	90.77	89.13	26,666,170	SRR6281630

Table S1. Output statistics of whole-genome re-sequencing of wild barley genotypes from the Tabigha Evolution Slope.

Table S2. Drought adaptive genes in selection sweep regions of the Tabigha Evolution Slope.

Category	Gene_ID ¹	Chr	Gene_Start	Sequence Description ²
ABA signaling pathway	MLOC_7007	2H	666,198,589	cytochrome P450 704C1-like
	MLOC_49654	3H	142,782,985	abscisic acid receptor PYL2
	ZLOC_8934	5H	74,319,028	SNF1-type serine-threonine kinase
	ZLOC_3966	2H	700,027,349	ABSCISIC ACID-INSENSITIVE 5 2
	MLOC_10399	2H	700,120,061	ABSCISIC ACID-INSENSITIVE 5 2
	MLOC_7520	3H	33,302,188	LRR receptor-like serine threonine- kinase RPK2
	MLOC_12939	6H	290,666,349	phosphatase 2C 12
	ZLOC_11905	6H	219,505,848	phosphatase 2C and cyclic nucleotide-binding kinase domain-containing isoform X1
	MLOC_81883	6H	210,951,191	probable phosphatase 2C 12
	MLOC_15036	6H	246,752,202	probable phosphatase 2C 14
	ZLOC_21849	3H	201,415,581	probable phosphatase 2C 38 isoform X1
	MLOC_19687	1H	525,201,985	probable phosphatase 2C 50
	ZLOC_9683	5H	434,376,296	probable phosphatase 2C 67
	MLOC_65528	3H	447,897,316	probable phosphatase 2C 8
	MLOC_67347	2H	665,419,081	guard cell S-type anion channel SLAC1
	ZLOC_3757	2H	665,504,656	guard cell S-type anion channel SLAC1
	ZLOC_30254	7H	256,199,517	S-type anion channel SLAH1-like
	ZLOC_21671	3H	150,671,151	S-type anion channel SLAH2-like
	ZLOC_1443	1H	524,774,783	probable calcium-binding CML11
	MLOC_72577	3H	139,746,142	V-type proton ATPase subunit E
	MLOC_34557	5H	72,978,018	calcium-transporting ATPase plasma membrane-type
Auxin related	ZLOC_14091	7H	243,622,097	auxin response factor 8-like
	MLOC_38622	7H	255,567,804	auxin-independent growth promoter
	ZLOC_30563	7H	376,319,567	Auxin-induced 5NG4

Category	Gene_ID ¹	Chr	Gene_Start	Sequence Description ²
Auxin related	ZLOC_29553	7H	68,185,223	auxin-responsive SAUR36-like
Casparian strip regulation	ZLOC_3498	2H	586,705,851	LRR receptor-like serine threonine- kinase GSO1
	ZLOC_12039	6H	295,114,404	LRR receptor-like serine threonine- kinase GSO2
Proline related	ZLOC_14223	7H	312,259,072	hydroxyproline O-galactosyltransferase HPGT1
	MLOC_16417	7H	312,371,346	hydroxyproline O-galactosyltransferase HPGT1
	MLOC_52074	2H	688,281,282	kDa proline-rich -like
	ZLOC_3871	2H	688,324,355	kDa proline-rich -like
	ZLOC_12177	6H	343,036,273	proline iminopeptidase
	MLOC_40538	6H	273,860,372	proline-rich 36-like
	MLOC_59853	7H	277,519,736	proline-rich 36-like
	ZLOC_30331	7H	289,434,000	proline-rich 36-like
	MLOC_81942	3H	151,509,284	proline-rich receptor kinase PERK1
	ZLOC_11958	6H	243,448,886	proline-rich receptor kinase PERK2
Protein phosphorylation	ZLOC_3866	2H	687,790,011	LRR receptor-like serine threonine- kinase
	ZLOC_3867	2H	687,837,207	LRR receptor-like serine threonine- kinase
	ZLOC_18566	1H	525,063,547	LRR receptor-like serine threonine- kinase FLS2
	MLOC_6082	2H	702,258,838	LRR receptor-like serine threonine- kinase FLS2
	ZLOC_4949	3H	55,668,676	LRR receptor-like serine threonine- kinase FLS2
	MLOC_14999	2H	742,055,230	probable LRR receptor-like serine threonine- kinase At3g47570
	MLOC_57098	5H	389,250,407	probable LRR receptor-like serine threonine- kinase At4g37250
	ZLOC_11866	6H	196,272,203	LRR receptor-like serine threonine- kinase MRH1
	ZLOC_11976	6H	251,967,446	LRR receptor-like serine threonine- kinase
	ZLOC_12175	6H	343,007,636	CBL-interacting kinase 19
	MLOC_57740	5H	461,331,278	serine threonine- kinase BLUS1
	MLOC_67098	2H	741,342,644	G-type lectin S-receptor-like serine threonine- kinase B120

