## Supplementary Data

| Supplementary Table 1. Ocular quantitative traits investigated in this study.                                                   | Page 2-3                |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Supplementary Table 2. Association results for the top 10 WNT7B SNPs with central co thickness (CCT) in South Indian Pedigrees. | rneal<br>Page 4         |
| Supplementary Table 3. Association results for SNPs previously associated with CCT.                                             | Page 5-8                |
| Supplementary Figure 1. South Indian pedigrees investigated in this study.                                                      | Page 9-12               |
| Supplementary Figure 2. Genome-wide association results for CCT in the South Indian                                             | pedigrees.<br>Page 13   |
| Supplementary Figure 3. Q-Q plot of the genome-wide p values for CCT in the South In-<br>pedigrees.                             | dian<br>Page 14         |
| Supplementary Figure 4. Meta-analysis for rs10453441 and CCT.                                                                   | Page 15-16              |
| Supplementary Figure 5. WNT7B genomic region associated with ocular traits as annota ENCODE.                                    | ated by<br>Page 17-18   |
| Supplementary Figure 6. PheWAS plots for top SNPs associated with CCT in the South population.                                  | Indian<br>Page 19-20    |
| Supplementary Figure 7. CCT boxplot for three genotypes of top SNP rs9330813 in the population.                                 | South Indian<br>Page 21 |
| Supplementary Methods.                                                                                                          | Page 22-23              |
| Supplementary References.                                                                                                       | Page 23-24              |

# Supplementary Table 1. Ocular quantitative traits investigated in this study

| Trait                                               | Abbreviation | Ν   | Range       | Mean±SD                    | P_age <sup>*</sup> | P_sex*  | Power |
|-----------------------------------------------------|--------------|-----|-------------|----------------------------|--------------------|---------|-------|
| Biometric parameters                                |              |     |             |                            |                    |         |       |
| Axial length (mm)                                   | AXL          | 195 | 20.5, 26.0  | 22.7±0.9                   | <0.0001            | <0.0001 | 1.00  |
| Anterior chamber depth (mm)                         | ACD          | 172 | 2.20, 3.97  | 3.15±0.37                  | <0.0001            | 0.0004  | 1.00  |
| Lens thickness (mm)                                 | Lens         | 172 | 3.40, 5.17  | 4.24±0.37                  | <0.0001            | 0.29    | 0.95  |
| Intraocular pressure (applanation)                  | IOPg         | 195 | 8.0, 25.5   | 14.5±3.1                   | 0.30               | 0.86    | 0.87  |
| (mm Hg)                                             | -            |     |             |                            |                    |         |       |
| Goldmann-correlated intraocular<br>pressure (mm Hg) | IOPgc        | 95  | 7.2, 26.6   | 14.4±3.2                   | 0.18               | 0.99    | 0.11  |
| Corneal compensated intraocular pressure (mm Hg)    | IOPcc        | 95  | 8.2, 26.7   | 15.8±3.4                   | 0.002              | 0.87    | 0.00  |
|                                                     |              |     |             |                            |                    |         |       |
| <u>Corneal parameters</u>                           | 007          | 405 | 100,000     | 540.0.00.0                 | 0.004              | 0.00    | 0.00  |
| Central corneal thickness (µm)                      |              | 195 | 433, 608    | 516.2±30.2                 | 0.004              | 0.08    | 0.99  |
| Corneal hysteresis                                  | CH           | 95  | 6.0, 13.2   | 9.69±1.41                  | <0.0001            | 0.70    | 0.99  |
| Corneal resistance factor                           | CRF          | 95  | 5.9, 13.5   | 9.48±1.40                  | 0.005              | 0.75    | 0.99  |
| Horizontal keratometric value (D)                   | K_H          | 195 | 6.80, 8.52  | 7.65±0.30                  | <0.0001            | 0.08    | 1.00  |
| Vertical keratometric value (D)                     | K_V          | 195 | 6.80, 8.62  | 7.62±0.29                  | 0.005              | 0.007   | 1.00  |
| Optic nerve parameters                              |              |     |             |                            |                    |         |       |
|                                                     |              |     |             |                            |                    |         |       |
| Disc and cup size                                   |              | 105 | 1 25 2 50   | 2.25.0.20                  | 0.02               | 0.07    | 0.00  |
| Disc area $(\Pi \Pi^2)$ ( $\Pi R I \_ M R A$ )      |              | 100 | 1.35, 3.50  | 2.25±0.39                  | 0.03               | 0.97    | 0.62  |
| Cup area (mm <sup>2</sup> ) (HR I_MRA)              |              | 105 | 0.00, 1.67  | $0.59 \pm 0.36$            | 0.48               | 0.36    | 0.90  |
| Cup disc area ratio (HR I_MRA)                      | CDAR         | 165 | 0.00, 0.55  | 0.25±0.13                  | 0.21               | 0.44    | 0.93  |
| Cup size (mm <sup>2</sup> ) (HR1_GPS)               | CS           | 1/6 | 0.01, 1.02  | 0.46±0.20                  | 0.33               | 0.25    | 0.99  |
| Cup volume (mm <sup>3</sup> ) (HR1_MRA)             | CV           | 165 | 0.00, 1.03  | 0.15±0.15                  | 0.99               | 0.17    | 1.00  |
| Cup contour (All HRT MRA)                           |              |     |             |                            |                    |         |       |
| Cup shape measure                                   | CSM          | 165 | -0.37, 0.02 | -0.19±0.07                 | 0.04               | 0.69    | 0.16  |
| Contour line modulation temporal to                 | CLM TI       | 165 | -0.05, 0.43 | 0.21±0.08                  | 0.0003             | 0.04    | 0.99  |
| inferior (mm)                                       | • · ·        |     |             |                            |                    |         |       |
| Contour line modulation temporal to                 | CLM_TS       | 165 | 0.01, 0.44  | 0.22±0.08                  | <0.0001            | 0.54    | 0.69  |
| superior (mm)                                       |              |     |             |                            |                    |         |       |
| Maximum contour depression (mm)                     | Contour_D    | 165 | -0.01, 0.65 | 0.35±0.12                  | 0.008              | 0.90    | 0.99  |
| Maximum contour elevation (mm)                      | Contour_E    | 165 | -0.29, 0.19 | -0.06±0.09                 | 0.26               | 0.23    | 0.99  |
| Height variation contour (mm)                       | HVC          | 165 | 0.15, 0.77  | 0.41±0.10                  | <0.0001            | 0.39    | 0.37  |
| Cup depth                                           |              |     |             |                            |                    |         |       |
| Cup depth (mm) (HRT GPS)                            | CD           | 176 | 0 14 1 18   | 0 63+0 19                  | 0 009              | 0 47    | 0 99  |
| Maximum cup depth (mm)                              | CD max       | 165 | 0.15, 1.30  | $0.00\pm0.10$<br>0.64+0.22 | 0.000              | 0.88    | 0.00  |
| (HRT_MRA)                                           |              | 100 | 0.10, 1.00  | 0.04±0.22                  | 0.12               | 0.00    | 0.00  |
| Mean cup depth (mm) (HRT_MRA)                       | CD_mean      | 165 | 0.05, 0.70  | 0.23±0.10                  | 0.54               | 0.54    | 0.99  |
| Our die stratie                                     |              |     |             |                            |                    |         |       |
| Cup disc ratio                                      | VODD         | 404 | 0.40.0.05   | 0 40 0 47                  | 0.05               | 0.00    | 0.00  |
| Vertical cup-disc ratio (Fundus                     | VCDR         | 191 | 0.10, 0.95  | 0.40±0.17                  | 0.05               | 0.32    | 0.99  |
| Horizontal cup disc ratio (HRT_MRA)                 | HCDR MRA     | 165 | 0.00 0.81   | <u>በ 4ዓ+</u> በ 17          | 0.67               | n na    | 0 02  |
| Linear cun disc ratio (HPT MPA)                     |              | 165 | 0.00, 0.01  | 0.43±0.17<br>0./Q±0.17     | 0.07               | 0.03    | 0.92  |
| Vertical cup disc ratio (LIRT_NRA)                  |              | 165 | 0.04, 0.74  | 0.40±0.14<br>0.27±0.22     | 0.35               | 0.00    | 0.93  |
|                                                     |              | 100 | 0.00, 0.78  | 0.37 ±0.22                 | 0.07               | 0.00    | 0.90  |
| Neural-retinal Rim                                  |              |     |             |                            |                    |         |       |
| Rim area (mm²) (HRT_MRA)                            | RA           | 165 | 1.01, 2.57  | 1.67±0.29                  | 0.0001             | 0.22    | 0.97  |
| Rim disc area ratio (HRT_MRA)                       | RDAR         | 165 | 0.45, 1.00  | 0.75±0.13                  | 0.21               | 0.44    | 0.94  |
| Rim steepness (HRT_GPS)                             | RS           | 176 | -1.21, 1.47 | -0.13±0.54                 | 0.01               | 0.74    | 0.96  |
| Rim volume (mm <sup>3</sup> ) (HRT-MRA)             | RV           | 165 | 0.07, 1.21  | 0.47±0.17                  | <0.0001            | 0.06    | 0.09  |

