SUPPLEMENTAL FILES

Supplemental figures

Figure S1.

#170-1				1-707
#20-1		<i>'</i> ,		10
#1-0-2	TCTGGAATGGGCATGGGAGGCCCCGGAGCCACCTGT	<i></i>	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGG	-12
	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT		GTTACGAGTGTAAGATCAATGGCTACCCCAAACGG	-6
#F0-3	TCTGGAATGG	//	GCAGG	-108
	TCTGGAATGGGCATGGG	//	GGGCAGG	-95
#F0-4	TCTGGAATGGGCATGGGCCG <mark>AGG</mark> AGGCCCGGAGCCACCTGT	//	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGGGCAGG	WT
	TCTGGAATGGGCATGGG	//	GGCAGG	-100
#F0-5	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGCAGG	-3
	TCTGGAATGGGCATGGG	//	GGCAGG	-100
I	TCTGGAATGGGCATGGGCCG <mark>AGG</mark> AGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGG	-6
#F0-6	TCTGGAATGGGCATGGGCCG <mark>AGG</mark> AGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGCAGG	-2
	TCTGGAATGGGCATGGGGAGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGCAGG	-7
#F0-7	TCTGGAATGGGCATGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAATGGCAGG	-18+1
	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGCAGG	-2
	TCTGGAATGGGCATGGGCCGAGGAGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGAGG	-3
	TCTGGAATGGGCATGGG	11	GCAGG	-100
#F0-8	TCTGGAATGGGCATGGG	11	GGGCAGG	-99
	TCTGGAATGGGCATGGGCCGAGGAGGCCGGAGCCACCTGT	11	ACGAGTGTAAGATCAATGGCTACCCCAAACGTTTGGGGCAGG	+3
		11		-100
#r0_0		<i>''</i>		_100
#20-3		<i>''</i>		-109
#10 10		<i>''</i>		-2
#F0-10	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT	<i>'</i> .	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGG-CAGG	-1
"	TCTGGAATGG		GCAGG	-108
#F0-11	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT		GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGGGCAGG	WT
#F0-12	TCTGGAATGGGCATGGGCC		AAACGGGGCAGG	-92
	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT	//	TAAGATCAATGGCTACCCCAAACGGGAA	-13
	TCTGGAATGGGCCCGGAGGAGGCCCGGAGCCACCTGT	//	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGCAGG	-6+1
#F0-13	TCTGGAATGGGCATGGG	//	ACGGGGCAGG	-96
#F0-14	TCTGGAATGGGCATGGGCCG <mark>AGG</mark> AGGCCCGGAGCCACCTGT	//	GTTACGAGTGTAAGATCAATGGCTACCCACGGCAGG	-5+2
#F0-15	TCTGGAATGGGCATGGGCCG <mark>AGG</mark> AGGCCCGGAGCCACCTGT	//	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGGGCAGG	WT
	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGCAGG	-2
#F0-16	TCTGGAATGGGCATGG	11	АА	-107
	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGCAGG	-3
	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGCAGG	-2
#F0-17	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGAGG	-3
	TCTGGAATGGGCATGGGCGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGG	-6
#F0-18	TCTGGAATGGGCATGGG	11	AACGGGGCAGG	-95
	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGCAGG	-2
	TCTGGAATGGGCAT	11	GGGGCAGG	-101
	TCTGGAATGGGCATGGGCCG <mark>AGG</mark> AGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGG	-6
#F0-19	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGCAGG	-2
	TCTGGAATGGGCATGGGCCG <mark>AGG</mark> AGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGGGCA	-35
	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGGGCAGG	WT
	TCTGGAATGGGCATGGGCCG <mark>AGG</mark> AGGCCCGGAGCCACCTGT	11	AGTGTAAGATCAATGGCTACCCCAAACGGAAGCGGAGGAGG	+9
#F0-20	TCTGGAATGGGCAT	11	GGCAGG	-103
	TCTGGAATGGGCATGGG	11	TAGG	-103+1
#F0-21	TCTGGAATGGGCATGGGCCCGAGGAGGCCCCGGGGCCACCTGT	11	TACGAGTGTAAGATCAATGGCTACCCCAAACGGAATGCAGG	-1+3
	TCTGGAATGGGCATGGGC	11	AGG	-102
	TCTGGAATGGGCATGGGCCCGAGGAGGCCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGCAGG	-2
#F0-22	TCTGGAATGGGCATGGGCCGAGGAGGCCCGGAGCCACCTGT	11	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGG-CAGG	-1
	TCTGGAATGGGCA	11	GG	-108
#F0-23	тс	11	GCAGG	-116
#F0-24	TCTGGAATGGGCATGGG	11		-101
	ТСТССАЪТССССАТС	11		-103+2
#F0-25	TCTGGAATGGGCATGGG	,,		-101
#20-23		11		_1
	TOTOGRATOGOCATOG-CCOAGGAGGCCCGGAGCCACCTGT	11		-2 -2
#170 26		,,	GIIACGAGIGIAAGAICAAIGGCIACCCCAAACGGCAGG	Z
#20-26	TUTGGAATGGGUATGGGUUGAGGAGGCUUGGAGCUACCTGT	//	GTTAUGAGTGTAAGATUAATGGUTACUCUAAAUGGGGCAGG	100
#20.02		//		-106
#E0-27		//		-94
#10-28		//	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGG-CAGG	-7
	TCTGGAATGGGCATGGGAGGAGGCCCGGAGCCACCTGT	//	GTTACGAGTGTAAGATCAATGGCTACCCCAAACGGG-CAGG	-4

