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Distribution of transcription initiation times for an arbitrary promoter architecture 
In the following, we formulate a general theory of transcription initiation with an arbitrary 
promoter architecture to connect the distribution of times between transcription initiation 
events (or, equivalently, the distribution of distances between transcribing RNA polymerases 
along a gene) with mechanisms of transcription initiation. We assume that the promoter may 
exist in N different biochemical states (as defined by the different binding states of transcription 
factors, DNA conformations, etc.), and stochastically transitions between these states, causing 
fluctuations in the initiation rate. This stochastic initiation dynamics is followed by RNA 
elongation for which we assume that every RNA polymerase (RNAP) molecule moves along the 
gene at a constant speed v.  
 
For this model we compute the inter-RNAP distance distribution along a gene of interest. In order 
to find the distances between adjacent RNAP molecules, we first compute the distribution of 
times between transcription initiation events q1(t) using a master equation approach (1–3). The 
rate of transitions from the m-th to the n-th state is km,n. The rate at which an RNAP molecules 
escape the m-th promoter state leading to transcription initiation is km,esc. To obtain a master 
equation for the general N-state case, we consider the probability Pm that the promoter is in the 
state m, at time t, given that no initiation event has taken place between 0 and t. The master 
equation for Pm is given by 
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This accounts for all the ways by which the fraction of promoters in state m, which have not 
initiated transcription from 0 to time t, can change over the time interval (t, t + dt). Hence for all 
the promoter states the set of master equations are given by 
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Where P = (P1,P2, …, PN), K and R are the transition and transcription initiation rate matrices 
respectively. We can solve the above set of master equations above to get, 
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In order to compute the probability that two initiation events are separated by a time t, we 
compute the contribution of each promoter state to this quantity. For example, the probability 
that two initiation events are separated by time t, and the second initiation event happens while 

the promoter is in the state m is given by ,m esc mk P dt . This is the product of the probability Pm that 

the promoter is in the m-th state at time t (and no other transcription events have happened 

before this time), and the probability ,m esck dt  that an RNAP molecule escapes the promoter 

between t and t + dt while the promoter is in state m. The total probability that an initiation event 
happens in the time interval (t; t + dt) is simply the sum over all N states of the probability that 
this event occurs while the promoter is in any of these states: 
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To find Pm(t) from Eqn. 3 we need to specify the initial condition for P i.e. P(t= 0). At time t = 0 
there is an initiation event and that can take place from any promoter state. If we wait long 
enough, such that the system samples all the different promoter states, the probability that an 
initiation event occurs from a given promoter state should only depend on the steady state 
probability of being in that particular state and the rate of escape into elongation from that state. 
Hence it is given by 
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Where ss
mP is the steady state probability for the promoter to be in the m-th state. Steady state 

probabilities are given by 
                                                                                     KP=0                                                                         (6) 

Furthermore, there is the normalization condition, 
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We want to find the probability distribution p1(x) of inter-polymerase distances along the gene. 
Assuming a constant speed of elongation, p1(x) is essentially the imprint of the distribution of 
times between transcription initiation events. This allows for a very simple relationship between 
the inter-polymerase distance distributions and distribution of times between initiation events 
which is given by, 
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We use this equation to compare our theory with experiments which measure the inter-
polymerase distance distributions along a gene.  
 



Distribution of transcription initiation times for different models of initiation  
We apply this general theoretical framework to obtain the probability distributions of initiation 
times and the inter-polymerase distance distributions (Eqns. 4 and 8), for different promoter 
architectures described below. 
 
