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Materials and Methods 

Bacterial Strains, Plasmids and Media  

Detailed information about bacterial strains and plasmids used in this study are listed in Table 1. 
Cells were cultured in Lysis Broth (LB). Media was supplemented with the following antibiotics 
when needed: chloramphenicol (12.5 µg/mL), kanamycin (50 µg/mL), tetracycline (15 µg/mL), 
ampicillin (100 µg/mL). Genes expressed from the chromosomal arabinose-inducible araBAD 
promoter (ParaBAD) were induced by the addition of L-arabinose (final concentration: 0.2%). All 
transductional crosses were performed using the generalized transducing phage of Salmonella 
Typhimurium P22 HT105/1 int-201. λ-Red recombineering (29) was performed using 
tetracycline for selection and anhydrotetracycline/fusaric acid media for subsequent 
counterselection. 

Swimming and Swarming Motility Assays 

Swimming motility was assayed by stabbing single colonies into swimming motility plates 
(0.2% agar with 10 g/L tryptone and 5 g/L NaCl added) and incubated face-up at 37° C for 8-12 
hours. For swarming motility assays, 1 μL of overnight cultures were spotted on swarming 
motility agar (0.5% agar with 10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl and 0.5% 
glucose added) followed by incubating face-up at 37° C for 16-18 hours. Swim diameters were 
measured using ImageJ 1.50i software (National Institutes of Health (NIH)). Graphs were made 
with Graphpad Prism 5 software suite (Graphpad software, Inc.) 

Isolation, Transmission Electron Microscopy and Measurement of Flagellar Structures  

Hook basal body (HBB) isolation was carried out by methods described previously (30), with 
minor modifications. Structures were not collected by CsCl or sucrose gradient centrifugation 
but were pelleted at 60,000 x g for 1 h using a Beckman 50.2Ti and/or S80-AT3 rotor at 12 °C.  

Purified structures were applied to glow discharged carbon-coated formvar copper grids (Cu-
FCF-300H grids, Electron Microscopy Sciences) and stained with 2% aqueous phosphotungstic 
acid (pH ~7.0). Images were captured using a JEOL JEM-1400 electron microscope at an 
acceleration voltage of 120 kV coupled to a Gatan CCD camera. 

Rod lengths were measured using NIH ImageJ 1.50i software. Statistical analysis and graphs 
were made using the Graphpad Prism 5 software suite (Graphpad software, Inc., Figs. 2, 4D, 4E, 
S4, S5)  

SDS-PAGE Sample Preparation and Immunoblotting 

For detection of FliC-3xHA in culture supernatants, overnight cultures were diluted 1:100 in 
fresh LB and grown at 37° C with aeration to O.D.600 ~1.0. Cells were harvested by 
centrifugation and gently resuspended in cold 0.1 M glycine, pH 2.5 and incubated on ice for 20-
30 minutes to depolymerize flagellar filaments. Following depolymerization, cells were pelleted 
by centrifugation and the supernatant carefully decanted. 0.5 μg lysozyme was added to the 
supernatant to act as a carrier for TCA precipitation. The precipitant was washed twice with cold 
acetone and boiled in 2x SDS Laemlli buffer. Samples were run on hand-cast, 12% tris-glycine 



polyacrylamide gels with 0.1% SDS added. Following SDS-PAGE, proteins were transferred to 
nitrocellulose by semi-dry transfer and probed with anti-HA and anti-DnaK (a cell lysis control) 
antisera in TBST with 5% milk added. Following incubation with 1° antibody, membranes were 
incubated with IRdye fluorescently labeled 2° antibody and developed on a LI-COR Biosciences 
Odyssey infrared imaging system. 

For purification and detection of Lpp linked to cell wall sacculi, cultures were grown overnight 
in 10 mL of LB at 37° C with aeration. Cells were pelleted, resuspended in 3 mL saline and 
dripped into 6 mL of 6% SDS heated to 85-90° C with stirring. Lysates were stirred at 85-90° C 
for 2-3 hours followed by centrifugation at 100,000xg for 1 hour. Pellets were washed 3x with 20 
mL H2O to remove all SDS and resuspended in 1 mL PBS. Lysozyme was added to the purified 
sacculi (final concentration: 2 mg/mL) and incubated at 37° C overnight. Lysozyme digests were 
concentrated by TCA precipitation and resuspended in 100 μL 2xSDS Laemlli buffer. Typically, 
5-10 μL of sample were loaded to 13% tris-tricine polyacrylamide gels. Lpp was detected using 
anti-Lpp antisera following the protocol described above.  