| Retinal nerve fiber layer                   |          |     |              |            |         |       |      |
|---------------------------------------------|----------|-----|--------------|------------|---------|-------|------|
| Inferior average (µm) (GDx)                 | Inferior | 118 | 36.9, 94.5   | 61.6±8.9   | 0.99    | 0.91  | 0.82 |
| Superior average (µm) (GDx)                 | Superior | 118 | 41.4, 102.9  | 65.9±9.7   | 0.35    | 0.21  | 0.75 |
| Temporal superior nasal inferior            | TSNIT    | 118 | 41.2, 107.3  | 55.7±7.9   | 0.02    | 0.97  | 0.94 |
| temporal average (µm) (GDx)                 |          |     |              |            |         |       |      |
| Retinal nerve fiber layer cross             | RNFL_CSA | 165 | 0.19, 3.20   | 1.45±0.41  | <0.0001 | 0.16  | 0.56 |
| sectional area (mm <sup>2</sup> ) (HRT_MRA) |          |     |              |            |         |       |      |
| Mean retinal nerve fiber layer              | RNFL_MT  | 165 | 0.04, 0.54   | 0.27±0.07  | <0.0001 | 0.21  | 0.22 |
| thickness (mm) (HRT_MRA)                    |          |     |              |            |         |       |      |
| Horizontal retinal nerve fiber layer        | RNFL_HC  | 176 | -0.24, 0.09  | -0.03±0.05 | 0.92    | 0.81  | 0.98 |
| curvature (HRT_GPS)                         |          |     |              |            |         |       |      |
| Vertical retinal nerve fiber layer          | RNFL_VC  | 176 | -0.29, 0.00  | -0.12±0.05 | 0.86    | 0.82  | 0.99 |
| curvature (HRT_GPS)                         |          |     |              |            |         |       |      |
| Refractive error parameters                 |          |     |              |            |         |       |      |
| Objective refraction cylindrical            | ORCD     | 100 | -3.00, -0.25 | -0.92±0.58 | 0.0001  | 0.29  | 0.01 |
| distance                                    |          |     |              |            |         |       |      |
| Objective refraction spherical              | ORSD     | 195 | -10.5, 11.5  | 0.38±1.82  | 0.01    | 0.68  | 0.93 |
| distance                                    |          |     |              |            |         |       |      |
| Subjective refraction cylindrical           | SRCD     | 70  | -3.0, -0.5   | -0.99±0.55 | 0.06    | 0.70  | 0.76 |
| distance                                    |          |     |              |            |         |       |      |
| Subjective refraction spherical             | SRSD     | 195 | -6.0, 11.0   | 0.23±1.54  | 0.008   | 0.32  | 0.70 |
| distance                                    |          |     |              |            |         |       |      |
| Subjective refraction spherical near        | SRSN     | 124 | 0.0, 3.0     | 2.12±0.87  | <0.0001 | 0.004 | 0.51 |

\**P* values obtained from multiple regression analysis using general linear models and used to evaluate the association of age and sex with analyzed traits. The trait measurements are the average of both eyes for all the genotyped individuals included in the association study. For some traits measurements were not possible for all study subjects. For a description for how these traits were measured, see Supplementary methods. Power (%) to detect associations with the 4 SNPs used for the PheWAS is shown in the last column. The power calculation methods are included in the methods section.

Abbreviations: N, number of subjects with measurements for the indicated trait; SD, standard deviation.

