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Supplementary Figure 1. Specular θ-2θ X-ray diffraction patterns of the single-crystal 

flakes (N=1 to N=6). 
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Supplementary Figure 2. Quantification of the refractive index for N=5. (a) Angular view 

and (b) Side-view of the examined flake taken under SEM. (c) Reflection spectrum and (d) 

Several possible n′(λ) curves obtained using various mode numbers, with the correct n′(λ) curve 

shown in red. The cyan dot denotes the refractive index of N=5 at the absorption edge 

determined from step 2. 
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Supplementary Figure 3. Quantification of the refractive index for N=4. (a) Angular view 

and (b) Side-view of the examined flake taken under SEM. (c) Reflection spectrum and (d) 

Several possible n′(λ) curves obtained using various mode numbers, with the correct n′(λ) curve 

shown in red. The cyan dot denotes the refractive index of N=4 at the absorption edge 

determined from step 2. 
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Supplementary Figure 4. Quantification of the refractive index for N=3. (a) Angular view 

and (b) Side-view of the examined flake taken under SEM. (c) Reflection spectrum and (d) 

Several possible n′(λ) curves obtained using various mode numbers, with the correct n′(λ) curve 

shown in red. The cyan dot denotes the refractive index of N=3 at the absorption edge 

determined from step 2. 
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Supplementary Figure 5. Quantification of the refractive index for N=2. (a) Angular view 

and (b) Side-view of the examined flake taken under SEM. (c) Reflection spectrum and (d) 

Several possible n′(λ) curves obtained using various mode numbers, with the correct n′(λ) curve 

shown in red. The cyan dot denotes the refractive index of N=2 at the absorption edge 

determined from step 2. 
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Supplementary Figure 6. Quantification of the refractive index for N=1, part 1. (a) Angular 

view and (b) Side-view of the thick layer due to a fissure formed at the edge of an N=1 flake. (c) 

Reflection spectrum and (d) Several possible n′(λ) curves obtained using various mode numbers 

for the thick layer. The cyan dot denotes the refractive index of N=1 at the absorption edge 

determined from step 2. 
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Supplementary Figure 7. Quantification of the refractive index for N=1, part 2. (a) Optical 

microscopic image and (b) Reflection spectrum of the thin layer of N=1. (c) Several possible 

n′(λ) curves obtained using various mode numbers for the thin layer, whose dispersions match 

the n′(λ) curves obtained using various mode numbers for the thick layer (which also appears in 

Supplementary Fig. 6d). The determined thickness for the thin layer is 4.86 µm. (d) Several 

possible n′(λ) curves obtained using various mode numbers for the thin layer with the correct one 

shown in red. (e) and (f) present the n′(λ) curves obtained using incorrect thicknesses for the thin 

layer; 4.96 µm shown in (e) and 4.76 µm shown in (f). The cyan dots in (c) to (f) denote the 

refractive index of N=1 at the absorption edge determined from step 2.  
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Supplementary Figure 8. Optical microscopic images of the small flakes used for step 1 

(captured during the reflection measurements). The black-square dot highlights the location 

at which the reflection spectrum was taken. 
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Supplementary Figure 9. Reflection of a dielectric layer floating in air at various incidence 

angles and wavelengths obtained from transfer matrix calculation. The dielectric layer is 6-

µm thick, having a constant real part of refractive index of 2.2, and zero imaginary part. 
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Supplementary Figure 10. Determination of the refractive indices at the absorption edge 

wavelengths. Transfer-matrix calculation predicted reflection in (a), and transmission in (b), for 

a 6-µm thick slab floating in air. The slab takes various values of the real (n′) and imaginary 

parts (n′′) of refractive index, shown as the y and x axes, and the reflection & transmission are 

color-coded in (a) and (b), respectively. (c) The values of n′ as a function of n′′, which gives a 

calculated reflection matching the measured one (shown in Supplementary Fig. 11) at the 

absorption edge wavelengths. (d) The identified values of n′ plotted at the corresponding 

absorption edge wavelengths for different compositions examined in the work. 