EM Preparation for Resin-embedded Electron Tomography 
Salmonella cultures were prepared for EM by high-pressure freezing and freeze-substitution.  
Cells were briefly centrifuged and the pellets resuspended in culture medium containing 10% 
Ficoll (70kD; Sigma), which serves as an extracellular cryoprotectant.  The cells were 
centrifuged again and the supernated removed.  Pellets of Salmonella cells were transferred to 
brass freezing planchettes (Ted Pella, Inc.) and rapidly frozen in a HPM-010 high-pressure 
freezer (Leica Microsystems, Vienna Austria), then stored under liquid nitrogen.  The frozen 
planchettes were subsequently placed in cryotubes (Nunc) containing 2 ml of 2% glutaraldehyde 
in acetone and transferred to a AFS2 freeze-substitution machine (Leica Microsystems).  
Samples were freeze-substituted at -90°C for 60 hours, then warmed to -20° C over 8 hours.  The 
samples were then rinsed 3x with cold acetone and processing continued at -20°C for an 
additional 24 hours with 2.5% OsO4, 0.05% uranyl acetate in acetone.  The samples were then 
warmed to room temperature, rinsed 4x with acetone and infiltrated with Epon-Araldite resin 
(Electron Microscopy Sciences, Port Washington PA).  Pellets of cells were embedded in plastic 
sectioning capsules and the resin polymerized at 60°C for 48 hours. 
 Thick (400 nm) sections were cut with a UC6 ultramicrotome (Leica Microsystems) 
using a diamond knife (Diatome Ltd., Switzerland). And placed on Formvar-coated copper-
rhodium 1mm slot grids (Electron Microscopy Sciences).  Sections were stained with 3% uranyl 
acetate and lead citrate and colloidal gold particles (10 nm) were placed on both surfaces of the 
grids to serve as fiducial markers for image alignment.  Grids were stabilized with evaporated 
carbon prior to imaging. 
 
Electron Tomography and Peptidoglycan to Outer Membrane Measurement 
Grids were placed in a Dual-Axis Tomography holder (Model 2040, Fischione Instruments, Inc., 
Export, PA) and imaged with a Tecnai TF30ST-FEG microscope (FEI Company, Holland) at 
300 KeV.  Dual-axis tilt series (+/- 64° at 1° intervals) were acquired automatically using the 
SerialEM software package 21). Tomographic data were aligned, analyzed and segmented using 
IMOD (31-32, Fig. 4B) on MacPro computers (Apple, Inc). 

For measurement of cell wall peptidoglycan (CW) to outer membrane (OM) distances, 3 
tomogram sections each of >3 cells per LppA length variant were saved as .tif files and analyzed 



in ImageJ (NIH). Distances between the CW and OM were measured every 5-10 nm, for a total 
of ~200 measurements per length variant, and plotted using Graphpad Prism software (Graphpad 
software, Inc., Fig. 4A) 