	C IDI	Cl	C. Start	
Category		Chr	Gene_Start	Sequence Description ²
Protein phosphorylation	MLOC_21948	2H	743,876,310	Lectin-domain containing receptor kinase
	MLOC_64374	3H	33,599,589	serine threonine- phosphatase PP1-gamma catalytic subunit
	MLOC_44139	7H	67,926,864	Phosphoinositide phosphatase SAC2
Root morphology	ZLOC_3610	2H	625,736,825	ROOT PRIMORDIUM DEFECTIVE 1
	MLOC_30847	2H	625,804,675	ROOT PRIMORDIUM DEFECTIVE 1
	ZLOC_14125	7H	262,421,503	Root hairless 1
ROS and NO signaling	MLOC_17760	7H	274,187,252	Cu Zn superoxide dismutase (chloroplast)
	MLOC_76615	2H	666,214,528	Copper chaperone for superoxide dismutase
	MLOC_72880	2H	741,549,713	manganese superoxide dismutase
	ZLOC_22743	3H	503,150,926	Peroxidase 19
	MLOC_3293	2H	701,010,839	nitrate-induced NOI
	ZLOC_22743	3H	503,150,926	Peroxidase 19
	ZLOC_22744	3H	503,160,467	peroxidase 19
	ZLOC_26291	5H	433,871,551	peroxidase 1-like
	ZLOC_20810	2H	539,032,335	Peroxidase 72
	ZLOC_4418	2H	755,300,759	Peroxidase 9
	MLOC_6127	7H	250,818,888	probable L-ascorbate peroxidase 4
	MLOC_4571	2H	757,374,943	probable phospholipid hydroperoxide glutathione peroxidase
	MLOC_24804	5H	464,286,186	glutathione gamma-glutamylcysteinyltransferase 1
	ZLOC_4452	2H	759,052,033	glutathione S-transferase
	ZLOC_4453	2H	759,083,535	glutathione S-transferase
	ZLOC 4454	2H	759,090,571	glutathione S-transferase
	ZLOC 4437	2H	756,549,871	glutathione S-transferase T3-like
	ZLOC 21669	3H	150.394.632	glutathione S-transferase T3-like
	MLOC 3747	6H	249,093,590	glutathione S-transferase T3-like
		011	217,075,570	

Category	Gene_ID ¹	Chr	Gene_Start	Sequence Description ²
ROS and NO signaling	ZLOC_30187	7H	234,643,614	glutathione S-transferase T3-like
	ZLOC_30310	7H	280,735,221	glutathione S-transferase T3-like
	MLOC_25093	2H	675,853,757	glutathione S-transferase T3-like isoform X1
Stomatal development	MLOC_51546	2H	674,729,589	mitogen-activated kinase kinase Kinase YODA
	MLOC_17359	2H	625,729,197	TOO MANY MOUTHS
Transcription factors	MLOC_6171	7H	73,006,176	MYB-A1
	MLOC_39910	7H	276,679,000	NAC domain containing 71
Transporters	MLOC_56261	2H	701,170,173	ABC transporter C family member 2
	MLOC_11780	2H	689,120,698	potassium transporter 15
	MLOC_60308	6H	337,120,592	high-affinity nitrate transporter-activating -like
	MLOC_55066	2H	691,917,158	cation transporter HKT4-like
	ZLOC_25185	5H	73,840,401	cation H(+) antiporter 15-like
	MLOC_64607	7H	255,782,878	cation-chloride cotransporter 1 isoform X1

¹ refer to Dai F et al. (2017) *Plant Biotechnol J* DOI: 10.1111/pbi.12826. (http://www.ibgs.zju.edu.cn/ZJU_barleygenome.htm), ² detailed in Dataset 1.