 



12 
 

 

Supplementary Figure 11. Reflection (R), transmission (T) and photoluminescence (PL) 

spectra of N=1 to 6. The PL spectra were acquired by excitation at 450 nm. Note that the 

transmission and reflection spectra for each composition were not taken at the same spot, and the 

transmission values are divided by a factor of 3. 
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Supplementary Figure 12. SEM image of an N=5 flake demonstrating the layer-by-layer 

growth. 
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Supplementary Figure 13. Schematic drawing of the bead-spring model for N=1 to 6. Each 

Pb-I octahedron is coarse-grained by a blue bead; those Pb-I octahedra in direct contact are 

connected by the blue springs with a spring constant of ka; those Pb-I octahedra separated by an 

organic layer are linked by the red springs with a spring constant of kb. 
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Supplementary Figure 14. Crystal structures and crystallographic orientations of the 

tetragonal and cubic phases of MAPbI3. The octahedral layers along the [100] direction of the 

tetragonal phase, and [110] direction of the cubic phase, are stacked in a staggered manner. The 

octahedral layers along the [110] direction of the tetragonal phase, and [100] direction of the 

cubic phase, are stacked in an eclipsed manner. The stacking configuration in 2D-RPs follows 

the eclipsed manner.  
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Supplementary Figure 15. Dependence of va on ka for a single chain of MAPbI3 beads. Each 

bead has a mass of ma3=1.0295×10-24 kg and a spring length of 6.39 Å. 
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Supplementary Figure 16. (a) Dependence of b (the cross-plane lattice constant) on N, and its 

linear fit. (b) The distances between neighbouring Pb-I octahedral sheets in N=2 to 6. 
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Supplementary Figure 17. Specular θ-2θ X-ray diffraction pattern of a single-crystal flake 

of (HA)PbI4. 
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Supplementary Figure 18. Quantification of the refractive index for (HA)PbI4. (a) Optical 

microscopic image of an (HA)PbI4 flake. (b) Red: reflection of a thin layer of (HA)PbI4 taken at 

the edge of the flake as shown in (a); blue: reflection of (HA)PbI4 with the correct absolute 

amplitude (taken at exact normal incidence). (c) Several possible n′(λ) curves obtained using the 

same trial mode number (m0=21) and different trial sample thicknesses. (d) Several possible n′(λ) 

curves obtained using the same trial mode number (m0=20) and different trial sample 

thicknesses, with the correct n′(λ) curve shown in red. (c) and (d) were calculated based on the 

interference pattern exhibited in the red curve in (b). The cyan dots in (c) and (d) denote the 

refractive index of (HA)PbI4 at the absorption edge determined from the blue curve in (b). 
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Supplementary Figure 19. Representative experimental and fitted kinetic traces of -ΔR/R at 

955 nm for N=1 to 6. Red-solid lines are the experimental data; cyan-dashed lines have the form 

of A𝑒−𝑡/𝜏0 (representing hot carrier relaxation and 3rd order carrier recombination), which were 

subtracted from the experimental data and result in the black-dashed lines. The blue-dashed lines 

are best fits to the black-dashed lines and have the form B𝑒−𝑡/𝜏1 + C𝑒−𝑡/𝜏2 + D𝑒−𝑡/𝜏3sin (
2𝜋𝑡

𝑇
−

𝜑). Here B𝑒−𝑡/𝜏1 captures the 2nd order recombination, C𝑒−𝑡/𝜏2 represents the 1st order 

recombination and lattice temperature decay, D𝑒−𝑡/𝜏3 describes the decay of the amplitude of the 

sinusoidal oscillation. The oscillation period is denoted as T. An initial phase lag of φ is 

introduced to the sine function, to account for the fact that acoustic phonons are not 

instantaneously launched by the pump. 