Preparation of Electron Cryo-microscopy Samples, Data Collection and Analysis 

Strains were grown aerobically in LB at 37° C until an O.D.600 of 0.6 was reached. Cells were 
spun for 5 minutes at 6000xg and resuspended to an O.D.600 of ~18.  
UltraAuFoil  R2/2 grids (200 mesh) (Quantifoil Micro Tools GmbH) were glow-discharged for 
60s at 10mA. Cells were mixed with a solution of 10nm colloidal gold (Sigma) immediately 
before freezing. A 2.5µl droplet of sample was applied to the grid and plunge frozen using a 
Vitrobot MkIV (FEI Company) with a wait time of 60s, a blot time of 5s, a blot force of 3 and a 
drain time of 1s at a constant humidity of 100%. Grids were stored under liquid nitrogen until 
required for data collection. 
Projection images were collected on a 200keV FEI Tecnai TF20 FEG transmission electron 
microscope (FEI Company) equipped with a Falcon II direct electron detector (FEI Company) 
using a Gatan 626 cryogenic-holder (Gatan). Leginon automated data-collection software (33) 
was used to acquire images with pixel size of 0.828nm (nominal magnification 25000x) with a 
defocus of -5µm.  
3dmod from the IMOD package (34) and custom scripting were used to manually segment inner 
and outer membranes of projection images of ~25 cells per mutant, measuring the periplasmic 
width at 0.5nm intervals, resulting in tens of thousands of data points per mutant to produce 
width histograms (Fig. 4C).  
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Fig. S1 Mutations in LppA can cause severe morphological defects
Mature wild type LppA is a helical tether 58 amino acids in length. The attachment of a diacylglycerol moiety to the N-terminus anchors LppA in the outer 
membrane, while an invariant C-terminal lysine residue is covalently bound to peptidoglycan (A). The bulk of the mature LppA protein consists of seven 
uninterrupted heptad repeat motifs which drive trimer formation through hydrophobic interactions between LppA molecules. We attempted to create a 
lengthened Lpp protein by fusing LppA to LppB with a 3x hemagluttinin (HA) tag sandwiched between the two (B). Although LppA and LppB share a high 
degree of homology, they have diverged considerably at their N-termini, the significance of which is unknown. Cells in this background grew very slowly 
and exhibited gross morphological abnormalities (D). This could have been due to the heptad repeats of the chimera being out of register, the chimera being 
too long or the fact that the N-termini of LppA and LppB are have diverged considerably, or all three. Ribbon structure of LppA trimer sourced from RCSB 
Protein Data Bank (accession #1EQ7).

E.coli   Lpp: 1-MKATK LVLGA VILGSTLLAG CSSNAKIDQL SSDVQTLNAK  
Salmonella LppA:1-MNRTK LVLGA VILGSTLLAG CSSNAKIDQL SSDVQTLNAK  
Salmonella LppB:1-MNRTNQLILGA VVLGSTLLAG CSSNAKIDQL SSDVQTLSAK  
 
E.coli  Lpp: 41-VDQLSNDVNA MRSDVQAAKD DAARANQRLD NMATKYRK-78 
Salmonella LppA:41-VDQLSNDVNA MRSDVQAAKD DAARANQRLD NQATKYRK-78 
Salmonella LppB:42-VEQLSNDVNA MRSDVQAAKD DAARANQRLD NKVFRICK-79 
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Fig. S2 Deletion of lppA impairs swimming motility and abolishes swarming motility
Salmonella, among other species of bacteria, exhibits two distinct forms of flagella-mediated motility: swimming and swarming. 
Swimming motility describes the individual behaviour of a cell swimming through liquid, while swarming is a communal behaviour 
whereby a swarm of flagellated bacteria moves across a hydrated surface (35). Swimming motility is assayed in soft agar (0.3% agar 
conc.), while swarming is assayed on 0.5% agar with 0.5% glucose added.
Several lpp deletion mutations were assayed for their effects on swimming (A) and swarming (B) motility relative to WT. Motility in 
swim agar was reduced ~20% in the ∆lppA, ∆lppAB and lppA ∆K78 backgrounds (C). Motility on swarm agar was abolished in the 
∆lppA, ∆lppAB and lppA ∆K78 backgrounds. Deletion of lppB had little effect on either swimming or swarming motility.
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Fig. S3 Deletion of lppA suppressed the motility defect of flgG* mutants in soft agar
A screen for motile flgG* revertants produced suppressor mutations that mapped to the lpp operon. These suppressors were all 
found to affect lppA, the equivalent of Braun’s lipoprotein in Salmonella. To verify that suppression of the flgG* motility 
defect was due to loss of lppA, deletions of both lppA and lppB were constructed and tested for their effect on swimming 
motility ( A). For all five flgG* alleles tested, deletion of lppA resulted in a significant increase in swim diameter, while dele-
tion of lppB had little to no effect (B).
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Fig. S4 Deletion of LppA increases extracellular FliC secretion and filament assembly
To determine whether deletion of LppA suppressed the motility defect of filamentous distal rod mutants by increasing the 
likelihood of outer membrane penetration by a flgG* hook basal body, quantitative western blots of culture supernatants 
probing for 3xHA-tagged flagellin (FliC::3xHA) were performed (A and B). Loss of LppA resulted in increased FliC::3xHA 
secretion to the culture supernatant in the flgG* G65R and flgG* E189K filamentous distal rod mutant backgrounds. Fluores-
cence microscopy was performed using these mutants in order to count the number of extracellular formed in the presence or 
absence of LppA (C and D). Deletion of LppA led to greater numbers of flagellated cells, and more flagella per cell, on aver-
age, in the flgG* G65R and flgG* E189K filamentous distal rod mutant backgrounds.
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Fig. S5 Deletion of lppAB does not prevent filamentous rod polymerization
Hook basal bodies from WT (A),  flgG* G65R lppABWT (B) and flgG* G65R ∆lppAB (C) backgrounds were purified, negatively 
stained with 2% phosphotungstic acid and examined by TEM. In both flgG* backgrounds, cells produce filamentous rods with multiple 
P-rings assembled along their lengh (red arrows). This demonstrated that suppression of the flgG* motility defect upon deletion of lppA 
was not due to prevention of filamentous rod assembly.
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Fig. S6 Longer variants of LppA were expressed and crosslinked to the cell wall
Length variants of LppA were constructed by inserting (red lettering) or deleting heptad repeats (residues deleted from LppAWT 
indicated with bold lettering) between residues D42 and Q43 (^) of wild type LppA (A). Western blots probing for LppA 
demonstrated that all length variants of LppA are expressed (B, cell lysate), secreted to the periplasm and crosslinked to the 
cell wall (C: purified cell sacculi with and without lysozyme digestion). In the absence of lysozyme treatment, the cell sacculus 
remains intact and prevents LppA crosslinked to peptidoglycan from migrating through an SDS-PAGE gel due to size exclu-
sion (red arrow).

