Supplemental tables and figures

A regulatory RNA is involved in RNA duplex formation and biofilm regulation in

Sulfolobus acidocaldarius

Alvaro Orell, Vanessa Tripp, Victor Aliaga-Tobar, Sonja-Verena Albers, Vinicius Maracaja-

Coutinho, Lennart Randau

Table S1. Oligonucleotides used in this study

Primer no.	Sequence 5'to 3	description
KO-R-OLfor	GGTGGTTCACATTATTTCTATAGGTCTATTTTTA	Forward primer for upstream region $\Delta RrrR$
	TTTG	with Apal restriction site
KO-R-for	GATGTCGACTATGAATCACTTAATAGTAGTCACT	Reverse primer for upstream region $\Delta RrrR$,
	TTAAC	overlapping region
KO-R-rev	GATGGATCCCTATTTATTTCCTTAAAGAAATCAA	Forward primer for downstream region
	GTAAAC	$\Delta RrrR$, overlapping region
KO-R-OLrev	CACAAATAAAAATAGACCTATAGAAATAATGTGA	Reverse primer for downstream region
	ACCACC	∆ <i>RrrR</i> with <i>Bam</i> HI
	CTATTTTTACGTTCTAAACTAGTTTAAAAAGGGA	
558	AAAAAGAAAAAATAACTTTGAGCAGTTCTAG	Δsaci0301 forward for pyrEF exchange
	AACACACACCAGTTATATTCTGATAATGTATAAT	
	ATAACTTGGTGATTAAAGACCGGCTATTTTTCA	
559	С	Δsaci0301 reverse for pyrEF exchange
548	CACTGTCCACAGCTCAATTC	saci0301 forward qPCR primer
549	CTTCCAGGCAATGGCCAGAC	saci0301 reverse qPCR primer
560	AAGGTGATGAAAGGATAAGGG	saci0567 forward qPCR primer
561	TTAGTAAGTGGTATAACTGTAGCTG	saci0567 reverse qPCR primer
562	CTGGTGAACAAACCGCTCAA	saci1357 forward qPCR primer
563	ACCGAGCCCACCTATATAGTAA	saci1357 reverse qPCR primer
564	AGTCTACAGCAAGGTCCAAAG	Saci0667 forward qPCR primer
565	ACTACTCCACTCGCAAGAAAG	Saci0667 reverse qPCR primer
566	CCTCCTGATAGCTTCTCTCCTA	Saci0688 forward qPCR primer
567	TGCAGTTAGGAAAGCAGTTAGA	Saci0688 reverse qPCR primer
568	CGACTTCATCGTGCTCATCTAT	Saci0906 forward qPCR primer
569	TGCATTGATGAGGCACTAGAC	Saci0906 reverse qPCR primer
550	GAAGGAGCAACAGCAGTCTG	RrrR(+) forward qPCR primer
555	AAATAAAAATGGTGGTTCAC	RrrR(+) reverse qPCR primer
556	TAAAAATAGACCTATATGGC	RrrR(-) forward qPCR primer
599	GTCCACCTGATTGTTGACC	RrrR(-) reverse qPCR primer
		Forward primer for cloning RrrR(+) into
552	GTACCATGGATAAAAATAGACCTATATGGC	pSVA1431 with Ncol restriction site
		Reverse primer for cloning RrrR(+) into
553	GTACGGCCGATAGAGAATTCTATCCACGAC	pSVA1431 with Eagl restriction site
	TTCTTCTTCTTTGCCATATAGGTCTATTTTTATTC	Forward primer for cloning RrrR(-) into
	GGCCGGACAGACTTTATCACGCCCG	pSVA1431 with Eagl restriction site (inverse
606		PCR)
	GGAGCAACAGCAGTCTGGTCAACAATCAGGTG	Reverse primer for cloning RrrR(-) into
	GACCATGGTTAACTTAATCACG	pSVA1431 with Ncol restriction site (inverse
601		PCR)
	GTACCGCGGAAAAAAATTATCTTGAGTTAAAAAT	Forward primer for cloping PrrP(_) promoter
	AAAAATGGTGGTTCACATTATTTCTTTTATGTAC	sequence into nSVA1431(LacS reporter
614	TCATTTCCAAATAGCTT	system) with SacII restriction site