Figure S1. Generation of FBN1 knockout F0 rabbits.

(A) Sanger sequencing of the targeted region of *FBN1* in F0 rabbits. The highlights of sgRNA sequences and PAM sites are green and red, respectively; Bases of indel are in black within sgRNA sequence; WT represents wild-type *FBN1* sequence was detected.

(A) T7E1 analysis of POTS for sgRNA1 and sgRNA2. M, DL2000; OT1represent POTS of sgRNA1; OT2 represent POTS of sgRNA2. (B) Chromatogram sequence analysis of 12 POTS for sgRNA1 and sgRNA2 using PCR products. The sequences of the POTS and the PAM are

represented in shadow.

Figure S3.

Figure S3. Hereditary of FBN1 KO rabbits.

(A) Generation of F1 rabbits by #F0-7 mated with WT rabbits. (B) T-cloning sequence analysis of the *FBN1* Het rabbits. Target sites of the two sgRNA sequences, sgRNA1 and sgRNA2, are highlighted in green, protospacer-adjacent motif (PAM) sequence is highlighted in red; WT represents gene sequence of rabbit. (C) The predicted protein sequences of *FBN1* Het rabbits, showing the premature termination codon (PTC) mutation in *FBN1*. (D) The weight comparation shows the growth retarded were determined in the *FBN1* Het rabbits (n=12). (E) Survival curves shows the high mortality of *FBN1* Het rabbits (WT, n=6; *FBN1* Het, n=12). Data are presented as mean \pm SEM and analyzed using student's t-tests with Graphpad Prism software 6.0. *p < 0.05; ** p < 0.01; *** p < 0.001. Scale bars: 50 µm.

Supplemental tables

Desirient	gRNA/Cas9	gRNA/Cas9 No. embryos		No. mutant	
Recipient	(ng/µl)	transferred	(%)	rabbits (%)	
1	30/200	56	3(5)	2(67)	
2	30/200	56	10(18)	9(90)	
3	30/200	42	10(24)	10(100)	
4	30/200	43	5(12)	5(100)	
Total (average)		197	28(14)	26(93)	

Table S1: Generation of FBN1 knockout rabbits using CRISPR/Cas9

NO.F1	Constrans	Transcription is terminated prematurely	Phenotype	
generation	Genotype	or not		
#1-1	WT/-100	\checkmark	~	
#1-2	WT/-3	×	×	
#1-3	WT/-3	×	×	
#1-4	WT/-2	\checkmark	\checkmark	
#1-5	WT/-18+1	×	×	
#1-6	WT/-2	\checkmark	\checkmark	
#1-7	WT/-18+1	×	×	
#1-8	WT/-2	\checkmark	\checkmark	
#2-1	WT/-18+1	×	×	
#2-2	WT/-18+1	×	×	
#2-3	WT/-2	\checkmark	\checkmark	
#2-4	WT/-2	\checkmark	\checkmark	
#2-5	WT/-18+1	×	×	
#2-6	WT/-100	\checkmark	\checkmark	
#2-7	WT/-2	\checkmark	\checkmark	
#3-1	WT/-2	\checkmark	\checkmark	
#3-2	WT/-2	\checkmark	\checkmark	
#3-3	WT/-3	×	×	
#3-4	WT/-18+1	×	×	
#3-5	WT/-100	\checkmark	\checkmark	
#3-6	WT/-2	\checkmark	\checkmark	