# Supplementary Table 2. Association results for the top 10 *WNT7B* SNPs with central corneal thickness (CCT) in South Indian pedigrees

| SNP         | Chr | Position | A1/A2 | MAF   | $\beta^{d}$ | s.e.  | p                     |
|-------------|-----|----------|-------|-------|-------------|-------|-----------------------|
| rs9330813   | 22  | 46364161 | A/G   | 0.495 | -0.570      | 0.107 | 1.71×10 <sup>-7</sup> |
| rs9723267   | 22  | 46365557 | T/G   | 0.495 | -0.530      | 0.107 | 1.45×10⁻ <sup>6</sup> |
| rs75159625  | 22  | 46377008 | C/A   | 0.497 | -0.530      | 0.107 | 1.46×10⁻ <sup>6</sup> |
| rs10453441  | 22  | 46363739 | A/G   | 0.358 | 0.390       | 0.107 | 5.85×10 <sup>-4</sup> |
| rs9330811   | 22  | 46362396 | A/G   | 0.338 | 0.386       | 0.114 | 1.02×10 <sup>-3</sup> |
| rs10453458  | 22  | 46360772 | C/T   | 0.406 | 0.369       | 0.107 | 1.30×10 <sup>-3</sup> |
| rs200329677 | 22  | 46369778 | C/T   | 0.277 | 0.347       | 0.121 | 5.85×10 <sup>-3</sup> |
| rs62226057  | 22  | 46368130 | A/G   | 0.190 | 0.387       | 0.113 | 9.98×10 <sup>-3</sup> |
| rs117979240 | 22  | 46348020 | A/G   | 0.035 | -0.790      | 0.309 | 1.43×10 <sup>-2</sup> |
| rs62226027  | 22  | 46321994 | A/G   | 0.181 | 0.293       | 0.142 | 4.92×10 <sup>-2</sup> |

<sup>a</sup>Genomic positions are based on NCBI Build 37/hg19.

<sup>b</sup>A1/A2, minor allele/common allele.

<sup>c</sup>MAF, minor allele frequency.

 $d\beta$  models the expected change in mean CCT per increase of one A1 allele.

Chr, chromosome; s.e, standard error.

| SNP ID Chr Positio |   | Position  | ır Position        | Position         | Genes<br>Nearby | Previ           | ously Re                                        | eported | Reference(s) |       | Indian | Dataset |            | Consiste<br>ncy of<br>Direction | Most Sig | nificant Hit ± 100 | kb |
|--------------------|---|-----------|--------------------|------------------|-----------------|-----------------|-------------------------------------------------|---------|--------------|-------|--------|---------|------------|---------------------------------|----------|--------------------|----|
|                    |   |           |                    | Effect<br>Allele | Freq            | β               | -                                               | A1/A2   | Freq<br>A1   | β     | Ρ      |         | SNP ID     | Position                        | Р        |                    |    |
| rs3767703          | 1 | 36555758  | COL8A2             | NA               | NA              | -4.43           | Vithana et al.<br>Hum Mol Genet<br>2011         | A/G     | 0.26         | -0.08 | 0.50   | NA      | rs538638   | 36534644                        | 0.036    |                    |    |
| rs7550047          | 1 | 36567343  | COL8A2             | NA               | NA              | -4.42           | Vithana et al.<br>Hum Mol Genet<br>2011         | NA      | NA           | NA    | NA     | NA      | rs538638   | 36534644                        | 0.036    |                    |    |
| rs96067            | 1 | 36571920  | COL8A2             | A                | 080;<br>0.58    | 0.03;<br>0.11   | Lu et al. Nat<br>Genet 2013                     | A/G     | 0.57         | -0.10 | 0.39   | Ν       | rs538638   | 36534644                        | 0.036    |                    |    |
| rs10189064         | 2 | 219327500 | USP37              | A                | 0.04            | -0.23           | Lu et al. Nat<br>Genet 2013                     | NA      | NA           | NA    | NA     | NA      | rs4674301  | 219242862                       | 0.019    |                    |    |
| rs121908120        | 2 | 219755011 | WNT10A             | A                | 0.03            | -23.8           | Cuellar-Partida<br>et al. Hum Mol<br>Genet 2015 | NA      | NA           | NA    | NA     | NA      | rs860573   | 219846749                       | 0.030    |                    |    |
| rs7606754          | 2 | 228135180 | COL4A3             | А                | 0.35;<br>0.36   | -0.07;<br>-0.07 | Lu et al. Nat<br>Genet 2013                     | NA      | NA           | NA    | NA     | NA      | rs13425557 | 228063071                       | 0.012    |                    |    |
| rs3749260          | 3 | 98250862  | GPR15              | А                | 0.13            | -0.12           | Lu et al. Nat<br>Genet 2013                     | A/C     | 0.22         | 0.11  | 0.42   | Ν       | rs6778616  | 98282957                        | 0.001    |                    |    |
| rs9822953          | 3 | 156472071 | TIPARP             | т                | 0.67            | 0.08            | Lu et al. Nat<br>Genet 2013                     | NA      | NA           | NA    | NA     | NA      | rs73019748 | 156514240                       | 0.039    |                    |    |
| rs4894535          | 3 | 171995605 | FNDC3B             | т                | 0.17;<br>0.27   | -0.10;<br>-0.09 | Lu et al. Nat<br>Genet 2013                     | T/C     | 0.25         | -0.26 | 0.05   | Y       | rs6445054  | 171992009                       | 0.046    |                    |    |
| rs7620503          | 3 | 177304298 | TBL1XR1-<br>KCNMB2 | т                | 0.39;<br>0.51   | -0.06;<br>-0.06 | Lu et al. Nat<br>Genet 2013                     | NA      | NA           | NA    | NA     | NA      | rs13091554 | 177214656                       | 0.009    |                    |    |
| rs3931397          | 4 | 149079497 | NR3C2              | т                | 0.07;<br>0.12   | -0.12;<br>-0.09 | Lu et al. Nat<br>Genet 2013                     | NA      | NA           | NA    | NA     | NA      | rs7696997  | 148998566                       | 0.014    |                    |    |
| rs1117707          | 5 | 64389665  | CWC27-<br>ADAMTS6  | А                | 0.70            | -0.09           | Lu et al. Nat<br>Genet 2013                     | NA      | NA           | NA    | NA     | NA      | rs11739329 | 64429954                        | 0.071    |                    |    |
| rs2307121          | 5 | 64625512  | ADAMTS6            | т                | 0.34;<br>0.30   | 0.09;<br>0.05   | Lu et al. Nat<br>Genet 2013                     | T/C     | 0.48         | -0.10 | 0.35   | Ν       | rs11957323 | 64699186                        | 0.023    |                    |    |
| rs1538138          | 6 | 82794594  | FAM46A-<br>IBTK    | т                | 0.25;<br>0.23   | -0.07;<br>-0.11 | Lu et al. Nat<br>Genet 2013                     | T/C     | 0.19         | -0.19 | 0.19   | Y       | rs197246   | 82883836                        | 0.009    |                    |    |