 



21 
 

 

Supplementary Figure 20. Phonon dispersion diagrams calculated for the bead-spring 

model for N=1 to 6. ka=17 N·m-1 and kb=1.13 N·m-1 were used in the calculation. The wave 

vector q is plotted in unit of 2π/b in (a), and in unit of nm-1 in (b). 
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Supplementary Figure 21. The calculated eigen-displacements of the individual beads in a 

unit cell for N=1 to 6. The bead indices follow those defined in Supplementary Fig. 13. ka=17 

N·m-1 and kb=1.13 N·m-1 were used in the calculation. Note that the polarization vector 𝒆(𝐪) =

[
𝑒(1, 𝐪)
…

𝑒(𝑛, 𝐪)
] has length of unity. 
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Supplementary Figure 22. Transient reflection spectral maps of N=2 and N=4 acquired 

with near-exciton gap pump excitation. (a) to (c) ΔR/R spectral maps for N=2 acquired with 

570-nm pump excitation. Fluences used were 0.16, 0.41, and 0.82 mJ·cm-2, respectively. (d) to 

(f) ΔR/R spectral maps for N=4 acquired with 640-nm pump excitation. Fluences used were 0.09, 

0.18, and 0.26 mJ·cm-2, respectively. 
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Supplementary Figure 23. Transient reflection measurements of N=2 with different pump 

wavelengths. (a) to (c) ΔR/R spectral maps acquired with 500-nm pump excitation. Fluences 

used were 0.05, 0.18, and 0.29 mJ·cm-2, respectively. (d) to (f) ΔR/R spectral maps acquired with 

400-nm pump excitation. Fluences used were 0.11, 0.21, and 0.35 mJ·cm-2, respectively.  
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Supplementary Figure 24. Representative ΔR/R kinetics of N=2 and N=4 with different 

pump wavelengths and fluences. (a) ΔR/R kinetics of N=2 with different pump wavelengths. 

(b) ΔR/R kinetics of N=2 excited with 400-nm pump. (c) ΔR/R kinetics of N=2 excited with 500-

nm pump. (d) ΔR/R kinetics of N=2 excited with 570-nm pump. (e) ΔR/R kinetics of N=4 excited 

with 640-nm pump.  
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Supplementary Figure 25. Calculated electronic band structures for N=1 in (a) and N=3 in (b). 

Un-strained results are shown in blue circles; 1% strained results are shown in red circles. The 

calculated bandgap for N=1 is 2.15 eV (unstrained) and 2.14 eV (strained); the calculated 

bandgap for N=3 is 1.73 eV (unstrained) and 1.77 eV (strained). 
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 b (Å) 
index of the strongest 

diffraction peak 
2θ value (°) 

N=1 27.652 (0 8 0) 25.7474 

N=2 39.348 (0 12 0) 27.1696 

N=3 51.960 (0 16 0) 27.4258 

N=4 64.384 (0 20 0) 27.687 

N=5 77.014 (0 24 0) 27.7766 

N=6 89.408 (0 28 0) 27.9881 

Supplementary Table 1. Lattice constants along b (cross-plane direction), indices of the 

strongest diffraction peak, and the corresponding 2θ values (with Cu-Kα radiation). 
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Supplementary Note 1. Two-step process to determine the below-bandgap n′(λ) 

Step 1: determining several possible n′(λ) curves for each composition 

      We acquired static reflection spectra for several specific regions of each layered perovskite 

composition using a Filmetrics F40 microscope, and located the wavelengths of the reflection 

minima, from which we obtained several possible n′(λ) curves (as those shown in Fig. 3d) using 

the equation 2𝑛′(𝜆)𝑙 = 𝑚𝜆, only one of which is correct. Note that destructive interferences 

occur when differences in the optical pathlength are equal to wavelength multiplied by an 

integer, since light reflected at the top interface (from a low- to a high-index medium) 

experiences an additional phase shift of π. Here the thickness l is an input parameter that was 

determined from SEM measurements, and m is a mode number (specific for each reflection 

minimum). Because only the edges can be side-viewed under SEM for precise thickness 