Two limiting steps model 
The two limiting steps model is described in Fig. 2B. In this model, initiation happens in two 
sequential steps: the rate of RNAP loading on to the promoter occurs with rate kLOAD, followed by 
RNA polymerase escaping the promoter leading to an initiation event at a rate kESC   (4). The 
relevant master equations are in this case:  
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Using Eqn. 4,5 and 6, we can obtain the distribution of times between successive transcription 
initiation events, which is given by, 
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Using Eqn. 8 and 10, we find the distribution of inter-RNAP initiation events to be 
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where we have also taken into account the time delay 30/v, which is the time it takes for the 
polymerase to clear the promoter, which is 30bp in length.  
To find the initiation rate, we consider the different states of the promoter only and how they 
evolve in time. When an RNAP molecule initiates transcription by escaping the promoter, it goes 
back to state 1. Hence the master equations for the promoter states are given by 
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We get the steady state solution for P1 and P2 by setting the left sides of these two equations to 
zero. Then, from Eqn. 7 the transcription initiation rate is 
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When we include the time to clear the promoter 𝜏clear, the effective initiation rate becomes 
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When all the rates are very slow 𝜏CLEAR becomes negligible. 
 
Dead-end complex model 
Dead-end complex model is described in Fig. 4A. This class of model considers the formation of 
a long-lived non-productive initiation complex at the promoter by RNAP (5, 6). After binding the 
promoter at a rate kLOAD, each RNAP can initiate transcription at a rate kESC or make a dead-end 
complex at a rate kDEAD. These dead-end complexes are unproductive and are removed at a rate 
kOFF.  
 
The master equations for this model are given by, 
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Using Eqn. 4, we find the inter-initiation time distribution, which is 
                                                                           1 2( ) .ESCq t k P                                                                    (16) 

The initiation rate is then obtained using Eqn. 7 and 15 
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When we include τclear , the average initiation rate using Eqn. 15, is given by  
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DNA supercoiling model 
This model is described in Fig. 4B where RNAPs are recruited cooperatively in the supercoiled 
state of the promoter. RNAP molecules are loaded on to the promoter at a rate kLOAD

LOW. After 
RNAP initiates transcription, at a rate kESC, it leaves the promoter DNA in a supercoiled state and 
subsequent loading of RNAP polymerases at the promoter occurs at a faster rate kLOAD

HIGH. The 
rate of relaxation of the supercoiled state is kRELAX. Master equations for this case are: 
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As before, using equation Eqn. 4 we get the distribution of inter-initiation times, 
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Using the same procedure as above, we find the average initiation rate to be,            
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ppGpp model 
The ppGpp model is described in Fig. 4C. As the number of ribosomal genes increases the rate of 
ribosomal RNA production goes up. This triggers the production of `control molecules' (e.g. 
ppGpp) which then reduce the initiation rate by modulating the promoter-RNAP interactions (7). 
ppGpp regulates the initiation process by converting the active promoter-RNAP complexes into 
inactive ones. It is described by the same kinetic scheme as the dead-end complex model but 
with a critical difference, namely in this case it is the rate of ppGpp binding to the RNAP-promoter 
complex (red arrow in Fig. 4C) and not the rate of RNAP loading on to the promoter is tuned as 
the copy number of ribosomal genes is changed. Here we call the rate of inactivation of the RNAP-
DNA complex kON. To find the probability distribution of times between successive initiation 
events, as before we consider the following set of master equations, 
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Using Eqn. 4, we find the inter-initiation time distribution, which is given by, 
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When we include τclear , our average initiation rate, using Eqn. 7 and 22 , is given by  
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ON-OFF model 
We consider the canonical model of transcription initiation, the ON-OFF model (1, 8). In this 

model, the promoter switches between two states: an ON state, from which transcription 

initiation can occur, and an OFF state from which initiation does not occur. The two states might 

correspond to a free promoter and one bound by a repressor protein. The rate of transitioning 

from the ON to OFF state is kOFF and from OFF to ON is kON. The rate of initiation from the ON 

state is kESC. The probability distribution of times between successive initiation events, using Eqn. 

