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Figure S1. Metabolomic characterisation of leaf lettuce exposed to blueand red
LEDs. (a) Principal component analysis (PCA) score scatterof metabolite profiles

of lettuce samples in response to blue (B470, btumres), red (R680, red inverted



triangles) and fluorescent light (FL, empty triaew)l treatment. Metabolite profiles were
obtained by combining GC-MS (GC), LC-MS (LC) and-igd trap-MS (IT) data.k)
Orthogonal Projection to Latent Structures Discniamt Analysis (O2PLS-DA) score
scatter plot (upper part) and loading plot (botfmemt) of metabolite profiles of lettuce
samples by blue, red and FL treatment. Lettucelisgsdvere grown under continuous
blue, red or FL at 10@molih?S?! photosynthetic photon flux density (PPFD) for 1
week. Metabolites detected by GC, IT and LC arécatdd using yellow circles, green
rectangles and light blue triangles, respectivialyhe loading plot. Data matrix consists
of 19 samples and 235 identified/annotated pealtstiviee response factors as
represented by $M8.DA(1)—(3). Cross validation-gsial of variance (CV-ANOVA)

was performed to assess model reliability. CV-ANQM#alue = 3.52E-7. PC, principal
component; Pred PC, predictive principal component.

Figure S2. Box plots showing changesin the content of primary and secondary
metabolitesin thethird leaf of lettuce plants grown under variablelight quality for
different durations at PPFD of 300 pmol h2s* (P300).

Black horizontal lines in the boxes represent tieglisam, whereas the top and bottom of
the boxes represent the upper (75th) and lowetitgsa¢25th), respectively. Circles
show potential outliers. Six biological replicatesre performed per condition. Values
are normalised relative to those obtained fromréigoent light (FL) treatment (control).
a, sugars and sugar alcohb] TCA-cycle intermediate€, GIn, Glu and Aspd, stress-
related metabolite®, branched-chain and aromatic amino adidSer/Gly and sulphur
metabolismg, chlorogenate and flavonoid metaboligmcarotenoids and

chlorophyllg i, sesquiterpene lactones. G6P, glucog@esphate; FOP, fructose-6-

phosphate; 20G, 2-oxogluatarate; Gln, glutamine; Glu, glutamic acid; Asp, aspartic



acid; GABA, gamma-aminobutyric acid; Ser, serine; Gly, glycine; and OAS, O-
acetylserine.

Figure S3. Principal component analysis score scatter plots of leaf lettuce seedlings
grown under different light qualities and intensities. Metabolic responses of leaves
treated with &) short-term (1 day) andb) long-term (7 days) exposure to different light
qualities [FL, fluorescent light; B470, blue (470 nm); G510 and G520, green (510 and
524 nm, respectively); and R680, red (680 nm)] and intensities (P100 and P300). Each
symbol indicates an independent plant sample insitere scatter plot (biological
replicatesn = 6).

Figure $4. Venn diagrams showing differentially accumulated metabolites. We
analysed differentially accumulated metabolitesfithe lettuce samples irradiated
different wavelength LEDs and intensities. We idfexd significantly changes in
metabolite levels compared to FL condition usinyIMA "%, (@) Increased metabolites
and p) decreased metabolites after 7 days of irradiar@shown. Significance level
was set as follows, | ledgoldchange | >= 1, false discovery rate (FDR)G50FL,
fluorescent lamp.

Figure S5. Sequencing statistics.

Q20, quality scoref 20; total clean nucleotides = total reads 1 x read 1 size + total
reads 2 x read 2 sizes.

Figure S6. Venn diagram representing differentially expressed genes (DEGS)

over lapping among the samplesirradiated with different LEDs and with

fluorescent light (FL ; control).

The cutoff for significant DEGs was FDR < 0.05 bfiMA "%, DEGs were visualised

with Venny (http://bioinfogp.cnb.csic.es/tools/vgnhn



Figure S7. Overview of thetranscript profiles associated with blue (B470; 470 nm)
and green (G510; 510 nm) light responses.

This information is based on Enrichment Mag¥ (see the figure legend of Fig. 4 for
details).

Figure S8. Overview of thetranscript profiles associated with blue (B470; 470 nm)
and green (G520; 524 nm) light responses.

This information is based on Enrichment Mag¥ (see the figure legend of Fig. 4 for
details).

Figure S9. Overview of thetranscript profiles associated with red (R680; 680 nm)
and green (G520; 524 nm) light responses.

This information is based on Enrichment Mag¥ (see the figure legend of Fig. 4 for
details).