LppA-21 : MNRTKLVLGAVILGSTLLAGCSSNAKIDAMRSDVQAAKDDAARANQRLDNQATKYRK
LppAWT : MNRTKLVLGAVILGSTLLAGCSSNAKIDQLSSDVQTLNAKVD^QLSNDVNAMRSDVQAAKDDAARANQRLDNQATKYRK
LppA+21 : ...NAKVDTLSAKVEQLSNDVNAMRSDVDQLSNDVN...
LppA+42 : ...NAKVDTLSAKVEQLSNDVNAMRSDVQTLSAKVEQLSNDVNAMRSDVDQLSNDVN...
LppA+63 : ...NAKVDTLSAKVEQLSNDVNAMRSDVQTLSAKVEQLSNDVSQLSTDVQAIRADVQTLNAKVEQISNDVTQLSNDVN...
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Fig. S7 LppA is a major deteminant of periplasmic spacing and outer membrane stability
Electron cryo-tomograms of frozen hydrated cells demonstrated that altering the length of LppA caused a
concomitant change in inner membrane (IM) to outer membrane (OM) spacing. In the absence of LppA
(∆lppAB), the outer membrane pulls away, or blebs, from the cell body. The blebbing phenotype was 
exacerbated when pal was deleted in addition to lppAB (∆lppAB ∆pal).
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Fig. S8 Shortening LppA resulted in shorter rods
Initial attempts to isolate rods from strains harboring a length variant of LppA deleted for 3 heptad repeats (LppA-21) were 
unsuccessful. Using a flagellar Class I gene transcriptional reporter (flhC5213::MudJ), we discovered that flagellar gene 
expression is repressed in LppA-21 backgrounds (data not shown). We then knocked out known repressors of flagellar gene 
expression in the LppA-21 background and assayed for motility in swim agar (0.3% agar conc.). Deletion of rcsB, a response 
regulator involved in responding to outer membrane stress, was found to restore motility to nearly wild-type levels in the 
LppA-21 background (A). Rod structures were purified, negatively stained with 2% phosphotungstic acid and observed by 
TEM. Rods produced in the LppA-21 were found to be shorter on average than those produced in the LppAWT (B, significance: 
p = <0.0001, student’s two-tailed t-test, N=2, data are mean +/- SEM).