Table S2: Genotype and phenotype in F1 generation rabbits

NO.	Name	Primers	Sequence(5'-3')	Produce size	e (bp)
1	SgRNA1	gRNA-1-F	TAGGTCTGGAATGGGCAT	GGGCCG	20
		gRNA-1-R	AAACCGGCCCATGCCCAT	TCCAGA	
2	SgRNA2	gRNA-2-F	TAGGATGGCTACCCCAAAG	CGGGGC	20
		gRNA-2-R	AAACGCCCCGTTTGGGGTA	AGCCAT	
3	FBN1	FBN1-F	TGCCTCACATCTAGCTCCC	Т	745
		FBN1-R	AGAAACTCCAGAAAGCCC	CG	
4	qPCR-FBN1	FBN1-qPCR-F	TAGCTCCTTCCTGTGGCTC	С	90
		FBN1-qPCR-R	GGCATAGACAGTGGTCGT	CA	
5	qPCR-GAPDH	GAPDH-F	ATCCATTCATTGACCTCCA	CTAC	179
		GAPDH-R	GTACTGGGCACCAGCATCA	AC	

Table S3: Oligonucleotide used for sgRNA, PCR and qPCR.

1 and 2 were used for the construction of sgRNA expression plasmids; 3 was used for the PCR mutation detection; 4 and 5 were used for the qPCR detection.

sgRNA	Potential Off Target Site	Number of mismatch	Position	PCR Primer
	TATEGAATGAGCATGGGCCA	3	chr1:-130169142	F: ATCTCCGAAGCCAACAGAAG
				R: TCTGGCATGGTAAGGAGAAAC
	GTTAGAATGTGCATGGGCCG AAG	4	chr12:-93730077	F: GTCAAGTGGCAATGGGTTTC
				R: CCACAAGATGTCCCTGAGATG
	TCAGGCATGGGCATGGGCCC TGG	3	chr9:-64499502	F: ACACCATTGGCCCAACTAA
s1				R: TTAGGAAAGTACAACGGGCTAC
	GTTGGCAGGGGCATGGGCCG CAG	4	chr17:+81565876	F: GGGATACCACCTTGTACCAATAA
				R: GAAGAGGGCTTGATCCACAA
	T <mark>G</mark> TGG <mark>TACGT</mark> GCATGGGCCG TAG	4	chr13:+141566422	F: AACTGTGACAGGGAATCCTAAC
				R: CCTGTAGCTCACACACAAACTA
	ACTGGAGTGGGCATGGGCAG AGG	3	chr20:+32533869	F: GAGCCAGGATGTGGTTTCTT
				R: CCTGTATCTGCTGGGTTGTG
	A <mark>CTT</mark> CTGCCCCAAACGGGGC CGG	4	chr19:-39585556	F: CGCAGGAAGCAATGGAAATG
				R: TGTGTGACAGGGCAAAGAG
	GGGCCTACCCCGAACGGGGC GAG	4	chr7:-43683785	F: CACACACAGTCTCTCTGTTCAC
				R: TTCCTTCTGCACACCATGTC
	A <mark>AT</mark> GC <mark>AC</mark> CCCCAAACGGGGC AGG	4	chrUN0:-1338853	F: CATGTCTGTCTCTCTGCCTTAT
s2				R: TCTCTTCCCTGCTAACTCTTTG
	AT <mark>AA</mark> CCACCCCCAACGGGGC GGG	4	chr8:+14988562	F: CAAGACACAAAGAAGCACCATC
				R: CCCACCAAGTTATTGGTCTGTA
	TTGTTTACCCCAAAAGGGGGC GGG	4	chr1:-18383438	F: AGAGCAGCTTTAGGAACCTTTG
			R: TCCTGTCTCCCTGCAGTTT	
	ATGGCT <mark>TGCTCAG</mark> ACGGGGC CAG	4	chr3:-24783207	F: AGGGAGTGTCCAGGAGTAAA
				R: TAGCAAGCAGAGAACACTTCAG

Table S4. 12 potential off-target sites examined by PCR and primers used for list.