Figure S10. Overview of gene expression patterns of lettuce plantsirradiated with
green LED (GL) at PPFD of 300 pmolh2s? (P300).

We used MAPMAN softwaren(tp://mapman.gabipd.org/web/guest/map)fin (@) G510

(peak wavelength 510 nmp)(G520 (peak wavelength 524 nm). Fold-changesrare i
gene expression are normalised relative to whilkgréiscent light (FL) treatment.
Statistically significant changed in expressionidemtified by colour: red = up-
regulated by GL treatment and blue = down-regulate@L treatment.

Figure S11. gRT-PCR validation of RNA-Seq data obtained from lettuce plants
grown under high-intensity light (P300). Plants of red leaf lettuce were exposed to
different light qualities [FL = fluorescent lamp4B0 = blue (470 nm), G510 and G520
= green (510 and 524 nm, respectively), R680 {680 nm) LEDs] for 24 h.

Expression levels of six genes involved in flav@hibiosynthesis were investigated



using gRT-PCR, includinghenylalanine ammonia-lyagBAL), chalcone synthase
(CHS, flavanone 3-hydroxylas@g3H), dihydroflavonol 4-reductasoFR),
anthocyanidin synthagdN9 andUDP-glucose:flavonoid ®-glucosyltransferase
(UFGT). Three biological replicates were performed faclegene. Error bars represent
standard deviation. Welchtgest was used to calculgteralues. Statistically significant
differences in expression levels are indicatedgiamasteriskp < 0.05). Gene-specific
primers used for qRT-PCR are listed in Supplemgniable S3. d, day.

Figure S12. Spectral photon flux distributions of lights used for growing leaf

lettuce in this study.

(a) White fluorescent light (FL).b) LEDs, B470: peak wavelength of 470 nm, G510:
peak wavelength of 510 nm, G520: peak wavelengB2dfnm, R680: peak wavelength
of 680 nm. The total photosynthetic photon flux FlPRas 100 umdain=2S for each

treatment.
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Sugar and sugar alcohol
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b | TCA-cycle intermediates
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GlIn, Glu, and Asp
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d | Stress related metabolites

Raffinose

Galactinol

2oUBpUNGE dAlE|DY

I

It

» |7

It

P E

o .uu._ -
|

- - i

il i

- T R i
b |

:J_rmv ZJ_rom ZJ_rmN :J,rmr ooJ_rmm
bt

i | | T

o l -

o -._l

- .
gt

HEH

Ot

HIlH -

M

HH -

| mo+wo.N | mo+_mo.r | oo+wo,

T
D F
—. 5
e -
5 L |
< |° I - i
g g -
Q o — B
0

: = :
HT1--+ :
g :
mo+_mm. } mo+_mo. I wo+wo.m oo+wo
H b
o I
O—O —
N | s
£ ad
m o - o -
& r--- I :
o - o —
- :
0.
. I :

| moJ_rmm | mowmm | moJ_rmr

myo-inositol

GABA

aouepunge aAle|ey

-l RS
I -
o ..---._ -0@;0

b- o B
J I o
1 RN
{2 -@0@0
HIH N

- e

_.--—H—-u._ B

k- B4

NF+_mo.m Nr+_®m.N NF+_®O.N N_\+Wm
T s
- B
0 -G&zo

il e

LI e

-1 e
e
il b

Bro

e

bomoeees T T - pe

N_‘+_om.r Nr+wo.r _‘_‘+_®o.m oo+._2

2oUBpUNGE dANE|DY

7d

1d

7d

1d

Figure S2 (continued)



BCAAs and aromatic AAs
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Ser/Gly and sulfur metabolism
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Chlorogenate and flavonoid metabolism
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Carotenoids and chlorophylls
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Sesquiterpene lactones
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P100 FL 31,803,598 27,166,164 2,444,954,760 94.74% 0.00% 46.13%
P300 FL 31,464,142 27,485,016 2,473,651,440 94.74% 0.00% 45.97%
P300 470nm 32,000,000 28,095,976 2,528,637,840 94.68% 0.00% 46.17%
P300 510nm 31,823,538 27,344,692 2,461,022,280 94.79% 0.00% 45.56%
P300 520nm 29,982,232 25,952,786 2,335,750,740 94.65% 0.00% 46.53%
P270 680nm 29,646,750  25690,178 2,312,116,020 94.80% 0.00% 46.41%

Figure S5
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Supplementary Document S1. M etabolomics M etadata
1. Plant context metadata

1.1. Plant materials
1.1.1. BioSource Species

Lactuca sativa L.