Distance
measured

PL-ring

MS-ring

A B

Lpp
AW

T

Lpp
A+

21

Lpp
A+

42

LppAWT

Min: 14.69 nm
Max: 21.38 nm
Avg: 18.31 nm
N: 92

LppA+21

Min:  16.14 nm
Max: 23.9 nm
Avg: 19.57 nm
N: 92

LppA+42

Min: 17.03 nm
Max: 23.24 nm
Avg: 20.62 nm
N: 93

Na
no

m
et

er
s

10

15

20

25

30

Fig. S9 Lengthening LppA increased MS-ring to PL-ring distance 
Hook basal bodies (HBBs) were purified from strains expressing LppAWT, LppA+21 and LppA+42 (TH22638-22640), negatively 
stained and observed by TEM for measurement of MS-ring to PL-ring distance (A). The distances between the top of the 
MS-ring to the top of the PL-ring complex (red brackets) were measured in ImageJ (NIH) and plotted using Graphpad Prism 
(B). The MS-ring-to-PL-ring was found to increase as the length of LppA increased (significance: p = <0.0001, one-way 
ANOVA, N=2, data are mean +/- SEM).
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Fig. S10 Altering the length of LppA affected the swimming ability and morphology of Salmonella
The swimming ability of mutants harboring LppA length variants was assayed using soft agar swim plates (A and B). Deletion 
of 21 residues abolished swimming motility, while addition of 42 or 63 residues reduced the apparent swim rate relative to WT. 
Addition of 21 residues to LppA increased the apparent swim rate to a small degree. All length variants were unable to swarm 
on 0.5% swarm agar plates (not shown). Cells from each LppA length mutant were stained with FM-43 membrane dye and 
observed by fluorescence microscopy (C). Cell morphology became increasingly abnormal and the growth rate in liquid LB 
media slowed (not shown) as the length of LppA grew longer.



Table S1 List of strains used in this study 
 

Strain  Genotype          
 

TH437  Wild Type (LT2) strain of Salmonella Typhimurium 
TH21911 DlppAB1::tetRAa 
TH21912 DlppA2::FKFb  
TH21913 DlppB3::FCFc 
TH22524 DflgDE7756 DflgH7662 pTrc99AFF4 
TH22525 DflgDE7756 DflgH7662 pTrc99AFF4-flgG+ 
TH22526 DlppAB1::tetRA flgG6705 (G65R) 
TH22527 DlppAB1::tetRA flgG6706 (G132R) 
TH22528 DlppAB1::tetRA flgG6707 (S197L)  
TH22529 DlppAB1::tetRA flgG6764 (E189K) 
TH22530 DlppAB1::tetRA flgG6750 (N190K) 
TH22531 DlppA2::FKF flgG6705 
TH22532 DlppA2::FKF flgG6706 
TH22533 DlppA2::FKF flgG6707 
TH22534 DlppA2::FKF flgG6764 
TH22535 DlppA2::FKF flgG6750 
TH22536 DlppB3::FCF flgG6705 
TH22537 DlppB3::FCF flgG6706 
TH22538 DlppB3::FCF flgG6707 
TH22539 DlppB3::FCF flgG6764 
TH22540 DlppB3::FCF flgG6750 
TH22543 DlppAB7d 
TH22549 DlppB3::FCF lppA11e  (lppA+21) 
TH22550 DlppB3::FCF lppA12f (lppA+42) 
TH22551 DlppB3::FCF lppA13g (lppA+63) 
TH22552 DlppB3::FCF DlppA14h (lppA-21) 
TH22553 fliC7746::3xHA Dhin5717::FRT flgG6705 
TH22554 fliC7746::3xHA Dhin5717::FRT flgG6706 
TH21732 fliC7746::3xHA Dhin5717::FRT flgG6707 
TH21733 fliC7746::3xHA Dhin5717::FRT flgG6764 
TH21734 fliC7746::3xHA Dhin5717::FRT flgG6750 
TH22555 fliC7746::3xHA Dhin5717::FRT flgG6705 DlppAB1::tetRA  
TH22556 fliC7746::3xHA Dhin5717::FRT flgG6706 DlppAB1::tetRA 
TH22557 fliC7746::3xHA Dhin5717::FRT flgG6707 DlppAB1::tetRA 
TH22558 fliC7746::3xHA Dhin5717::FRT flgG6764 DlppAB1::tetRA 
TH22559 fliC7746::3xHA Dhin5717::FRT flgG6750 DlppAB1::tetRA 
TH22562 DlppA16 (DK78)i 
TH22563 DlppA16 flgG6705   
TH22564 DlppA16 flgG6706 
TH22565 DlppA16 flgG6707 