determination, we searched for flakes near the edges and recorded reflection spectra in those 

locations. Flakes of several-µm thickness were chosen, as still thicker flakes lead to unresolved 

reflection minima (too closely-spaced, especially on the blue side where λ is small), whereas 

thinner flakes (in the 1~3 µm range) produce undesirably sparse spacings of reflection minima 

and hence too few (poorly constraining) data points on the n′(λ) curve. Note that in transient 

reflection measurements for the study of CLAPs, we purposefully examined large flakes with 

lateral dimensions in the millimeter range. However, these laterally large flakes are also thick in 

the cross-plane dimension (in the tens-of-µm range), thus they do not exhibit resolvable 

reflection minima. As a result, for this step of index determination, we did not use large flakes 

but instead examined small flakes, which have extruded, thinner regions at the edges. 

      Supplementary Figs. 2 to 5 present the SEM images and reflection spectra of thin regions at 

the edges, and several possible n′(λ) curves for N=5, 4, 3 and 2. Similar results for N=6 are 

shown in Fig. 3 of the main text. Note that for N=6 to 2, we could examine a-few-µm-thick 

extrusions at the edges. However, the N=1 flakes tend to grow thicker so we couldn’t locate a 

clean, thin extrusion (as we could for N=2 to 6). Nevertheless, as presented in Supplementary 

Fig. 6a, occasionally we could find fissures inside the N=1 flakes, which are parallel to the Pb-I 

sheets and create clean interfaces. These interfaces reflect light and yield interference pattern in 

the reflection spectra (when measured from the top surface) of similar quality as for N=2 to 6 

flakes. Because of the different reflective properties of these fissures, these regions produce 
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distinct contrast when viewed from the top surface (Supplementary Fig. 7a), so they can be 

identified and measured under the Filmetrics microscope (Supplementary Fig. 7b). 

     Most fissures do not extend to the crystal edge, but those reaching the edges of the flake 

(which were only rarely seen) permit the thickness measurements. A 12.3-µm thick layer, due to 

a fissure formed near and extended to the crystal edge, is shown in Supplementary Figs. 6a and 

6b. Because of the large layer thickness, the reflection minima on the blue side of the spectrum 

cannot be well resolved, thereby prohibiting the determination of n′(λ) (see the green region in 

Supplementary Figs. 6c and 6d). Nonetheless, a thin layer with an unknown thickness terminated 

by a fissure formed inside the flake (which does not extend to the edge of the flake), manifested 

as the brighter region at the centre of the optical microscopic image shown in Supplementary 

Fig. 7a, exhibits less dense, and hence identifiable reflection minima throughout the entire below 

bandgap region (Supplementary Fig. 7b). Because the thick layer with a known thickness and the 

thin layer with an unknown thickness have the same n′(λ), we set the thickness of the thin layer 

as a fitting parameter, which can be determined by matching the n′(λ) curves calculated from 

both layers, as displayed in Supplementary Fig. 7c. Using the fitted thickness (4.86 µm) for the 

thin layer, we could then obtain several possible n′(λ), as further plotted in Supplementary Fig. 

7d. Note that an incorrect thickness of the thin layer will lead to disagreements between the n′(λ) 

dispersions obtained from the two layers for all the trial mode numbers used in the calculations. 

For example, we plotted the calculated n′(λ) curves for the thin layer with a thickness of 4.96 µm 

(Supplementary Fig. 7e) and 4.76 µm (Supplementary Fig. 7f), which are only 2% off from the 

true thickness (4.86 µm); such incorrect thickness leads to disagreement in the slopes of n′(λ) 

between the two sets of curves (for the thick and the thin flakes). 