1.1.2. Genotypes/Varieties

cv. Banchu Red Fire

1.1.3. Organ specification

The third leaf

1.1.4. Growth conditions

Under white fluorescent light (FL, FLR110H-W1A; Mitbishi/Osram Co.; Yokohama, Japan), seeds
of red-leaf lettucel(actuca sativa L. cv Banchu red fire; Takii seed, Kyoto, Japa®eyevpre-
germinated [14 hr, 14 days, 23 * 2°C, 1000l m? s* photon synthetic photon flux density
(PPFD)]. The seedlings were supplied with a nutrsatution (Otsuka hydroponic composition,
Otsuka Chemical Co. Ltd., Osaka, Japan) adjusted &ectrical conductivity (EC) of 1.2 dS/m and
pH 5.8. It contained 7.0 mmot NOsz, 0.6 mmol #* NH4*, 3.7 mmol * K*, 2.3 mmol #* C&*, 1.3
mmol It HoPQs, and 0.9 mmolt Mg?*. The seedlings were transplanted to cultivatiometsin a
growth chamber (VB1514; Vétsch, Germany), suppligth nutrient solution for the duration of the
experiments, and grown at 25°C [relative humidRid} 60%, 90Qumol mol* CQy). The plants were
irradiated with different light spectra from LEDwmmely B470 (peak wavelength 470 nm, ISL-
305X302-BBBB, CCS Co., Kyoto, Japan), G510 (peakedength 510 nm, ISL-305X302-
GGGG505, CCS Co.), G520 (peak wavelength of 52418m:305X302-GGGG525, CCS) and
R680 (peak wavelength of 680nm; ISL-305X302-RRRRB8S Co., Kyoto, Japan) (Figure S9).
The seedlings were irradiated for 24 hr at PPFDA@@00umol m2 s (P100, P300). The
wavelength of the light source was determined withSB2000 spectrometer (Ocean Optics,
Dunedin, FL, USA) (Figure 1). At 14, 15 and 21 DAI®y weight (DW) was measured.

2. Chemical analysis metadata
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Chemicals

All the chemicals and reagents that were usedierstudy were of spectrometric grade. Chemicals
excluding isotope reference compounds and readmmgdylation were purchased from Sigma
Aldrich (Tokyo, Japan), NacalaiTesque (Kyoto, JgpanWako Pure Chemical Industries (Osaka,
Japan). The 6 stable isotope compountf€{[-proline, PH4]-succinic acid, {He]-2-hydroxybenzoic
acid, [13Cs]-myristic acid, [3C12-sucrose, and?H7]-cholesterol) were purchased from Cambridge
Isotope Laboratories (Andover, MA, USA¥Cs,*N]-glutamic acid and'fCs]-glucose from Spectra
Stable Isotopes (Columbia, Maryland, USAH4]-1,4-diaminobutane was from C/D/N ISOTOPES
(Pointe-Claire, Quebec, Canada), al€{]-hexadecanoic acid from Icon (Mt. Marion, NY, USA)
The reagent for trimethylsilylatioN-methylN-trimethylsilyltrifluoroacetamide (MSTFA) was
purchased from Tokyo Chemical Industry (Tokyo, Jgpa

2.1. Sample processing and extraction
2.1.1. Extraction and derivatization for GC-TOF-MS

Each frozen sample with a 5-mm zirconia bead waseted with 400 fold amount of solvent
(methanol/chloroform/water [3:1:1 v/v/v]) contaigiiO stable isotope reference compounds at 4°C
in a mixer mill (MM301; Retsch, Haan, Germany) dteuency of 15 Hz. Each isotope compound
was adjusted to a final concentration of 15 ngpgfihjection volume. After 5-min centrifugation at
15,100 x g, a 20@4 aliquot of the supernatant was transferred ttaagginsert vial. The extracts
were evaporated to dryness in an SPD2010 Speedva@o@ntrator (Thermo Fisher, Scientific,
Waltham, MA, USA). We used extracts from 0.5-mg B¥nples for derivatization, i.e.,
methoxymation and silylation. For methoxymation uB0f methoxyamine hydrochloride (20 mg/mli
in pyridine) were added to the sample. After 22d Herivatization at room temperature the sample
was trimethylsilylated for 1 h using 30 pl of MSTRA37°C with shaking. All derivatization steps
were performed in a vacuum glove box VSC-1000 (&aep, Osaka, Japan) filled with 99.9995%
(G3 grade) dry nitrogen.