TH22566 DlppA16 flgG6764 
TH22567 DlppA16 flgG6750 
TH22568 Dpal::FKF 
TH22569 Dpal::FKF DlppAB7 
TH22574 DflgDE7756 DflgH7662 DlppB3::FCF  DprgH73::tetRA 
TH22575 DflgDE7756 DflgH7662 DlppB3::FCF  DprgH73::tetRA lppA11 
TH22576 DflgDE7756 DflgH7662 DlppB3::FCF  DprgH73::tetRA lppA12 
TH22577 DflgDE7756 DflgH7662 DlppB3::FCF  DprgH73::tetRA lppA13 
TH22578 DlppAB17::FKFj 
TH22579 DflgDE7756 DflgH7662 DlppB3::FCF DlppA14 
TH22580 DflgDE7756 DflgH7662 DlppB3::FCF DrcsB139::tetRA  
TH22581 DflgDE7756 DflgH7662 DlppB3::FCF DrcsB139::tetRA DlppA14     
TH22586 fliC6500 (T237C) flgG6705 motA5461::MudJ 
TH22587 fliC6500 (T237C) flgG6764 motA5461::MudJ  
TH22588 fliC6500 (T237C) flgG6705 motA5461::MudJ DlppAB1::tetRA 
TH22589 fliC6500 (T237C) flgG6764 motA5461::MudJ DlppAB1::tetRA 
TH22618 DlppB3::FCF DrcsB139::tetRA 
TH22619 DlppB3::FCF  DrcsB139::tetRA DlppA14 (LppA-21) 
TH22634 DflgDE7756 DflgH7662 DlppB3::FCF DsseA-ssaU::FKF DprgH73::tetRA 
TH22635 DflgDE7756 DflgH7662 DlppB3::FCF DsseA-ssaU::FKF DprgH73::tetRA lppA11 
TH22636 DflgDE7756 DflgH7662 DlppB3::FCF DsseA-ssaU::FKF DprgH73::tetRA lppA12 
TH22637 DflgDE7756 DflgH7662 DlppB3::FCF DsseA-ssaU::FKF DprgH73::tetRA lppA13 
TH22638 DlppB3::FCF Dpal::FKF 
TH22639 DlppB3::FCF Dpal::FKF lppA11 
TH22640 DlppB3::FCF Dpal::FKF lppA12 

 
Notes 
a. tetRA cassette replaces lppA and lppB, leaves first 5 residues of lppA and last five residues of lppB. 
b. FRT-neo-FRT (FKF (KmR)) deletes all of lppA except for the first and last five residues. 
c. FRT-cat-FRT (FCF (CmR)) deletes all of lppA except for the first and last five residues. 
d. Clean deletion of lppAB, leaves first five residues of lppA and last five residues of lppB. 
e. lppA length variant with 21 residues (3 heptad repeats) added between residues 42 and 43 of WT lppA. 
f. lppA length variant with 42 residues (6 heptad repeats) added. 
g. lppA length variant with 63 residues (9 heptad repeats) added. 
h. lppA length variant with 21 residues (3 heptad repeats) deleted. 
i. lppA mutant lacking the C-terminal lysine residue required for crosslinking to the cell wall peptidoglycan. 
j. FKF replaces lppA and lppB, leaves first five residues of lppA and last five of lppB.  
	