## Supplementary Table 3. Association results for SNPs previously associated with CCT

| rs11763147 | 7  | 65326821  | VKORC1L1        | А   | 0.45;<br>0.32 | 0.07;<br>0.06   | Lu et al. Nat<br>Genet 2013                        | NA  | NA   | NA    | NA   | NA | NA          | NA        | NA    |
|------------|----|-----------|-----------------|-----|---------------|-----------------|----------------------------------------------------|-----|------|-------|------|----|-------------|-----------|-------|
| rs4718428  | 7  | 66421446  | C7orf42         | G   | 0.46–<br>0.74 | -3.18           | Cornes et al.<br>Hum Mol Genet<br>2012             | G/T | 0.40 | 0.07  | 0.55 | Ν  | kgp22734253 | 66503970  | 0.028 |
| rs1324183  | 9  | 13557491  | MPDZ-<br>NF1B   | А   | 0.20;<br>0.25 | -0.05;<br>-0.10 | Lu et al. Nat<br>Genet 2013                        | NA  | NA   | NA    | NA   | NA | rs988018    | 13466788  | 0.013 |
| rs1007000  | 9  | 113662681 | LPAR1           | т   | 0.22;<br>0.21 | 0.07;<br>0.11   | Lu et al. Nat<br>Genet 2013                        | T/C | 0.21 | 0.09  | 0.52 | Y  | rs521803    | 113565027 | 0.041 |
| rs1409832  | 9  | 137428425 | RXRA-<br>COL5A1 | NA  | NA            | -3.95           | Vithana et al.<br>Hum Mol Genet<br>2011            | G/T | 0.50 | 0.04  | 0.70 | NA | rs34109509  | 137332109 | 0.003 |
| rs4842044  | 9  | 137431904 | RXRA-<br>COL5A1 | NA  | NA            | -4.67           | Vithana et al.<br>Hum Mol Genet<br>2011            | NA  | NA   | NA    | NA   | NA | rs34109509  | 137332109 | 0.003 |
| rs1536478  | 9  | 137432248 | RXRA-<br>COL5A1 | NA  | NA            | -4.63           | Vithana et al.<br>Hum Mol Genet<br>2011            | NA  | NA   | NA    | NA   | NA | rs57557257  | 137498356 | 0.004 |
| rs3118515  | 9  | 137436314 | RXRA-<br>COL5A1 | A   | 0.26          | -0.23           | Gao et al.<br>Invest<br>Ophthalmol Vis<br>Sci 2013 | A/G | 0.58 | 0.04  | 0.75 | N  | rs57557257  | 137498356 | 0.004 |
| rs943423   | 9  | 137437183 | RXRA-<br>COL5A1 | С   | 0.26          | -0.21           | Ophthalmol Vis<br>Sci 2013                         | C/T | 0.56 | 0.04  | 0.74 | Ν  | rs57557257  | 137498356 | 0.004 |
| rs3118516  | 9  | 137439792 | RXRA-<br>COL5A1 | A   | 0.34          | -0.15           | Hoehn et al.<br>Hum Genet<br>2012                  | NA  | NA   | NA    | NA   | NA | rs57557257  | 137498356 | 0.004 |
| rs3132306  | 9  | 137440212 | RXRA-<br>COL5A1 | Т   | 0.66          | 0.15            | Hoehn et al.<br>Hum Genet<br>2012                  | NA  | NA   | NA    | NA   | NA | rs57557257  | 137498356 | 0.004 |
| rs1536482  | 9  | 137440528 | RXRA-<br>COL5A1 | A   | 0.34;<br>0.34 | -0.12;<br>-0.08 | Lu et al. Nat<br>Genet 2013                        | NA  | NA   | NA    | NA   | NA | rs57557257  | 137498356 | 0.004 |
| rs3118520  | 9  | 137441596 | RXRA-<br>COL5A1 | A   | 0.63          | 0.13            | Lu et al. Nat<br>Genet 2013                        | NA  | NA   | NA    | NA   | NA | rs57557257  | 137498356 | 0.004 |
| rs7044529  | 9  | 137568051 | COL5A1          | т   | 0.15;<br>0.20 | -0.13;<br>-0.05 | Lu et al. Nat<br>Genet 2013                        | T/C | 0.31 | -0.06 | 0.60 | Y  | rs57557257  | 137498356 | 0.004 |
| rs11145951 | 9  | 139860264 | LCN12-<br>PTGDS | т   | 0.49;<br>0.69 | 0.09;<br>0.04   | Lu et al. Nat<br>Genet 2013                        | NA  | NA   | NA    | NA   | NA | NA          | NA        | NA    |
| rs7090871  | 10 | 63830286  | ARID5B          | Т   | 0.59;<br>0.64 | 0.06;<br>0.07   | Lu et al. Nat<br>Genet 2013                        | NA  | NA   | NA    | NA   | NA | rs7922024   | 63763369  | 0.080 |
| rs1006368  | 10 | 126346603 | FAM53B          | A/G | NA            | 0.22            | Lu et al. PLoS<br>Genet 2010                       | NA  | NA   | NA    | NA   | NA | rs10901761  | 126254468 | 0.023 |