2.1.2. Extraction for LC-g-TOF-MSto detect secondary metabolites

Each frozen sample was extracted with 5 fold amofisblvent (methanol/water [8:2 v/v])

containing a reference compound (RN of 10-camphorsulfonic acid ([M-H]Jm/z 231.0691)) using
2



a mixer mill MM301 (Retsch) at a frequency of 181dez 7 min at 4°C. After centrifugation for 10
min at 17,000 x g, the supernatant was filteredgian Oasis® HLRBElusion plate (3@m, Waters
Co., Massachusetts, US).

2.1.3. Extraction for LC-g-TOF-MSto detect lipids

Each frozen sample was milled using mixer mill MM3®Retsch) at a frequency of 20 Hz for 2 min
at 4°C. After that, frozen powder was extractechwi® fold volume of extraction solvent
(chloroform/methanol/water[50 : 100 : 31.45, viepntaining 1 uM of 1,2-didecanogi-glycero-3-
phosphocholine (SIGMA). Samples were vigorouslyedixising a vortex mixture. 52u.6 of water

and 52.6ul of chloroform were added to 2Q0 of extract and then vigorously mixed for 5 min at
room temperature. After standing for 15 min on tbe, samples were centrifuged at 1,000&5°C

for 5 min. The lower layer (8pl) was transferred to a 2 ml tube. Each extract evagporated to
dryness by SPD2010 SpeedVac® concentrator (Thersm@iFScientific). The residue was dissolved
in 162l of ethanol, and centrifuged at 10,0@0at 5°C for 15 min. The supernatant was transferred
to a glass insert and subjected to lipid analygie®-MS.

2.2. Analytical conditions
2.2.1. GC-TOF-MS conditions

Using the splitless mode of a CTC CombiPALautosam TC Analytics, Zwingen, Switzerland),
1 ul of each sample (equivalent to 5.6 ug DW) wascitgd into an Agilent 6890N gas
chromatograph (Agilent Technologies, Wilmingstor, W SA) featuring a 30 m x 0.25 mm inner
diameter fused-silica capillary column and a chathjdound 0.254 film Rxi-5 Sil MS stationary
phase (RESTEK, Bellefonte, PA, USA) with a tandemreection to a fused silica tube (1 m, 0.15
mm). An MS column change interface (msNoVent-J; S&ikohama, Japan) was used to prevent
air and water from entering the MS during columarge-over. Helium was the carrier gas at a
constant flow rate of 1 ml mih The temperature program for GC-MS analysis slastiéh a 2-min
isothermal step at 80°C followed by 30°C tempemtamping to a final temperature of 320°C that
was maintained for 3.5 min. The transfer line draibn source temperatures were 250 and 200°C,
respectively. lons were generated by a 70-eV @rdieam at an ionization current of 2.0 mA. The
acceleration voltage was turned on after a solélelaty of 222 sec. Data acquisition was on a
Pegasus IV TOF mass spectrometer (LECO, St. JoBHphlSA); the acquisition rate was 30

spectras in the mass range of a mass-to-charge ratio ofFn&@-800.
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Alkane standard mixtures (C8 - C20 and C21 - C4@¢lpased from Sigma-Aldrich (Tokyo, Japan)
were used for calculating the retention index (RPBor quality control we injected methylstearate
into every 6th sample. The sample run order wadaiaized in single-sequence analyses. We

analyzed the standard compound mixtures usingaime sequence analysis procedures.

2.2.2. LC-g-TOF-MS conditionsto detect secondary metabolites

After preparation of the extracts, the sample extrélul) were analyzed using an LC-MS system
equipped with an electrospray ionization (ESI)rifatee (LC, Waters Acquity UPLC system; MS,
Waters Xevo G2 Q-Tof). The analytical conditiongevas follows. LC: column, Acquity bridged
ethyl hybrid (BEH) C18 (pore size 1um, length 2.1x 100 mm, Waters); solvent

system,acetonitrile(0.1% formic acid):water (0.18nic acid); gradient program,

0.5:99.5v/vat0 min, 0.5:99.5v/vat0.1 n8A,: 20 v/v at 10 min, 99.5 : 0.5 v/v at 10.1 min,
99.5:0.5v/vat12 min and 0.5 : 99.5 v/v at 12ih, 0.5 : 99.5 v/v at 15 min; flow rate, 0.3 mifm
temperature, 40 °C; MS detection: capillary voltag@0 keV, cone voltage, 25.0 V, source
temperature, 120°C, desolvation temperature, 45@80e gas flow, 50 I/ h; desolvation gas flow,
800 I/h; collision energy, 6 V; mass rang#z 50-1500; scan duration, 0.1 sec; interscan delay,
0.014 sec; mode, centroid; polarity, negative; lapeky (Leucineenkephalin): scan duration, 1.0 sec;

interscan delay, 0.1 sec. The data were recordad Bsogenesis CoMet (Nonlinear Dynamics).