Step 2: determining n′(λ) at the absorption edge 

      In step 1, the spectral locations of the reflection minima vary negligibly with small deviations 

of the incidence angle from normal incidence at 0°. This was evident from the fact that reflection 

spectra collected from the two opposite sides of the flakes exhibit identical wavelengths of 

reflection minima (note that depending on the smoothness, incidence angles from the two sides 

may not be the same, especially for the small flakes used in step 1). Transfer matrix calculation 

demonstrates that the shifts of reflection minima below 10° incidence angle are no more than 10 

nm compared to the normal incidence case (see Supplementary Fig. 9); this arises because at 
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small θ values, the additional factor of cosθ introduced into the equation 2𝑛′(𝜆)𝑙 = 𝑚𝜆 (which 

then becomes 2𝑛′(𝜆)𝑙 ∙ cos𝜃 = 𝑚𝜆) is very close to 1; here θ is the angle of refraction, which is 

notably still smaller than the incidence angle due to the Snell’s law. 

      Although the reflection minima wavelengths are not sensitive to small deviations of the 

incidence angle from 0°, the absolute reflection intensities are. This arises because at oblique 

incidence the beam is deflected by the sample away from the microscope objective, which 

reduces the collection efficiency. To get the absolute reflectance for the quantification of n′(λ) at 

some wavelength (the specific choice of wavelength is discussed later), we examined large flakes 

in the centre regions with good surface smoothness at normal incidence. Since for these large 

flakes we could not measure the thickness (in the centre regions), the phase relation between the 

top- and bottom-reflected waves in the below bandgap regime is unknown, and therefore we did 

not use the absolute reflectance in this region to deduce n′(λ). However, at the wavelength of the 

absorption edge (denoted as λedge) where the material becomes absorptive, the wave cannot reach 

the bottom of the flake due to attenuation, therefore the reflection minima arising from 

interference effect disappear. To illustrate this point, we show in Supplementary Fig. 10a the 

transfer-matrix calculated reflectivity of a 6-µm thick slab with various real and imaginary parts 

of the refractive index, which are denoted as n′ and n′′, respectively. The oscillatory change of 

reflectivity with n′ observed at small n′′ values (specifically, when n′′<0.5) shown in 

Supplementary Fig. 10a resembles the oscillatory change of reflectivity with wavelength in the 

below bandgap range, as both arise from the interference effects governed by the same equation. 

With n′′ larger than 0.5, light does not reach the bottom of the flake, so no interference effect is 

present. This is further demonstrated in Supplementary Fig. 10b, which is the transmission 

analogue of Supplementary Fig. 10a and shows that transmission at n′′>0.5 is indeed negligibly 

small. Note that 0.5 here is only an approximate boundary for n′′ and need not be precise. As a 

result, we can conclude that at λedge where interference effect just disappears, n′′ should be equal 

or greater 0.5. We set an upper bound of 1.0 on n′′ at λedge for the reasons that (i) n′′ has to vary 

continuously; (ii) λedge is less than 10 nm bluer than the bluest reflection minimum arising from 

interference effect (as shown in Supplementary Figs. 2 to 7, and Fig. 3); n′′ cannot increase from 

0.5 to a value larger than 1.0 with such small wavelength range (Supplementary Fig. 11 shows 

that the transmission at λedge is either above or close to zero).  
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      Note that the reflection at λedge also exhibits a minimum (equivalently, we can also say that 

this minimum in reflection is how λedge is defined), for the following two reasons: (1) On the blue 

side of λedge, both n′′ and n′ increase with a decreasing wavelength (a universal trend for all 

direct-bandgap semiconductors), which, as evident from Supplementary Fig. 10a, leads to an 

increase of the reflectivity; (2) On the red side of λedge, both n′′ and n′ decrease, which should 

decrease the reflectivity. On the red part of the below bandgap region (a few hundred nm away 

from λedge), n′′ is nearly 0 (evident from 70% to 90% transmission measured for a-few-tens-µm 

thick flakes; see Supplementary Fig. 11). Therefore, on the red side of λedge, n′′ has to gradually 

decrease to zero, which is manifested by the growing amplitude of the oscillations with an 

increasing wavelength in the reflection spectra (Supplementary Figs. 2 to 7, and Fig. 3). 