	GTACCGCGGAAAAAAATTATCTTGAGTTGGGGG	Forward primer for cloning RrrR(-) mutated
	TGGGGGTGGTGGTTCACATTATTTCTTTTATGTA	promoter sequence into pSVA1431(LacS
615	CTCATTTCCAAATAGCTT	reporter system) with SacII restriction site
	GTACCGCGGAATTTTTATGTGAGTATGGCTTAAT	Forward primer for cloning RrrR(+) promoter
	AACTTGTTATTTCACAAATAAAAATAATGTACTCA	sequence into pSVA1431(LacS reporter
616	TTTCCAAATAGCTT	system) with SacII restriction site
	GTACCGCGGAATTTTTATGTGAGTATGGCGGGG	Forward primer for cloning RrrR(+) mutated
	GGGCTTGTTATTTCACAAATAAAAATAATGTACT	promoter sequence into pSVA1431(LacS
617	CATTTCCAAATAGCTT	reporter system) with SacII restriction site
L7PRHAnew	AGCCAACGGCCGTTAGGCGTAGTCTGGAACAT	Reverse primer for cloning RrrR(+) and
	CGTAAGGGTAGTGCCTTAATGGCTTTAC	RrrR(-) promoter sequences into
		pSVA1431(LacS reporter system) with Eagl
		restriction site

Table S2. Strains and plasmids used in this study

Strain/plasmid	Genotype	Source/reference
Strain		
E. coli		
DH5a	Escherichia coli K-12 cloning strain, F– Φ 80/acZ Δ M15 Δ (lacZYA-	Gibco
	$araF$) U169 recA1 endA1 hsdB17 (rK- mK+) nhoA sunF44 λ -	
	thi 1 gurA06 rolA1	
504004		New Feederal
ER1821	F- ginv44 e14-(McrA-) ffDD1 reiA1 endA1 spo11	New England
		BIOIADS
S acidocaldarius		
	Delation of numEE (01,412 hn) in Stanidacaldarius	Wagner et al. (2012)
	Deletion of pop coding DNA BrrD in MW/001	this study
		this study
	Deletion of seciologi	this study
ACETUZ		this study
ACE103	MW001 carrying pACE113	this study
ACE104	MW001 carrying pACE114	this study
ACE105	MW001 carrying pACE115	this study
ACE106	MW001 carrying pACE116	this study
ACE107	ACE100 carrying pACE106	this study
ACE108	ACE100 carrying pACE107	this study
ACE109	MW001 carrying pACE106	this study
ACE110	MW001 carrying pACE107	this study
Plasmid		
Tidoffild		
nSV/4406	Gene targeting plasmid pGEM-T Easy backhope pyrEcassette of S	Wagner et al
pov7 4 00		(2012)
nSVA1431	nRN1-based shuttle vector with maltose inducible promoter and lacS	Wagner et al
	reporter gene of S. solfataricus	(2012)
n\/T135	In-frame deletion of <i>BrrR</i> cloned into nSVA406 with Anal. Pstl	this study
p4CE106	RrrR sense strand cloned into nSV/A1431 with Ncol Fag	this study
pACE100	RrrR antisense strand cloned into nSVA1431 with Ncol Fag	this study
p/(0E107	RrrR sense strand promoter sequence cloned into pSVA1431 with	this study
proento	Sacli Fagi	the study
nACE114	BrrR antisense strand promoter sequence cloped into pSVA1431 with	this study
proenti	Sacli Fagi	the olddy
pACE115	RrrR sense strand mutated promoter sequence cloned into pSVA1431	this study
	with Sacli Fagi	and olddy
nACE116	RrrR antisense strand mutated promoter sequence cloped into	this study
	nSVA1431 with SacII Fag	and olday