2.2.3. LC-g-TOF-MS conditionsto detect lipids

Sample extracts (ll) were analyzed using an LC-MS system equippet waiit electrospray

ionization (ESI) interface (HPLC, Waters Acquity LlPsystem; MS, Waters Xevo G2 Qtof). Two-
solvent (A and B) system was used for separatiaaoh metabolite. Compositions of these solvents
were as follows: solvent A, acetonitrile: water:1awhmonium acetate:formic acid = (158 g:800g:10
ml:1 ml); solvent B, acetonitrile:2-propanol:wafeN ammonium acetate:formic acid = (79 g:711
g:10 ml:1 ml). The analytical conditions were akofes. HPLC: column, Acquity UPLC HSS T3
(pore size 1.8m, 1.0 i.d x 50 mm long, Waters); gradient progrds%o B at 0 min, 70% B at 3

min, 85% B at 7 min, 90% B at 10 min, 90% B at 1i#a and 35% B at 12.5 min; flow rate, 0.15
ml/min; temperature, 55°C; MS detection: capillaojtage, +3.0 kV; cone voltage, 20 V for positive
mode and 40 V for negative mode; source temperat@@C; desolvation temperature, 450°C; cone

gas flow, 50 I/h; desolvation gas flow, 450 I/hllision energy, 6 V; detection mode, scan100—



2000; scan time, 0. 5 sec; centroid). The scane vegreated for 15 min in a single run. The data

were recorded using MassLynx version 4.1 softwdratérs).

2.3. Dataprocessing
2.3.1. Data processing for GC-TOF-MS data

Nonprocessed MS data from GC-TOF-MS analysis weperted in NetCDF format generated by
chromatography processing- and mass spectral delution software (LecoChromaTOF version
3.22; LECO, St. Joseph, MI, USA) to MATLAB 6.5 orAMLAB2011b (Mathworks, Natick, MA,
USA) for the performance of all data-pretreatmentpdures, e.g. smoothing, alignment, time-
window setting H-MCR, and RDA The resolved MS spectra were matched againserefe mass
spectra using the NIST mass spectral search profgnatine NIST/EPA/NIH mass spectral library
(version 2.0) and our custom software for peak-gatiam written in JAVA. Peaks were identified or
annotated based on their Rls, a comparison ofefeeence mass-spectra with the GolmMetabolome
Database (GMD) released from CSB.B)Bind our in-house spectral library. The metab®litere
identified by comparison with RIs from the libradgtabases (GMD and our own library) and the Rls
of authentic standards. The metabolites were deéfrseannotated metabolites after comparison with
the mass spectra and the RIs from these two lésafihe data matrix was normalized using the

CCMN algorithm for further analysfs.

2.3.2. Data processing for LC-g-TOF-MS data to detect secondary metabolites

The data matrix was aligned by Progenesis CoMenljNear Dynamics).For normalization,
intensity values of remained peaks was dividechiogé of the 10-camphorsulfonic acid ([M=HlVz
231.0691) after cutoff of the low-intensity pealesé than 2000). Metabolite annotation was
performed using a literature

2.3.3. Data processing for LC-g-TOF-MS data to detect lipids

The data matrix was generated using the Makerly8xWaters) using the profiling data files
recorded in the MassLynx format (raw). The datarites were processed using in-house Perl script.
The original peak intensity values were dividedwthtat of the internal standard (1,2-didecarsnyl-
glycero-3-phosphocholine atz 566.382 [M + H} and atm/z 610.372 [M + HCOQO]for the positive
and negative ion modes, respectively) to normahegpeak intensity values among the metabolic

profile data.
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2.4. Statistical data analysisfor metabolite profile data

The multi-platform data was summarized by unifyingtabolite identifiers to a common referencing
scheme using the MetMask tdolThe three matrices were then concatenated anela@d peaks
with the same annotation were replaced by thest firincipal component. Principal component
analysis (PCA) and orthogonal partial least sqdéseriminant analysis (O2PLS-DA) were
performed with log transformation and autoscaling using SIMCA-P Kafiware (Umetrics AB,

Umea, Sweden).
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