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Supporting Information 

1. Device fabrication  

 

Graphene/hexagonal boron-nitride (hBN) heterostructures were assembled using the dry peel 

technique1,2. To this end, graphite and bulk hBN crystals were first mechanically exfoliated onto an 

oxidized Si wafer. Monolayer graphene and thin (30 nm) hBN flakes were then identified by optical 

microscopy. The flakes were assembled using a polymer membrane attached to the tip of a 

micromanipulator, which was used as a ‘stamp’ to pick up and place down the selected crystals. 

During their assembly, a rotating stage was employed to align crystallographic axes of graphene and 

the bottom hBN crystal. Because the bulk crystals cleave preferentially along their crystallographic 

axes, the edges are usually clear and straight, enabling alignment with accuracy of about 0.5o. The 

resulting alignment produces a moiré potential with a period of about 14 nm3.  

The heterostructures were then made into multiterminal devices such as shown in Fig. S1using 

electron beam lithography and plasma etching. As the first step, a PMMA mask was fabricated to 

define long contact regions leading to the heterostructure. Reactive ion etching was then employed 

to mill through the mask, which produced trenches in the graphene/hBN heterostructure. The same 

PMMA mask was subsequently used to deposit metal leads into the trenches (3 nm Cr/80 nm Au) 

which formed quasi-one dimensional contacts to graphene’s edges4,5. This sequence of steps 

mitigates the need for graphene to be in contact with any polymer, preserving its high electronic 

quality. The PMMA mask was removed and a second round of lithography was carried out to define 

the mesa. Figure S1 shows an example of one of our Hall bar devices. The width of our samples 

ranged between 1 and 3 m, and the distance between nearest voltage contacts was at least one 

width.  

 

Fig. S1| Graphene/hBN devices. An optical image of one of our superlattice devices. The width of 

the Hall bar is 3 m.  
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2. Light doping of graphene/hBN heterostructures 

 

The first order magnetic Bloch states, which are responsible for so-called Brown Zak oscillations, are 

robust over a wide range of temperatures (T) and carrier density (n). In contrast, even for n close to 

the secondary Dirac points (DPs), there are no signs of high-order states (p = 2, 3 etc.). To unveil 

those additional fractal states, we had to dope graphene to much higher n, close to and even beyond 

n = 2n0 (Fig. 2 of the main text), where n0 is the carrier density at which secondary DPs occur. To 

achieve such high n-type doping, we used light illumination as previously reported6. In brief, electron 

donor-like impurity states in hBN are excited by illumination. This leads to positively charged defects 

that act to dope the graphene sheet negatively. This may happen in both top and bottom hBN layers 

of our encapsulated devices. Because the defects in hBN are spatially isolated from the graphene 

channel, the doping has relatively little influence on mobility of charge carriers in the devices. The 

light-doping effect is sufficiently strong such that we were able to n-dope graphene by  

n = 2.5 x 1012 cm-2 simply using an incandescent light source. Fig. S2 shows the electric-field behavior 

of our graphene/hBN superlattice devices before and after illumination. Before illumination, the 

main Dirac point (DP) is found around the applied gate voltage VG = - 1 V, whereas the secondary DPs 

are at + 15 V. After illumination, the main DP shifted to -20 V, the electron secondary DP to -4 V and 

the hole secondary DP could not be reached by the electric field doping. Despite this large photo-

induced doping, the electronic quality remained high with relatively small degradation in mobility. 

This is evident from the inset of Fig. S2 which plots the resistivity xx as a function of VG – VDP.  Aside 

from the slight broadening of the main Dirac point after illumination, the curves closely follow each 

other, in agreement with the previous work6. 

 

Fig. S2| Light doping of graphene/hBN heterostructures. Longitudinal resistivity xx as a function of 

gate voltage VG for one of our graphene devices presented in the main text. Two curves are plotted; 

before (black curve) and after (red) illumination with an incandescent light source. The black arrow 

traces the shift in position of the main Dirac point after illumination. Inset; The same data plotted as 

a function of VG – VDP, where VDP is the position of the main Dirac point. 
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3. Magnetic mini-bands 

 

Here we describe the model used to calculate the Hofstadter butterfly spectrum and magnetic  

mini-band structures shown in Figs. 4a-b of the main text. To this end, we consider the electronic 

spectrum of pristine graphene modified by an underlying moiré potential which is produced by 

alignment with the hBN substrate. The moiré potential is described by a hexagonal Bravais lattice 

𝑛1𝑎⃗1 + 𝑛2𝑎⃗2  with a period of the superlattice a1 = a2. The computed spectrum was obtained using a 

phenomenological model developed in Ref. 7, which is based on the Hamiltonian. 
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where 𝜎𝑖 are the Pauli matrices acting on the sublattice Bloch states (𝜙AK, 𝜙BK)𝑇 in the K valley 

(𝜉 = 1) and (𝜙BK′, −𝜙AK′)
𝑇in the K’ valley (𝜉 = −1). 𝑓± are the six shortest moiré Bragg vectors 𝑏
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√3𝑎
) of the superlattice, and u0, u1 u3 are phenomenological parameters’ which 

control the strength of the potential. In our calculations we used 𝑢0
+ = 21.7meV, 𝑢1

+ = −30.6 meV 

and 𝑢3
+ = −22.2 meV, which is based on previous works that predict the superlattice strength is 

related to the alignment angle and lattice mismatch of the graphene/hBN lattices (Ref. 7).  