| rs11245330 | 10 | 126380338 | FAM53B               | A/G | NA            | 0.22            | Lu et al. PLoS<br>Genet 2010           | A/G | 0.08 | -0.27 | 0.19 | NA | rs4962676  | 126340892 | 0.060 |
|------------|----|-----------|----------------------|-----|---------------|-----------------|----------------------------------------|-----|------|-------|------|----|------------|-----------|-------|
| rs4938174  | 11 | 110913240 | ARHGAP20<br>-POU2AF1 | A   | 0.31;<br>0.15 | 0.06;<br>0.11   | Lu et al. Nat<br>Genet 2013            | A/G | 0.19 | 0.00  | 0.99 | Y  | rs17655864 | 110831371 | 0.006 |
| rs1564892  | 12 | 104445742 | GLT8D2               | A   | 0.76;<br>0.43 | -0.08;<br>-0.07 | Lu et al. Nat<br>Genet 2013            | NA  | NA   | NA    | NA   | NA | rs3817602  | 104390525 | 0.001 |
| rs1034200  | 13 | 23228691  | FGF9-<br>SGCG        | А   | 0.23;<br>0.27 | 0.10;<br>0.02   | Lu et al. Nat<br>Genet 2013            | NA  | NA   | NA    | NA   | NA | rs9550863  | 23310550  | 0.013 |
| rs2755237  | 13 | 41109429  | FOX01                | A/C | NA            | 0.22            | Lu et al. PLoS<br>Genet 2010           | C/A | 0.08 | -0.06 | 0.75 | NA | rs4941980  | 41058857  | 0.028 |
| rs2721051  | 13 | 41110884  | FOX01                | т   | 0.11;<br>0.03 | -0.17;<br>-0.13 | Lu et al. Nat<br>Genet 2013            | T/C | 0.05 | 0.08  | 0.75 | Ν  | rs4941980  | 41058857  | 0.028 |
| rs785422   | 15 | 30173885  | TJP1                 | т   | 0.11;<br>0.08 | -0.14;<br>-0.10 | Lu et al. Nat<br>Genet 2013            | T/C | 0.11 | -0.32 | 0.08 | Y  | rs785425   | 30178614  | 0.079 |
| rs12913547 | 15 | 67467507  | SMAD3                | т   | 0.77;<br>0.64 | -0.08;<br>-0.07 | Lu et al. Nat<br>Genet 2013            | NA  | NA   | NA    | NA   | NA | NA         | NA        | NA    |
| rs6496932  | 15 | 85825567  | AKAP13               | А   | 0.20;<br>0.36 | -0.11;<br>-0.06 | Lu et al. Nat<br>Genet 2013            | A/C | 0.36 | -0.16 | 0.15 | Y  | rs16975309 | 85910978  | 0.110 |
| rs1828481  | 15 | 85840912  | AKAP13               | С   | 0.45–<br>0.56 | 3.12            | Cornes et al.<br>Hum Mol Genet<br>2012 | NA  | NA   | NA    | NA   | NA | rs16975309 | 85910978  | 0.110 |
| rs7172789  | 15 | 85843517  | AKAP13               | С   | 0.45–<br>0.56 | 3.14            | Cornes et al.<br>Hum Mol Genet<br>2012 | C/T | 0.53 | 0.12  | 0.30 | Y  | rs16975309 | 85910978  | 0.110 |
| rs2034809  | 15 | 101555399 | LRRK1                | А   | 0.50          | -0.05           | Lu et al. Nat<br>Genet 2013            | NA  | NA   | NA    | NA   | NA | rs7183889  | 101457321 | 0.011 |
| rs930847   | 15 | 101558562 | LRRK1                | т   | 0.77;<br>0.73 | -0.11;<br>-0.11 | Lu et al. Nat<br>Genet 2013            | T/G | 0.82 | -0.11 | 0.47 | Y  | rs878274   | 101551136 | 0.015 |
| rs4965359  | 15 | 101585336 | LRRK1                | A   | 0.40–<br>0.67 | -3.50           | Cornes et al.<br>Hum Mol Genet<br>2012 | A/G | 0.36 | -0.15 | 0.20 | Y  | rs878274   | 101551136 | 0.015 |
| rs752092   | 15 | 101781934 | CHSY1                | А   | 0.66;<br>0.78 | -0.08;<br>-0.05 | Lu et al. Nat<br>Genet 2013            | A/G | 0.79 | -0.07 | 0.64 | Y  | rs2124135  | 101698540 | 0.036 |
| rs12447690 | 16 | 88298124  | ZNF469               | т   | 0.64          | 0.16            | Hoehn et al.<br>Hum Genet<br>2012      | T/C | 0.59 | 0.14  | 0.20 | Y  | rs8051233  | 88230225  | 0.005 |
| rs7500824  | 16 | 88299491  | ZNF469               | А   | 0.36          | -0.16           | Hoehn et al.<br>Hum Genet<br>2012      | A/G | 0.30 | -0.07 | 0.56 | Y  | rs8051233  | 88230225  | 0.005 |

| rs7405095  | 16 | 88307825 | ZNF469             | А  | 0.36          | -0.16         | Hoehn et al.<br>Hum Genet<br>2012       | NA  | NA   | NA    | NA                   | NA | rs8051233 | 88230225 | 0.005                |
|------------|----|----------|--------------------|----|---------------|---------------|-----------------------------------------|-----|------|-------|----------------------|----|-----------|----------|----------------------|
| rs7501109  | 16 | 88320862 | ZNF469             | С  | 0.64          | 0.16          | Hoehn et al.<br>Hum Genet<br>2012       | NA  | NA   | NA    | NA                   | NA | rs8051233 | 88230225 | 0.005                |
| rs7501402  | 16 | 88320911 | ZNF469             | A  | 0.36          | -0.16         | Hoehn et al.<br>Hum Genet<br>2012       | NA  | NA   | NA    | NA                   | NA | rs8051233 | 88230225 | 0.005                |
| rs6540223  | 16 | 88321436 | ZNF469             | т  | 0.64          | 0.16          | Hoehn et al.<br>Hum Genet<br>2012       | T/C | 0.77 | 0.14  | 0.30                 | Y  | rs8051233 | 88230225 | 0.005                |
| rs12448211 | 16 | 88330513 | ZNF469             | A  | 0.62          | 0.16          | Hoehn et al.<br>Hum Genet<br>2012       | NA  | NA   | NA    | NA                   | NA | rs4072556 | 88355252 | 0.008                |
| rs9938149  | 16 | 88331640 | ZNF469             | A  | 0.62;<br>0.74 | 0.17;<br>0.16 | Lu et al. Nat<br>Genet 2013             | A/C | 0.70 | 0.03  | 0.81                 | Y  | rs4072556 | 88355252 | 0.008                |
| rs9922572  | 16 | 88334112 | ZNF469             | A  | 0.34          | -0.14         | Hoehn et al.<br>Hum Genet<br>2012       | A/C | 0.24 | -0.23 | 0.06                 | Y  | rs4072556 | 88355252 | 0.008                |
| rs9925231  | 16 | 88338107 | ZNF469             | NA | NA            | -4.79         | Vithana et al.<br>Hum Mol Genet<br>2011 | NA  | NA   | NA    | NA                   | NA | rs4072556 | 88355252 | 0.008                |
| rs7204132  | 16 | 88344517 | ZNF469             | NA | NA            | -4.95         | Vithana et al.<br>Hum Mol Genet<br>2011 | A/C | 0.36 | -0.07 | 0.55                 | NA | rs4072556 | 88355252 | 0.008                |
| rs9927272  | 16 | 88346709 | ZNF469             | NA | NA            | -3.95         | Vithana et al.<br>Hum Mol Genet<br>2011 | A/G | 0.36 | -0.22 | 0.05                 | NA | rs8051681 | 88445569 | 0.002                |
| rs2323457  | 17 | 14554190 | HS3ST3B1-<br>PMP22 | A  | 0.29          | -0.08         | Lu et al. Nat<br>Genet 2013             | NA  | NA   | NA    | NA                   | NA | rs2109174 | 14513310 | 0.024                |
| rs12940030 | 17 | 14561016 | HS3ST3B1-<br>PMP22 | т  | 0.71;<br>0.54 | 0.08;<br>0.06 | Lu et al. Nat<br>Genet 2013             | T/C | 0.65 | 0.15  | 0.21                 | Y  | rs2109174 | 14513310 | 0.024                |
| rs10453441 | 22 | 46363739 | WNT7B              | G  | 0.45          | -4.35         | Gao et al. Hum<br>Mol Genet<br>2016     | G/A | 0.64 | -0.39 | 5.9×10 <sup>-4</sup> | Y  | rs9330813 | 46364161 | 1.7×10 <sup>-7</sup> |