4, is given by, 
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where the constants k1, k2, A1 and A2 are given by  
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The mean and variance of the times between successive initiation events are given by  
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Effect of pausing on inter-polymerase distance distributions along the ribosomal genes 
Ribosomal genes are very highly transcribed and hence even very short pauses can cause traffic 
jam of RNAPs along the path. This can dramatically reduce the rate of ribosomal RNA production. 
In order to keep the transcription rate high the anti-termination system suppresses most of the 
ubiquitous pauses that are observed in vitro (9). Depending on the efficiency of the anti-
termination system pausing can play a vital role in the ribosomal RNA production process. 
Klumpp et al (9) did a systematic study of how RNAP pausing affects the process of transcription 
of ribosomal genes. We take their model and analyze the effect of RNAP pausing on the inter-
polymerase distance distributions using the Gillespie algorithm (10, 11). This allows us to find the 
conditions under which the inter-polymerase distance distribution remains largely unaffected by 
transcriptional pausing and hence provides an imprint of the initiation dynamics. 



 
Klumpp's model of RNAP pausing along the ribosomal genes 
Klumpp et al (9) modeled (see Fig. S1A) the transcription of RNAPs in dense traffic, using a 
stochastic cellular automaton model. In this model the RNAP molecules are represented as 
extended objects moving along a one-dimensional lattice. Sites of this lattice represent the 
individual bases of a DNA template. Each RNAP can be in either the active or paused state, 
independent of the state of other RNAPs. An active RNAP transcribes along the DNA by making a 
single nucleotide step forward at a stepping or elongation rate kEL. This can only happen when 
the next base is not blocked by the presence of another RNAP. During elongation, the active RNAP 
may switch stochastically to the paused state with a rate kP+. Here the assumption is that each 
RNAP can pause at any site along the DNA. A paused RNAP remains at the same site and it can 
switch back to the active state with rate kP-, so that the average duration of a pause is 1/ kP-. The 
rate at which the RNA polymerase molecules are loaded on the DNA template is kESC. The 
footprint of an RNAP molecule is L. Klumpp et al extended this model to include other effects of 
elongation such as backtracking of pauses or effects of rho dependent terminators. For our 
purposes though we don't take these into considerations as for a fully efficient anti-termination 
system the aforementioned factors do not matter (9). 
 
Klumpp’s model cannot explain the experimental observations when the operon number is 
increased 
In order to explain the observed effect of Nus factor deletions on the distribution of RNAP 
distances, Klumpp et al. assumed that it was the pause duration along the ribosomal genes that 
increased (9). Similarly, to see whether the model can explain the observed features of inter-
polymerase distance distributions when the operon number is increased, we change one of the 
parameters of the model at a time. We do this in such a way that the mean number of RNAPs 
along the gene, matches the number obtained in experiments (12) when the number of operons 
is increased. After tuning each parameter, we simulate the model to get the inter-polymerase 
distance distributions. Then we compare model predictions with the experimental results. In 
particular, we compare the intra-bunch mean distances and the average elongation rates of the 
RNAPs along the gene, both of which are measured to be constant in experiments (9). The 
parameter values are shown in Table.1. We did not change the pause frequency because no 
matter what value is chosen one cannot get the observed mean number of RNAPs along the gene 
when the operon number is increased. Our analysis shows that by changing one parameter at a 
time one cannot explain the experimental results as shown in Table.2. Also, we think it highly 
unlikely that multiple parameters of the pausing model change at the same time so as to keep 
both the elongation rate and intra-bunch mean fixed.  
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Effect of elongation on the inter-polymerase distance distributions  
The distribution of inter-polymerase distances is determined by both the initiation and 
elongation dynamics. Depending on the timescales of the two processes, they affect the 
distribution differently. If the initiation timescales are much longer than the elongation 
timescales the distribution of distances will remain largely unaffected by the elongation 
dynamics, as in the case of most of the mRNA promoters in E.coli. As the ribosomal genes are 
very highly transcribed the initiation and elongation timescales become comparable and hence 
the effect of elongation on the RNAP distance distributions can be significant (9). We use the 
model proposed by Klumpp et al.(9) to see the extent of the effect of ubiquitous pauses on the 
elongating RNAPs. For a fully efficient anti-termination system most of the ubiquitous pauses are 
suppressed except few short lived pauses (9). Using the Gillespie algorithm (10, 11), we find the 
inter-polymerase distance distributions for two cases. In the first case we take the parameters 
proposed by Klumpp et al.(9) to find the distribution. In the second case we take the same 
parameters for the pausing dynamics but with lower initiation and elongation attempt rates so 
as to match the experimental observations (12). We compare both distributions with the ones 
we compute above and in the main text, which are derived only from the initiation dynamics. For 
the higher initiation rate the coefficient of variation (CV = 1.14±0.35) which is defined as the 
standard deviation divided by the mean of the distribution deviates significantly from the 
exponential distribution. When the initiation rate is lower the distribution obtained from the 
simulations matches well with the exponential distribution (CV = 1.03±0.042) as expected from 
the initiation dynamics. The distributions are shown in Fig. S2. We conclude that the inter-
polymerase distribution as observed in the experiment (12) is a result of initiation dynamics and 
elongation has a very little effect on it. 
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Intra-
bunch 
mean 
RNAP 