Group	Sample	Raw reads	Raw bases	Clean reads	Clean bases	Clean data rate (%)	Mapped reads (%)	Data accession
African Slope	ECI-2-0_C1	41,720,294	6,258,044,100	41,555,472	6,194,263,132	98.98	93.35	SRR3628735
	ECI-2-0_C2	40,498,996	6,074,849,400	40,321,634	6,005,988,142	98.87	89.75	SRR3628736
	ECI-2-0_C3	42,518,958	6,377,843,700	42,369,218	6,326,904,969	99.2	93.5	SRR3628737
	ECI-2-0_T1	68,547,566	10,282,134,900	68,312,690	10,187,698,658	99.08	93.02	SRR3628738
	ECI-2-0_T2	63,653,536	9,548,030,400	63,384,656	9,405,777,402	98.51	92.73	SRR3628739
	ECI-2-0_T3	78,013,364	11,702,004,600	77,655,744	11,537,253,756	98.59	92.84	SRR3653597
	ECI-2-120_C1	87,629,632	13,144,444,800	87,279,394	13,003,798,025	98.93	91.47	SRR3628845
	ECI-2-120_C2	67,411,054	10,111,658,100	67,139,600	10,006,719,150	98.96	95.36	SRR3628846
	ECI-2-120_C3	50,519,956	7,577,993,400	50,303,826	7,502,629,852	99.01	91.26	SRR3628847
	ECI-2-120_T1	39,652,482	5,947,872,300	39,494,062	5,891,841,794	99.06	91.91	SRR3628848
	ECI-2-120_T2	43,282,242	6,492,336,300	43,071,588	6,380,591,141	98.28	93.68	SRR3628849
	ECI-2-120_T3	29,004,742	4,350,711,300	28,914,094	4,319,045,707	99.27	93.55	SRR3628850
	ECI-2-122_C1	68,412,610	10,261,891,500	68,126,718	10,173,780,754	99.14	92.12	SRR3628851
	ECI-2-122_C2	27,681,906	4,152,285,900	27,567,866	4,110,297,019	98.99	90	SRR3628852
	ECI-2-122_C3	31,363,966	4,704,594,900	31,247,924	4,668,121,507	99.22	94.1	SRR3628854
	ECI-2-122_T1	38,814,674	5,822,201,100	38,658,764	5,752,688,144	98.81	92.82	SRR3628855
	ECI-2-122_T2	79,997,426	11,999,613,900	79,760,732	11,917,932,650	99.32	92.82	SRR3628856
	ECI-2-122_T3	66,590,446	9,988,566,900	66,382,806	9,911,907,855	99.23	93.12	SRR3628857
	ECI-2-123_C1	101,023,592	15,153,538,800	100,508,132	14,970,875,661	98.79	92.33	SRR3628858
	ECI-2-123_C2	64,095,920	9,614,388,000	63,771,020	9,484,994,596	98.65	91.94	SRR3628859
	ECI-2-123_C3	47,472,704	7,120,905,600	47,223,780	7,024,382,838	98.64	92.57	SRR3628896
	ECI-2-123_T1	34,857,756	5,228,663,400	34,691,102	5,153,460,516	98.56	93.98	SRR3628905
	ECI-2-123_T2	35,376,068	5,306,410,200	35,246,840	5,257,020,238	99.07	96.67	SRR3628906
	ECI-2-123_T3	77,761,018	11,664,152,700	77,404,792	11,525,688,325	98.81	94.12	SRR3628907

 Table S3. Mapping RNA-Seq reads of wild barley populations from ECI to the reference genome of barley cv. Zangqing320.