Abbreviations:  $\beta$ , beta; Chr, chromosome; Freq, frequency; A1/A2, allele 1 / allele 2.

A semicolon is used to separate multiple frequencies and betas in previously reported SNPs. For this Indian dataset, the frequency for allele 1 is given and is modeled as the effect allele. The direction of effect was consistent for most SNPs. Most SNPs within the most significant hits ±100 kb region of reported SNPs show a p value of <0.05. SNP positions are according to GRCh37/hg19.





















**Supplementary Figure 1**. South Indian pedigrees investigated in this study. Individuals marked with a dot inside the symbol have clinical trait measurements and are genotyped. Double lines between individuals represent consanguineous marriages.



Supplementary Figure 2. Genome-wide association results for CCT in the South Indian pedigrees. The results for the 1,223,314 SNPs after data cleaning are plotted as  $-\log_{10}(p)$  by genomic position. The horizontal red line indicates the formal threshold for genome-wide significance at  $p = 5.0 \times 10^{-8}$ . The horizontal blue line denotes suggestive evidence of association at  $p = 1.0 \times 10^{-5}$ . The top SNP, rs9330813 is indicated by the arrow.



Supplementary Figure 3. Q-Q plot of the genome-wide p values for CCT in the South Indian pedigrees. The results for the 1,223,314 SNPs after data cleaning are plotted as observed  $-\log_{10}(p)$  by expected  $-\log_{10}(p)$ . The diagonal red line indicates the observed  $-\log_{10}(p)$  equals to the expected  $-\log_{10}(p)$ . The genomic inflation factor is 1.05.

| Population                           | Ν                       |                     |                                |             |      |             | Imputatio | n β [95%Cl]               |
|--------------------------------------|-------------------------|---------------------|--------------------------------|-------------|------|-------------|-----------|---------------------------|
| Indians                              |                         |                     |                                |             |      |             |           |                           |
| SINDI                                | 1520                    |                     |                                | ⊢∎_         |      |             | 1         | -2.63 [ -4.96 , -0.30 ]   |
| South_Indians(This study             | y) 195                  | ŀ                   | -                              |             |      |             | 1         | -11.88 [ -18.28 , -5.48 ] |
| Summary Indians (I <sup>2</sup> = 86 | 6%, Q = 0.              | (800                |                                |             | -    | P = 9e-04   |           | -3.71 [ -5.90 , -1.52 ]   |
| Latinos                              |                         |                     |                                |             |      |             |           |                           |
| MAGGS                                | 4038                    |                     |                                | <b>⊢</b> ∎1 |      | P = 7.2e-09 | 1         | -4.35 [ -5.82 , -2.88 ]   |
| Europeans                            |                         |                     |                                |             |      |             |           |                           |
| CROATIA-Korcula                      | 848                     |                     |                                | <b>I</b>    |      |             | 0.52      | 0.45 [ -4.42 , 5.32 ]     |
| CROATIA-Split                        | 782                     |                     | H                              |             |      |             | 0.76      | -4.24 [ -8.06 , -0.42 ]   |
| ORCADES                              | 1096                    |                     |                                | <b></b>     | -    |             | 0.82      | -0.81 [ -3.84 , 2.22 ]    |
| TwinsUK                              | 2080                    |                     |                                | H           | -    |             | 0.51      | -1.41 [ -4.49 , 1.67 ]    |
| VHS                                  | 2105                    |                     |                                | <b>⊢</b> ∎  | •    |             | 1         | -2.20 [ -4.39 , -0.01 ]   |
| Summary Europeans (I <sup>2</sup>    | = 0%, Q =               | : 0.56)             |                                | -           | -    | P = 0.009   |           | -1.81 [ -3.18 , -0.44 ]   |
|                                      |                         |                     |                                |             |      |             |           |                           |
| Summary for All Populati             | ons (l <sup>2</sup> = 6 | 9%, Q = 0.04)       |                                | -           |      | P = 2.2e-11 |           | -3.11 [ -4.02 , -2.20 ]   |
| Summary for Populations              | s with Impu             | utation Score > 0.7 | (I <sup>2</sup> = 49%, Q = 0.1 | (4)         |      | P = 5.3e-12 |           | -3.43 [ -4.40 , -2.45 ]   |
|                                      |                         |                     |                                |             | İ    | I           |           |                           |
|                                      | -20.00                  | -15.00              | -10.00                         | -5.00       | 0.00 | 5.00        | 10.       | 00                        |

Effect of G allele at WNT7B rs10453441 on CCT

Supplementary Figure 4. Meta-analysis for rs10453441 and CCT. Forest plot showing effect estimates for the South Indian pedigrees, as well as for the replication effort. Pooled estimates for  $\beta$  and 95% confidence interval (95%CI) were calculated by fixed effects, inverse variance weighting meta-analysis. Reduced evidence for association but similiar overall effects was observed if the meta-analysis was completed using the random effects model: P=1.0x10<sup>-4</sup>,  $\beta$  = -3.44, 95%CI: -5.21, -1.68. Individual dataset results are indicated by black squares and summary values are indicated by black diamonds. Abbreviations: MAGGS, Mexican American Glaucoma Genetic Study; SINDI, Singapore Indian Eye Study; ORCADES, Orkney Complex Disease Study; TwinsUK, UK Twin Study; VHS, Viking Health Study.



