Supplementary Data

Parameter	Lower Bound	Nominal Value	Upper Bound	Description of the Expected Effect
L _{awake} (mg/dL)	40	100	120	This variable is the lower bound target for daytime bolus calculations. Lowering this makes the controller more aggressive during the day.
R _{awake} (%)	10	25	40	This determines how much risk of hypoglycemia is acceptable with a future 50% basal rate buffer. Lowering this will make the controller more cautious during the day.
$L_{asleep} \ (mg/dL)$	60	100	160	This variable is the lower bound target for nighttime bolus calculations. Lowering this makes the controller more aggressive during the night.
S _{asleep}	6	18	30	This determines how smooth we want our control to be at night. Decreasing this will make the controller more aggressive at night.
Y^{-}_{CGM} (mg/dL)	80	80	120	The threshold below which the hypoglycemia warning light will be at least yellow. Changing this will not affect algorithm performance.
R ⁻ _{CGM,Awake} (mg/dL)	60	70	100	The threshold below which the hypoglycemia warning light will be red when the patient is awake. Changing this will not affect algorithm performance.
$R^{-}_{CGM,Asleep}$ (mg/dL)	60	60	100	The threshold below which the hypoglycemia warning light will be red when the patient is asleep. Changing this will not affect algorithm performance.
R^+_{CGM} (mg/dL)	200	300	390	The threshold required for the insulin based hyperglycemia alarm to sound. Changing this will not affect algorithm performance.
R^+_{IOB} (% of TDD)	5	20	40	The insulin on board as a percentage of the total daily dose that is required for the insulin-based hyperglycemia alarm to sound.
R^{++}_{CGM} (mg/dL)	200	390	390	The CGM threshold above which the hyperglycemia red light will sound.
S_{Δ}	5	30	50	This threshold determines the orientation boundary between sleep and wake. Increasing this threshold will make it more likely that the controller acts conservatively, as though the patient is asleep.

SUPPLEMENTARY TABLE S1. MMPPC TUNING PARAMETERS