However, on the red side of λedge, the reflection from the bottom interface starts to contribute; 

this results in an enhanced reflectivity with an increasing wavelength.  

      The measured reflection spectra with the correct absolute amplitude are plotted in 

Supplementary Fig. 11. Here each λedge is highlighted by a vertical, black-dashed line, where a 

minimum in reflection appears. This reflection minimum at λedge can be distinguished from those 

resulting from the interference effects (should the latter arise in the reflection spectrum), because 

on the blue side of λedge the reflectivity increases very slowly with a decreasing wavelength, 

whereas reflection minima due to interference effects have very close spacings as the wavelength 

decreases.  

      As discussed above, we confined n′′ between 0.5 to 1.0, and found the corresponding n′, for 

each n′′, that gives a calculated reflectivity matching the measured reflection at λedge. The 

identified Re(n) as a function of n′′ for N=1 to 6 are shown in Supplementary Fig. 10c, which are 

further plotted in Supplementary Fig. 10d as a function of wavelength for different compositions. 

The error bars in Supplementary Fig. 10d correspond to uncertainties in n′ shown in 

Supplementary Fig. 10c, which in turn arise from the uncertainties in n′′. Knowing n′ at λedge 

(shown as those cyan dots in Supplementary Figs. 2 to 7, and Fig. 3) permits the identification of 

the correct n′(λ) curve (shown in red) from the set of curves. Also note that for the determination 

of n′ when n′′>0.5, the actual layer thickness is not important, because the wave is strongly 

attenuated and no contribution from the bottom-side reflection is present. 
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Supplementary Note 2. Bead-spring model 

      Supplementary Fig. 13 shows schematics of the bead-spring model. We differentiated the 

masses for 1) an isolated octahedron (with the chemical formula of PbI4) as appearing in N=1 

with ma1=1.187×10-24 kg; (2) an edge-octahedron (with the chemical formula of (MA)0.5PbI3.5) as 

appearing in N=2~6 with ma2=1.1082×10-24 kg; (3) an inner octahedron (with the chemical 

formula of MAPbI3) as appearing in N=2~6, ∞, with ma3=1.0295×10-24 kg. The bead-spring 

model is in one-dimension only, so the words “isolated”, “edge” and “inner” are only related to 

the cross-plane direction. 

As an example, for N=3, the equations of motion are written as 

𝑚𝑎2𝑢̈3𝑝+1 = 𝑘𝑎(𝑢3𝑝+2 − 𝑢3𝑝+1) − 𝑘𝑏(𝑢3𝑝+1 − 𝑢3𝑝) 

𝑚𝑎3𝑢̈3𝑝+2 = 𝑘𝑎(𝑢3𝑝+3 − 𝑢3𝑝+2) − 𝑘𝑎(𝑢3𝑝+2 − 𝑢3𝑝+1) 

𝑚𝑎2𝑢̈3𝑝+3 = 𝑘𝑏(𝑢3(𝑝+1)+1 − 𝑢3𝑝+3) − 𝑘𝑎(𝑢3𝑝+3 − 𝑢3𝑝+2) 

Here p is the index of the unit cell. Assuming a solution of the form 𝑢3𝑝+𝑗 = 𝑈𝑗exp[𝑖𝑝𝑙3𝑞 −

𝑖𝜔𝑡], where q is the wavevector, 𝑗 = 1, 2, 3, and 𝑙3 = 2𝑥1 + 𝑥2 is equal to the lattice parameter 

along b, we obtain the following set of equations, 

𝑚𝑎2𝜔
2𝑈1 − 𝑘𝑎𝑈1 − 𝑘𝑏𝑈1 + 𝑘𝑎𝑈2 + 𝑘𝑏𝑈3exp(−𝑖𝑙3𝑞) = 0 

𝑚𝑎3𝜔
2𝑈2 + 𝑘𝑎𝑈1 − 𝑘𝑎𝑈2 − 𝑘𝑎𝑈2 + 𝑘𝑎𝑈3 = 0 

𝑘𝑏𝑈1exp(𝑖𝑙3𝑞) + 𝑘𝑎𝑈2 − 𝑘𝑎𝑈3 − 𝑘𝑏𝑈3 +𝑚𝑎2𝜔
2𝑈3 = 0 

Non-trivial solution exists only if the determinant of the coefficients of 𝑈𝑗 is zero, i.e., 