In the presence of magnetic field, the Dirac term is modified by the vector potential 𝐴
⇀

=
𝐵𝑥1

𝑎√3
(2𝑎⃗2 −

𝑎⃗1)  and incorporated into the momentum as 𝑝
⇀

= −𝑖ℏ𝛻 + ⅇ𝐴
⇀

. We note that 𝐴
⇀

 is expressed in a 

hexagonal co-ordinate system (𝑥1, 𝑥2), such that 𝑟
⇀

= 𝑥1𝑎⃗1 + 𝑥2𝑎⃗2, to reflect the hexagonal 

symmetry of the moiré potential in graphene/hBN superlattices, with 𝑎⃗1, 𝑎⃗2 being the basis vectors 

of the Bravais lattice of the moiré pattern.  Without any superlattice, the spectrum consists of 

infinitely degenerate Landau levels. Mathematically, this is determined by the fact that the group of 

translations in a magnetic field is non-Abelian8, since the Aharonov-Bohm9 effect introduces 

additional phase factors into the electronic wave function. In the case of the moiré superlattice, for 

magnetic field B = /S (p/q), the Aharonov-Bohm phase attains quantized values of 2, and the 

electronic spectrum can then be described by Wannier states which propagate on a supercell that is 

q times larger than the moiré unit cell  (referred to as magnetic Bloch states in the main text).  For 

the analysis of such states, we use the Landau levels to construct a basis set of Bloch-like states. This 

is done for each point in the miniature Brillouin zone of the corresponding supercell. We then 

diagonalize the Hamiltonian 𝐻
^

 numerically in that basis, checking the results for convergence against 

increasing the basis size. The details of such computations and examples of the resulting magnetic 

miniband spectra can be found in Refs. 7, 10 & 11.  
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4. Electron transport in the magnetic-minibands 

 

For 0 = p/q, the electrons propagate as if they are in effectively zero magnetic field with a velocity 

that is determined by details of their magnetic miniband structures (Fig. 4b). This behavior causes 

local maxima in xx to appear at 0 = p/q, with an amplitude that is governed by the Einstein 

conductivity formula (see Supplementary Information in Ref. 12)  

                                                                       𝜎𝑥𝑥 =
4𝑒2

ℎ

𝐸F𝜏

ℏ

〈𝑣2〉

𝑣F2
                                                                         (S2) 

whereis the scattering time, vF is the Fermi-velocity of graphene, and v is the group velocity of 

carriers at the Fermi-energy (EF) in a particular magnetic Bloch state. We note that temperatures  

T = 100 – 200 K are not insignificant if compared with the width of magnetic-minibands (Fig. 4b), 

such that thermal smearing could populate carriers with a markedly different velocity to those at the 

Fermi-energy. Therefore, we consider v averaged over an interval of + kBT around the Fermi-energy, 

which enters equation (S2) as the mean-square velocity <v2>. Assuming  is constant13, <v2> is the 

only variable that changes with magnetic field due to the varying miniband structures of magnetic 

Bloch states that form at different B. We expect the relative amplitudes of local maxima correlate 

directly with the changes in <v2> expected for different magnetic Bloch states. We extracted <v2> by 

calculating the group velocity for all E within + kBT of EF and taking the average. The group velocity at 

each E was determined by the familiar expression 

                                                                   𝑣⃗ =
1

ℏ

𝜕𝐸(𝑘)

𝜕𝑘⃗⃗
                                                                                      (S3). 

We calculated <v2> along a number of arbitrary directions and found the values differed only by 

about 1 %, which simply reflects a numerical error determined by the discrete set of points in the 

miniature Brillouin zones used in our simulations.  
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5. Hierarchy of magnetic Bloch states in the valence band 

 

In the main text, we discussed the visibility of magnetic Bloch states in the conduction band, with 

regard to transport experiments. In general, we found that magnetic Bloch states with larger p had a 

smaller group velocity (Fig. 4c of main text). This results in smaller amplitude of xx (Fig. 2 of the 

main text). In experiment, the same qualitative trend was found for hole doping (Fig. 2d). For 

completeness, we calculated <v2> for magnetic Bloch states in the valence band at various 0 = p/q 

for a given n (Fig. S3). We found the same qualitative trend such that high-order states (larger p 

indicated by red and blue symbols in Fig. S3) have a systematically smaller <v2> as compared to the 

first-order states (black spheres). This demonstrates that the apparent hierarchy of states has a 

universal behavior for all kind of doping in the graphene/hBN spectrum.  

 
Fig. S3| Group velocity of holes in magnetic minibands. The numerically calculated mean square 

velocity <v2> as a function of 0 for different p. Here, we used moiré superlattice parameters listed 

in Section 3. The black, red and blue symbols correspond to magnetic states with p = 1, 2 and 3 

respectively. 
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