distance 
in bps 

Gene 
copy 

number 

Experimental 
results 

 

Simulation results for different tuned parameters 

Pause duration 
(1/kP-) 

Elongation attempt 
rate (kEL) 

Initiation 
rate (kESC) 

7 72±5 73.4 73.4 73.4 

10 72±4 52±3 87±4 83±3 

Simulation results for different tuned parameters 

Parameters Seven genes Ten genes 

Elongation attempt rate (kEL) 100 bps/sec 160 bps/sec 

Pause duration (1/kP-) 0.23 sec 3 sec 

Initiation rate (kESC) 2 /sec 1.35 /sec 



RNAP 
elongation 

rate in 
bps/sec 

Gene 
copy 

number 

Experimental 
results 

 

Pause duration 
(1/kP-) 

Elongation attempt 
rate (kEL) 

Initiation 
rate (kESC) 

7 78 78 78 78 

10 78 50±5 120±6 90±5 

 
 
Estimating the number of ribosomal genes 
It is experimentally difficult to measure the exact copy number for pBR322-based plasmids (13). 
Hence, we make an estimate in the following way. Voulgaris et al.(12) observed in their 
experiments that the total number of transcripts produced in the cell remains constant even 
when the number of genes is increased by inserting plasmids. The initiation rate per operon goes 
down to keep to the total initiation rate fixed. The number of RNAPs per gene was reduced by 34 
percent. Hence the number of genes should  be n =7/0.66    ̴10. Using this number, we plot the 
data in Fig. 4. 
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Figure S1: Kinetic scheme of Klumpp's pausing model: Active RNA polymerase molecules 
elongate along the ribosomal gene by making single-nucleotide forward steps along the DNA 
template. These elongation steps occur with rate kEL, provided the site in front of the RNAP is not 
occupied by another RNAP. The rate at which RNAPs go to the paused state is kP+ and a paused 
RNAP returns to the active state with rate kP-, the loading rate of RNAPs along the DNA template 
is kESC. 
 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S2: Initiation versus elongation: A. Elongation limited regime: Distance distribution of 
RNAPs along the gene gets affected substantially by the elongation process when the initiation 
time scale becomes comparable to elongation time scales. Using Klumpp et al.’s model (9) with 
the parameters they use i.e. kESC = 2/sec, kEL = 100bps/sec, kP+ = 0.1/ sec, kP-= 4.55/sec, and L = 50 
bps we get the inter-polymerase distance distributions and compare it with an exponential 
distribution that one expects just from the initiation dynamics. It deviates quite a lot from an 
exponential distribution as suggested by the coefficient of variation. B. Initiation limited regime: 
With the same pausing dynamics but a lower initiation rate of kESC = 1/ sec and elongation attempt 
rate kEL = 80/sec as observed in experiments [3], the distribution inter-polymerase distances 



remains largely unaffected by the elongation dynamics. We compare it with an exponential 
distribution as expected from the initiation dynamics. Deviation of the distribution extracted 
from simulations from an exponential distribution is very small as suggested by the coefficient of 
variation. 
 

 

 

 

 

 

 

 

 

 