**Supplementary Figure 5.** *WNT7B* genomic region associated with ocular traits as annotated by ENCODE. The top SNP in this family-based South Indian study associated with CCT (rs9330813) and the top SNPs associated with corneal curvature and axial length in a recent Japanese study (Miyake et al., 2015) (rs10453441, rs200329677) as well as the top SNP associated with CCT in a Latino study (Gao et al., 2016) (rs10453441) fall within a 10Kb region in intron 1 (top panel). The lower panel shows the SNPs that flank a cluster of transcription factor binding sites including the top SNP in our study (rs9330813) and rs10453441, the top SNP in the other two studies. Of these, rs9723267, which is in complete linkage disequilibrium with rs9330813, overlaps a CTCF/Rad21 binding site (red arrow) that may have enhanced activity because of the presence of a nearby TBP binding site (blue arrow) (Roy et al., 2015). The region also includes multiple DNasel sites that in most cell types are annotated as enhancers by ENCODE. Cell types: GM12878 (B-lymphocyte, lymphoblastoid), H1-hESC (embryonic stem cells), K562 (leukemia), HepG2 (hepatocellular carcinoma), HUVEC (umbilical vein endothelial cells), HMEC (mammary epithelial cells), HSMM (skeletal muscle myoblasts), NHEK (epidermal keratinocytes), NHLF (lung fibroblasts). ENCODE annotation: Bright Red, Active Promoter; Light Red, Weak Promoter; Purple, Inactive/poised Promoter; Orange, Strong enhancer; Yellow, Weak/poised enhancer; Blue, Insulator; Dark Green, Transcriptional transition and Transcriptional elongation; Light Green, Weak transcribed; Gray, Polycomb-repressed; Light Gray, Heterochromatin, low signal. Data is taken from a UCSC genome browser screen shot (http://genome.ucsc.edu).



Supplementary Figure 6. PheWAS plots for top SNPs associated with CCT in the South Indian population (rs9723267 and rs75159625, top panels ) and top SNPs associated with corneal curvature and axial length in the Japanese population (rs10453441 and rs2000329677, bottom panels). The association results for each measured trait (Supplementary Table 1) were plotted with the phenotypes (ocular traits) grouped along the x-axis and the –log10(P) value for association analysis on the y-axis. The phenotype group is indicated by the color of the graph point as indicated by the side panel. The lower grey dashed line indicates P = 0.05. The upper black dashed line indicates a single-SNP Bonferroni correction for 45 traits, P = 0.001 (0.05/45). Abbreviations: CCT, central corneal thickness; IOP, intraocular pressure measured by Goldman applantation; AXL axial length; K\_H, corneal curvature horizontal; K\_V, corneal curvature, vertical; Inferior, average retinal nerve fiber layer thickness in the inferior quadrant as measured by HRT (Heidelberg Retina Tomograph) and analyzed with the Moorfields regression analysis; Superior, average nerve fiber layer thickness in the superior quadrant as measured by the HRT and analyzed by using Glaucoma Probability Score (GPS). Other traits were not labeled in these figures due to limited space.



Supplementary Figure 7. CCT boxplot for three genotypes of top SNP rs9330813 in the South Indian population. The CCT boxplot for three genotypes of top SNP rs9330813 was consistent with an additive model in this South Indian dataset.

#### SUPPLEMENTARY METHODS

#### Measurement of ocular quantitative traits:

After informed written consent, 45 selected ocular quantitative traits (Supplementary Table 1) were measured in individuals enrolled in this study. Not all traits could be measured in every enrolled subject and the N (number) of subjects with the measured trait is indicated in Supplementary Table 1. The traits are grouped as biometric parameters (6 traits), corneal parameters (5 traits), optic nerve parameters (29 traits) and refractive error parameters (5 traits). For all traits measurements were made separately for each eye and then the average value of both eyes was used for the analyses. Methods to measure each trait are described in the following sections:

**Biometric traits**: **Axial length** (AXL) was measured using Digital Biometry Reading (DBR; Ocuscan, Alcon Laboratories Inc, Fort Worth, TX). **Anterior chamber depth** (ACD) was graded using the modified van Herrick technique using a set of reference images and slit lamp biomicroscopy. **Intraocular pressure** (IOPg) was measured using the Goldman applanation tonometer (Zeiss AT 030 Applanation Tonometer, Carl Zeiss, Jena, Germany) while seated at the slit lamp. IOP measurements were also obtained from the Ocular Response Analyzer (Goldmann-correlated intraocular pressure (IOPgc, mm Hg) and Corneal compensated intraocular pressure (IOPcc, mm Hg). **Lens thickness** (Lens) was measured using the Pentacam (Oculus, Inc., Lynnwood, WA).

<u>Cornea traits</u>: Central corneal thickness (CCT) was measured by an ultrasound pachymeter (Dicon P55; Paradigm Medical Industries Inc., Salt Lake City, UT). Corneal curvature (CC, K\_H and K\_V) was evaluated using the Javal–Schiotz keratometer (Haag-Streit AG, Köniz, Switzerland). Corneal hysteresis (CH) and corneal resistance factor (CRF) were measured by Ocular Response Analyzer (ORA; Reichert Inc., Depew, NY).

<u>Optic nerve traits</u>: VCDR (vertical cup-to-disc ratio) was graded using fundus photography (Zeiss FF450plus fundus camera, Carl Zeiss, Jena, Germany). Inferior, superior and TSNIT (temporal, superior, nasal, inferior, temporal) nerve fiber layer thickness was measured by Glaucoma Diagnostics (GDx; Carl Zeiss Meditec AG, Jena, Germany). Other optic nerve parameters were measured by Heidelberg Retina Tomograph (HRT; Heidelberg Engineering, Dossenheim, Germany). All HRT measurements were analyzed using Moorfields Regression Analysis (MRA) except cup size, cup depth, rim steepness and retinal nerve fiber layer curvature, which were analyzed using Glaucoma Probability Score (GPS).