ncRNA ID	Genome co	oordinates	Length (nt)	RPKM		B vs P (Log2)
	start	end		Planktonic	Biofilm	
ncRNA_529	1,638,356	1,638,576	220	7	311	5.39
ncRNA_332	1,042,083	1,042,172	89	23	187	2.94
ncRNA_636	1,765,999	1,766,204	205	29	167	2.44
ncRNA_322	995,929	996,022	93	14	53	1.83
ncRNA_454	1,510,205	1,510,377	172	10	30	1.50
ncRNA_742	1,900,049	1,900,241	192	10	30	1.50
ncRNA_530	1,639,129	1,639,360	231	13	37	1.42
ncRNA_792	2,010,283	2,010,091	192	13	37	1.42
ncRNA_468	1,533,841	1,534,021	180	47	131	1.39
ncRNA_668	1,800,041	1,800,283	242	23	61	1.32
ncRNA_496	1,581,340	1,581,520	180	20	53	1.32
ncRNA_664	1,797,848	1,798,017	169	10	26	1.29
ncRNA_127	417,429	417,671	242	35	85	1.19
ncRNA_239	805,730	805,902	172	428	1029	1.18
ncRNA_634	1,764,515	1,764,604	89	19	45	1.16
ncRNA_593	1,648,780	1,649,002	222	7	16	1.10
ncRNA_317	972,593	972,683	90	11	25	1.10
ncRNA_700	1,825,621	1,825,765	144	53	119	1.08
ncRNA_533	1,643,581	1,643,819	238	17	38	1.07
ncRNA_592	1,716,356	1,716,445	89	10	22	1.05
ncRNA_61	248,056	248,275	219	30	64	1.01
ncRNA_795	2,019,138	2,019,339	201	15	32	1.01
ncRNA_319	986,262	986,440	178	29	15	-1.04
ncRNA_83	304,215	304,314	99	683	335	-1.12
ncRNA_804	2,032,119	2,032,246	127	66	30	-1.23
ncRNA_826	2,107,679	2,107,904	225	26	11	-1.33
ncRNA_91	331,519	331,631	112	104	44	-1.33
ncRNA_760	1,949,554	1,949,876	322	1127	441	-1.44
ncRNA_475	1,547,152	1,547,302	150	47	17	-1.56

Table S3. Differentially expressed ncRNAs. Expression of identified ncRNAs in biofilm versusplanktonic (B vs P) cells.

Table S4. Biofilm volume quantitation. Biofilm volumetric determinations were performed in three biological replicates and 9 images at different microscopy fields were recorded for each replicate. Biofilm volumes are expressed as $\mu m^{3*}10^6$.

Strain	Biofilm volume (µm ³ * 10 ⁶)	Biofilm thickness (µm)	DAPI (%)	ConA (%)	IB4 (%)
MW001	4.14 ± 0.57	71.9 ± 9.9	57.7	23.1	19.2
ΔRrrR	2.51 ± 0.22	43.6 ± 3.8	44.0	35.5	20.5
ΔRrrR + p_RrrR (+)	4.05 ± 0.52	70.3 ± 9.0	54.7	28.6	16.7
ΔRrrR + p_RrrR (-)	2.48 ± 0.29	43.0 ± 5.0	41.8	39.8	18.4
MW001 + p_RrrR (+)	5.03 ± 0.41	87.3 ± 7.1	26.0	58.4	15.6
MW001 + p_RrrR (-)	3.40 ± 0.36	59.0 ± 6.2	46.0	33.9	20.1

Table S5. *In silico* prediction of the potential target mRNAs of ncRNA RrrR. The bioinformatics tool CopraRNA was used to identify RrrR-mRNA interactions. The ten highest-ranking hits are shown. Differential gene expression ratios (fold change (FC) or non-significant (n.s.)) are indicated for each potential target gene between biofilm-associated (B) cells and planktonic (P) cells.