Group	Sample	Raw reads	Raw bases	Clean reads	Clean bases	Clean data rate (%)	Mapped reads (%)	Data accession
	ECI-2-124_C1	41,550,694	6,232,604,100	41,403,510	6,181,740,298	99.18	93.14	SRR3628908
	ECI-2-124_C2	75,318,864	11,297,829,600	75,083,486	11,223,747,472	99.34	92.32	SRR3628909
	ECI-2-124_C3	43,180,988	6,477,148,200	43,004,894	6,419,091,425	99.1	91.02	SRR3628910
	ECI-2-124_T1	50,130,816	7,519,622,400	49,962,228	7,447,497,008	99.04	93.58	SRR3628911
	ECI-2-124_T2	28,204,994	4,230,749,100	28,121,970	4,195,210,882	99.16	93.03	SRR3628912
	ECI-2-124_T3	135,408,502	20,311,275,300	133,084,724	18,573,637,964	91.44	94.43	SRR3628913
European Slope	ECI-6-143_C1	93,136,944	13,970,541,600	92,687,696	13,797,482,461	98.76	92.2	SRR3628920
	ECI-6-143_C2	62,536,610	9,380,491,500	62,306,292	9,307,110,858	99.22	91.49	SRR3628921
	ECI-6-143_C3	30,911,654	4,636,748,100	30,792,250	4,594,312,034	99.08	94.63	SRR3628922
	ECI-6-143_T1	33,279,290	4,991,893,500	33,057,286	4,834,236,180	96.84	93.25	SRR3628923
	ECI-6-143_T2	77,729,986	11,659,497,900	76,878,888	11,094,058,272	95.15	92.75	SRR3628924
	ECI-6-143_T3	117,474,104	17,621,115,600	115,984,208	16,694,498,019	94.74	92.51	SRR3628925
	ECI-6-144_C1	60,990,986	9,148,647,900	60,741,680	9,064,390,023	99.08	92.8	SRR3628926
	ECI-6-144_C2	86,683,526	13,002,528,900	86,329,912	12,897,784,543	99.19	92.94	SRR3628927
	ECI-6-144_C3	71,825,978	10,773,896,700	71,575,562	10,702,818,550	99.34	92.83	SRR3628928
	ECI-6-144_T1	34,327,750	5,149,162,500	34,115,114	5,016,731,930	97.43	93.64	SRR3628929
	ECI-6-144_T2	39,923,670	5,988,550,500	39,185,794	5,487,993,485	91.64	94.59	SRR3628930
	ECI-6-144_T3	41,191,458	6,178,718,700	40,661,958	5,792,716,603	93.75	94.16	SRR3628931
	ECI-6-146_C1	35,902,156	5,385,323,400	35,787,792	5,340,202,079	99.16	92.66	SRR3628932
	ECI-6-146_C2	40,727,694	6,109,154,100	40,585,756	6,063,456,001	99.25	92.72	SRR3628933
	ECI-6-146_C3	100,811,740	15,121,761,000	100,423,000	14,990,114,758	99.13	94.71	SRR3628934
	ECI-6-146_T1	40,528,006	6,079,200,900	40,136,642	5,801,146,692	95.43	92.66	SRR3628935
	ECI-6-146_T2	40,158,520	6,023,778,000	39,741,560	5,735,959,598	95.22	93.41	SRR3628936
	ECI-6-146_T3	34,961,620	5,244,243,000	34,807,028	5,106,271,819	97.37	95.1	SRR3628937
	ECI-6-148_C1	80,739,166	12,110,874,900	80,407,104	11,979,744,760	98.92	92.37	SRR3628938

Group	Sample	Raw reads	Raw bases	Clean reads	Clean bases	Clean data rate (%)	Mapped reads (%)	Data accession
	ECI-6-148_C2	57,424,994	8,613,749,100	57,182,706	8,521,457,624	98.93	92.95	SRR3628939
	ECI-6-148_C3	54,517,448	8,177,617,200	54,280,034	8,083,831,276	98.85	94.34	SRR3628940
	ECI-6-148_T1	42,620,250	6,393,037,500	42,157,010	5,955,828,859	93.16	93.59	SRR3628941
	ECI-6-148_T2	42,991,310	6,448,696,500	42,551,048	6,073,832,150	94.19	94.43	SRR3628942
	ECI-6-148_T3	42,431,480	6,364,722,000	42,044,288	5,984,128,572	94.02	95.64	SRR3628943
	ECI-6-0_C1	68,712,206	10,306,830,900	68,401,404	10,184,212,229	98.81	92.73	SRR3628914
	ECI-6-0_C2	65,847,806	9,877,170,900	65,664,450	9,816,514,491	99.39	93.04	SRR3628915
	ECI-6-0_C3	46,500,006	6,975,000,900	46,325,336	6,917,813,112	99.18	94.42	SRR3628916
	ECI-6-0_T1	59,354,406	8,903,160,900	58,490,430	8,085,067,632	90.81	94.71	SRR3628917
	ECI-6-0_T2	83,657,786	12,548,667,900	82,952,090	11,963,688,981	95.34	94.99	SRR3628918
	ECI-6-0_T3	78,776,948	11,816,542,200	78,161,008	11,396,313,905	96.44	92.93	SRR3628919

ECI: Evolution Canyon I, Mount Carmel, Israel. ECI-2: Station 2 of ECI on the African Slope, ECI-6: Station 6 of ECI on the European Slope, C: Control, T: Treatment.