Table S2 List of primers used in this study 
 

6572 pal::FXFa Fw 5’-attgattactaaaggaattaaagaaatgcaactgaacaaagtgtaggctggagctgcttc-3’ 
6573 pal::FXF Rv 5’-tctgaagttactgctcatgcaattctcttagtaaaccagtcatatgaatatcctccttag-3’ 
6574 lppA/B::FXF Fw 5’-taactcaatctagagggtattaataatgaatcgtactaaagtgtaggctggagctgcttc-3’ 
6575 lppA/B::FXF Rv 5’-cgccattttatattgtgcgtcaaattatttacagatgcggcatatgaatatcctccttag-3’ 
6576 lpp-tetR 5’-gttccgacgttcaggctgctaaagacgacgcagctcgcgctttaagacccactttcacat-3’ 
6577 lpp-tetA 5’-gctcagcgtctgtacatcggaagacaactgatcgattttagcctaagcacttgtctcctg-3’ 
6622 DlppAB::tetR 5’-ttaactcaatctagagggtattaataatgaatcgtactaaattaagacccactttcacat-3’ 
6623 DlppAB::tetA 5’-atgtgcgccattttatattgtgcgtcaaattatttacagatgctaagcacttgtctcctg-3’ 
6626 lppB Rv 5’-attgtgcgtcaaattatttacagat-3’ 
6627 lppA Fw 2 5’-cgctacatggagattaactcaat-3’ 
6645 lppB::FXF Fw 5’-ataaccacacaaagtataatgttattgttatgaaccgtacgtgtaggctggagctgcttc-3’ 
6646 lppA::FXF Rv 5’-cgccatttttattacgcaggtactattacttacggtatttcatatgaatatcctccttag-3’ 
6681 lppA aa42/43::tetR 5’-gctgtcttctgacgttcagactctgaacgctaaagttgacttaagacccactttcacat-3’ 
6682 lppA aa42/43::tetA 5’-gaacgtcggaacgcattgcgttcacgtcgttgctcagctgctaagcacttgtctcctg-3’ 
6683 lppA::lppB Fw        5’-ctgtcttctgacgttcagactctgaacgctaaagttgacacgctgagcgctaaagttgag-3’  
6686 lppA::21aa-lppB Rv 5’-gaacgtcggaacgcattgcgttcacgtcgttgctcagctgatcaacgtcggaacgcattg-3’  
6732 pal Fw  5’-ttccggcaactgatggtcag-3’ 
6733 pal Rv  5’-cgctatgccaaccagtaacga-3’ 
6743 lpp1b C-term tetR 5’-cacgatgtgcgccatttttattacgcaggtactattacttttaagacccactttcacatt-3’ 
6744 lpp1 C-term tetA 5’-cgctaaccagcgtctggacaaccaggctactaaataccgtctaagcacttgtctcctg-3’ 
6788 lpp1 -21 residues  5’-ctgcgtcgtctttagcagcctgaacgtcggaacgcat 

tgcatcgattttagcgttgctggagcaaccagccagcagagta-3’ 
7115 lppA Del. K78  5’-aatggcgcacgatgtgcgccatttttattacgcaggtactattaacggtatttagtagcctgg  
    ttgtccagacgctggttagcgcgagct-3’ 
7188 Lpp+63 mid section  5’-
ctgagcgctaaagttgagcagttgtctaacgacgttaatgcgatgcgttctgacgtccaaacattgtcagcgaaggtcgaacaattatccaac
-3’ 
7189 Lpp+63 end section 5’-
gttcaactttcgcattcagggtctgcacgtcggcacggatcgcctggacgtcggtagacagctgagagacatcgttggataattgttcgac-
3’ 
7190 Lpp +42 mid section 5’-
acgctgagcgctaaagttgagcagttgtctaacgacgttaatgcgatgcgttctgacgtccaaacattgtcagcgaaggtcgaacaattatcg
aat-3’  
7191 Lpp+ 63 fill 5’-
gaacgtcggaacgcattgcgttcacgtcgttgctcagctgggtcacatcgttgctgatctgttcaactttcgcattc-3’  
7192 Lpp+42 fill 5’-
gaacgtcggaacgcattgcgttcacgtcgttgctcagctggtccacgtccgatcgcatggcatttacatcattcgataattgttcgac-3’ 

 
a: FXF is used here as an abbreviation for the FRT-CmR-FRT and/or FRT-KmR-FRT antibiotic 
resistance cassettes 
b: lpp1 refers to lppA 
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