<u>Refractive error traits</u>: The ETDRS distance acuity chart was used to measure visual acuity. **Objective refractive error** measurements (Objective refraction cylindrical distance, ORCD; Objective refraction spherical distance, ORSD) were made using the autorefractor (Topcon RM A 7000 Auto refractometer) and by retinoscopy (Optotechnik, Herrsching, Germany). Subjective refractive error measurements were made by manual refinement of the objective measures using trial frame and lenses.

#### Collection of samples and genotyping for the replication cohorts:

Three of European studies used for replication, CROATIA-Korčula, CROATIA-Split, and ORCADES, are healthy adult volunteers from the Croatian island of Korčula, the Croatian urban city of Split and the northern isles of Orkney (Orkney Complex Disease Study, ORCADES, Scotland, UK). Samples were collected and genotyped as previously described (Vitart et al., 2010). Genotype data imputed using IMPUTE2 to the 1000 genomes phase 1 (integrated variant set- March 2012 release) was used for replication. Imputation scores for the SNPs investigated (rs9330813 and rs10453441) were >.50 for each dataset. VHS, the Viking Health Study, is a cross-sectional study of the UK population from the Northern isles of Shetland with eye examination

#### and measurements identical to those carried out in the ORCADES study

(http://www.orcades.ed.ac.uk/orcades/VHSS.html). 2179 individuals genotyped with the

HumanOmniExpressExome-8v1 genome-wide Illumina array passed quality controls (no mismatch between reported and genotyped gender, genotyping call per individual > 97%, with genotyping call per SNP > 98% and variants with large departure from Hardy-Weinberg equilibrium removed). The variant rs10453441 was present on the genotyping array, therefore data presented for VHS is from direct genotypes.

The Twins UK cohort was collected and genotyped as previously described (Lu et al., 2013). Genotype data imputed using IMPUTE2 to the 1000 genomes phase 1 (integrated variant set- March 2012 release) was used for replication. Imputation scores for the SNPs investigated (rs9330813 and rs10453441) were >.500.

The Singaporean Indian population (SINDI) was collected and genotyped as previously described (Vithana et al., 2011). SNPs rs9330813 and rs10453441 were not included in the Illumina Human610-Quad platform used for genotyping and the *WNT7B* genomic region imputed poorly in this population. For replication for this study a TaqMan assay was designed for rs10453441 and successfully used for genotyping. A similar assay for rs9330813 failed design.

#### REFERENCES

Gao X, Nannini DR, Corrao K, Torres M, Chen YI, Fan BJ, Wiggs JL; International Glaucoma Genetics Consortium., Taylor KD, Gauderman WJ, Rotter JI, Varma R. Genome-wide association study identifies WNT7B as a novel locus for central corneal thickness in Latinos. Hum Mol Genet. 2016 Sep 20. pii: ddw319. [Epub ahead of print]

Miyake M, Yamashiro K, Tabara Y, Suda K, Morooka S, Nakanishi H, Khor CC, Chen P, Qiao F, Nakata I, Akagi-Kurashige Y, Gotoh N, Tsujikawa A, Meguro A, Kusuhara S, Polasek O, Hayward C, Wright AF, Campbell H, Richardson AJ, Schache M, Takeuchi M, Mackey DA, Hewitt AW, Cuellar G, Shi Y, Huang L, Yang Z, Leung KH, Kao PY, Yap MK, Yip SP, Moriyama M, Ohno-Matsui K, Mizuki N, MacGregor S, Vitart V, Aung T, Saw SM, Tai ES, Wong TY, Cheng CY, Baird PN, Yamada R, Matsuda F; Nagahama Study Group., Yoshimura N. Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat Commun. 2015 Mar 31;6:6689. doi: 10.1038/ncomms7689.

Lu Y, Vitart V, Burdon KP, Khor CC, Bykhovskaya Y, Mirshahi A, Hewitt AW, Koehn D, Hysi PG, Ramdas WD, Zeller T, Vithana EN, Cornes BK, Tay WT, Tai ES, Cheng CY, Liu J, Foo JN, Saw SM, Thorleifsson G, Stefansson K, Dimasi DP, Mills RA, Mountain J, Ang W, Hoehn R, Verhoeven VJ, Grus F, Wolfs R, Castagne R, Lackner KJ, Springelkamp H, Yang J, Jonasson F, Leung DY, Chen LJ, Tham CC, Rudan I, Vatavuk Z, Hayward C, Gibson J, Cree AJ, MacLeod A, Ennis S, Polasek O, Campbell H, Wilson JF, Viswanathan AC, Fleck B, Li X, Siscovick D, Taylor KD, Rotter JI, Yazar S, Ulmer M, Li J, Yaspan BL, Ozel AB, Richards JE, Moroi SE, Haines JL, Kang JH, Pasquale LR, Allingham RR, Ashley-Koch A; NEIGHBOR Consortium., Mitchell P, Wang JJ, Wright AF, Pennell C, Spector TD, Young TL, Klaver CC, Martin NG, Montgomery GW, Anderson MG, Aung T, Willoughby CE, Wiggs JL, Pang CP, Thorsteinsdottir U, Lotery AJ, Hammond CJ, van Duijn CM, Hauser MA, Rabinowitz YS, Pfeiffer N, Mackey DA, Craig JE, Macgregor S, Wong TY. Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat Genet. 2013 Feb;45(2):155-63. doi: 10.1038/ng.2506.

Roy S, Siahpirani AF, Chasman D, Knaack S, Ay F, Stewart R, Wilson M, Sridharan R. A predictive modeling approach for cell line-specific long-range regulatory interactions. Nucleic Acids Res. 2015 Oct 15;43(18):8694-712. doi: 10.1093/nar/gkv865.

Vitart V, Bencić G, Hayward C, Skunca Herman J, Huffman J, Campbell S, Bućan K, Navarro P, Gunjaca G, Marin J, Zgaga L, Kolcić I, Polasek O, Kirin M, Hastie ND, Wilson JF, Rudan I, Campbell H, Vatavuk Z, Fleck B, Wright A. New loci associated with central cornea thickness include COL5A1, AKAP13 and AVGR8. Hum Mol Genet. 2010 Nov 1;19(21):4304-11. doi: 10.1093/hmg/ddq349.

Vithana EN, Aung T, Khor CC, Cornes BK, Tay WT, Sim X, Lavanya R, Wu R, Zheng Y, Hibberd ML, Chia KS, Seielstad M, Goh LK, Saw SM, Tai ES, Wong TY. Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum Mol Genet. 2011 Feb 15;20(4):649-58. doi: 10.1093/hmg/ddq511.