
Supplementary Information: An automated design framework for

multicellular recombinase logic.

Sarah Guiziou1, Federico Ulliana2, Violaine Moreau1, Michel Leclere2, and Jerome Bonnet*1

1Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier,
France.

2Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier (LIRMM). CNRS
UMR 5506, University of Montpellier, France.

*To whom correspondence should be addressed: jerome.bonnet@inserm.fr

These supplementary materials contain:
-Supplementary Figures S1 to S3.
-Supplementary Tables S1.

1



f =  (NOT(B) AND A) OR (NOT(C) AND B)  

Cell 2Cell 1

Int1

Int2

Input AInput B

Int1

Int2

Input BInput C

A

C

B
# devices

3

# 
se

ns
or

 m
od

ul
es

All inputs/all integrases
One input by integrase

All inputs/all integrases
One input by integrase

# 
co

m
pu

ta
tio

na
l d

ev
ic

es

Figure S1: Reduction of the number of Boolean logic devices by connecting all inputs
to all integrases. (A) Reduction of the number of computational devices needed by connection
of all inputs to all integrases. The bar graph represents the number of standard computational
devices needed to implement a function responding to a specific number of inputs, with the
black bars for connection of all inputs to all integrases and the grey bars for connection of one
input to one integrase (see methods for equation). (B) Number of sensor modules needed using
all-input/all-integrase design or one input by integrase design. If only one device per symmetric
function is implemented, all combinations of inputs with integrases have to be built to implement
all logic sub-functions. The number of sensor modules with this design strategy is higher than
in the one input by integrase design. The bar graph represents the number of sensor modules
needed in function of the input number, for all-input/all-integrase design (black bars) and one
input by integrase design (grey bars). By comparing A and B, it is clear that the total number
of component needed is greatly in favor of the all-input/all-integrase design. C - Example of
Boolean logic implementation based on two cells using the same computational devices and
different input-integrase connections.

2



Input NInput 1

LuxI

Without
signal integration

Output =1
signal GFP≠ cst 

State 1 State 3

With
signal integration

Output =1
signal GFP=cst 

State 2A B

C

Computational
Device

Input 2

GFP

...

...

LuxR

Initial state

1 2

3 4

Cell 1

Int1

Int2

Input AInput B

GFPLuxR

LuxI

 A=1

1 2

3 4

Int1

Int2

Input AInput B

GFPLuxR

LuxI

Cell 1

 A=1

Input BInput C

GFPLuxR

LuxI

Cell 2

1 2

3 4

Comp.
Device

A=1 At steady state

AHL

AHL

AHLAHL

Figure S2: Use of cell-cell communication to obtain a constant output signal between
states. A - The integration of the output signal is required to obtain a uniform output in all ON
states. In our multicellular design, the output is considered equal to one if at least one cellular
computing unit is ON. Therefore, the expression level of the output gene will be different if one
or several units are ON. For applications that require a constant output level, integration of the
output signal might be performed using cell-cell communication. If one of the strains is ON, it
produces an AHL molecule that is detected by the other strains, which subsequently turn ON
such that in all ON states of the program the output level is constant. B - Implementation of
cell-cell communication to integrate output signals. The output gene of the computational device
is a gene producing an AHL molecule (for example LuxI), and the output gene (here GFP) is
connected to a promoter inducible by AHL. C - Example of the behavior of a cellular computing
unit with a signal integration system. In the initial state for this specific strain, the output gene
of the computing device (LuxI) is OFF as for all other strains. Then, with the presence of the
input A, the terminator is excised, LuxI is expressed, and AHL is produced. GFP will be expressed
in this strain, and by diffusion of AHL all strains will produce GFP.

3



(       )

(       )

NOT(X) Y

j

j

Elements

Modules

Devices

(       )i

(       )i

A

Integrase

attB attP

attL attR

RDF

Int + RDF Int

B

C

Pcons

No
input

Input

Input NOT(X  ) AND (...) AND NOT(X  ) Y  AND (...) AND Yi1 j1

f  = NOT(X  ) AND (...) AND NOT(X  ) AND Y  AND (...) AND Yi j11x

Figure S3: Hierarchical composition framework for synchronous Boolean logic using
integrases and recombination directionality factors (RDFs). A - Reversible inversion
of DNA using integrase coupled with RDF. Integrase alone specifically targets attB and attP
sites and does not operate on attL and attR sites. When sites are oriented in the opposite
direction, DNA between sites is inverted and attL and attR sites are formed. With the additional
use of a RDF, the integrase targets specifically attL and attR sites and inverts DNA between
these sites, reverting to attB and attP. Therefore, using a RDF enables the implementation of
reversible integrase-based DNA switches14. B - To obtain a synchronous IDENTITY function, the
integrase sites attL and attR are placed in inverted orientation around an asymmetric terminator.
The terminator blocks the flow of RNA polymerase, and the output gene is not expressed. The
integrase is constitutively expressed in all states. When the input is present, RDF is expressed and
the terminator inverted. As the terminator is asymmetric, the output gene is expressed10,30. C
- Hierarchical composition of synchronous elements. NOT- and ID-elements are composed with
attL and attR sites in inversion mode flanking an asymmetric transcriptional terminator. For the
NOT-element, the terminator is in the OFF position and for the ID-element in the ON position.
ID- and NOT-modules are both composed in series between the promoter and the output gene
and compute, respectively, the conjunction of IDENTITY functions and NOT functions. The
device is then expandable by addition of elements in series to all logic functions based on the
conjunction of NOT and IDENTITY functions.

4



# Strains # 3-input functions # 4-input functions

1 26 80

2 130 1804

3 88 13472

4 10 28904

5 − 17032

6 − 3704

7 − 512

8 − 26

Table 1: Proportion of Boolean functions implementable with a specific number of
strains for 3 and 4 inputs. This table was obtained by systematic generation of the biological
design of all 3 and 4-input Boolean functions using our python software.

5