Rank	CopraRNA p-value	Locus	Energy (kcal/mol)	Position mRNA	Position ncRNA	Annotation	FC (B/P)
1	4.03e-05	saci0567	-18.43	247-272	16-43	Hypothetical protein	2.19
2	6.78e-04	saci1357	-16.92	350-382	19-45	Nucleotide-binding protein, UspA family	n.s
3	7.02e-04	saci0765	-13.45	217-229	27-39	Predicted nucleotidyltransferase	n.s
4	8.64e-04	saci0667	-16.75	219-259	24-52	HerA helicase	n.s
5	9.03e-04	saci0449	-13.51	350-377	26-53	Transcriptional regulator	2.86
6	1.23e-03	saci0688	-18.82	266-291	26-48	Ribosomal protein S12	n.s
7	1.84e-03	saci0906	-17.51	244-267	17-41	ATPase involved in DNA replication HolB, large subunit	n.s
8	1.90e-03	saci2353	-14.67	217-246	20-48	Transcriptional regulator	n.s
9	1.23e-03	saci0301	-16.70	24-54	16-39	Predicted membrane protein	21.03
10	1.953e-03	saci1430	-15.06	358-370	26-38	Valyl-tRNA synthetase	n.s

Figure S1. Northern blot analysis of RrrR transcripts. Small RNA molecules of *S. acidocaldarius* planktonic (P) or biofilm (B) cells were separated on denaturing polyacrylamide gels and hybridized with radioactively labeled probes complementary to the RrrR(-) or RrrR(+) duplex region.

Figure S2 RNaseR exonuclease. (A) Radiolabeled single strand (ss) RrrR(+) and radiolabeled double-stranded (ds) RrrR were subjected to RNaseR digestion assays. 20U of RNaseR (Epicentre) or 5 µg of total protein cell extract were added to the assays. Digestion products were visualized on a 10 % denaturating polyacrylamide gel. The sizes (in nucleotides) of the radiolabeled RNA ladder bands are indicated.

Figure S3. RNA stability assays. (A) Transcripts of radioactively labeled ssRrrR(+) were incubated with different cell extracts at $37^{\circ}C$ (*E. coli*) or $75^{\circ}C$ (*S. acidocaldarius*) for the indicated time. The addition of excess unlabeled RrrR(+) transcripts (molar ratio 1:1, 2:1, 10:1, 100:1) prevents ssRrrR degradation and upshift formation by RNA binding proteins (e.g. LSm proteins, see Figure S7). (B) Transcripts of radioactively labeled Saci0301 mRNA were incubated with different cell extracts at $37^{\circ}C$ (*E. coli*) or $75^{\circ}C$ (*S. acidocaldarius*) for the indicated time.

Figure S4

Figure S4. Planktonic growth of the *S. acidocaldarius* RrrR deletion mutant strain (Δ RrrR). A shaking cultured RrrR deletion mutant strain was sampled at the indicated time points to measure cell density at OD₆₀₀. Growth of the reference strain MW001 (black curve) and the markerless deletion mutant Δ RrrR (green curve) was compared. Each point represents the mean of 3 biological replicates.

Figure S5

Figure S5. Complementation of the Δ **RrrR deletion mutant.** Transcript levels of both RrrR(+) (blue bar) and RrrR(-) (red bar) were quantified by qRT-PCR after RNA isolation from the *S. acidocaldarius* RrrR deletion mutant strain (Δ RrrR) overexpressing either RrrR(+) or RrrR(-). Total RNA was isolated from cells grown as biofilms. Relative transcript expression was normalized to the internal control gene *sec*Y. The means and standard deviations of 3 biological replicates are shown.

Figure S6. Proposed interactions between RrrR(+) and the mRNA of Saci_0301. Potential mRNA targets for RrrR(+) were predicted *in silico* using the CopraRNA tool (34). The indicated seven nucleotide stretch was exchanged to assess duplex formation in the presence of recombinant LSm1/LSm2 proteins (Fig. 3B).

Figure S7

Figure S7. LSm binding assays. EMSAs demonstrate binding of RrrR(+) transcripts to 500 nM of recombinant LSm1-LSm2 complexes. A 2-fold excess of unlabeled saci0301 mRNA or a mRNA variant with a mutation of the predicted interaction region (mut, Fig. S4) was added to the reaction. A lower shift was observed for the native mRNA, suggesting that RrrR(+) – mRNA duplexes are formed. Reaction mixtures were separated by 8 % native PAGE.