|

𝑚𝑎2𝜔
2 − 𝑘𝑎 − 𝑘𝑏 𝑘𝑎 𝑘𝑏exp(−𝑖𝑙3𝑞)

𝑘𝑎 𝑚𝑎3𝜔
2 − 2𝑘𝑎 𝑘𝑎

𝑘𝑏exp(𝑖𝑙3𝑞) 𝑘𝑎 𝑚𝑎2𝜔
2 − 𝑘𝑎 − 𝑘𝑏

| = 0 

Similarly, the dispersion equation for N=1 is 𝑚𝑎1𝜔
2 − 2𝑘𝑏 + 𝑘𝑏[exp(−𝑖𝑙1𝑞) + exp(𝑖𝑙1𝑞)] = 0. 

The dispersion matrix for N=2 is 

|
𝑚𝑎2𝜔

2 − 𝑘𝑎 − 𝑘𝑏 𝑘𝑎 + 𝑘𝑏exp(−𝑖𝑙2𝑞)

𝑘𝑎 + 𝑘𝑏exp(𝑖𝑙2𝑞) 𝑚𝑎2𝜔
2 − 𝑘𝑎 − 𝑘𝑏

| = 0 

The dispersion matrix for N=4 is  
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||

𝑚𝑎2𝜔
2 − 𝑘𝑎 − 𝑘𝑏 𝑘𝑎 0 𝑘𝑏exp(−𝑖𝑙4𝑞)

𝑘𝑎 𝑚𝑎3𝜔
2 − 2𝑘𝑎 𝑘𝑎 0

0 𝑘𝑎 𝑚𝑎3𝜔
2 − 2𝑘𝑎 𝑘𝑎

𝑘𝑏exp(𝑖𝑙4𝑞) 0 𝑘𝑎 𝑚𝑎2𝜔
2 − 𝑘𝑎 − 𝑘𝑏

|| = 0 

The dispersion matrix for N=5 is 

|

|

𝑚𝑎2𝜔
2 − 𝑘𝑎 − 𝑘𝑏 𝑘𝑎 0 0 𝑘𝑏exp(−𝑖𝑙5𝑞)

𝑘𝑎 𝑚𝑎3𝜔
2 − 2𝑘𝑎 𝑘𝑎 0 0

0 𝑘𝑎 𝑚𝑎3𝜔
2 − 2𝑘𝑎 𝑘𝑎 0

0 0 𝑘𝑎 𝑚𝑎3𝜔
2 − 2𝑘𝑎 𝑘𝑎

𝑘𝑏exp(𝑖𝑙5𝑞) 0 0 𝑘𝑎 𝑚𝑎2𝜔
2 − 𝑘𝑎 − 𝑘𝑏

|

|
= 0 

The dispersion matrix for N=6 is 

|

|

𝑚𝑎2𝜔
2 − 𝑘𝑎 − 𝑘𝑏 𝑘𝑎 0 0 0 𝑘𝑏exp(−𝑖𝑙6𝑞)

𝑘𝑎 𝑚𝑎3𝜔
2 − 2𝑘𝑎 𝑘𝑎 0 0 0

0 𝑘𝑎 𝑚𝑎3𝜔
2 − 2𝑘𝑎 𝑘𝑎 0 0

0 0 𝑘𝑎 𝑚𝑎3𝜔
2 − 2𝑘𝑎 𝑘𝑎 0

0 0 0 𝑘𝑎 𝑚𝑎3𝜔
2 − 2𝑘𝑎 𝑘𝑎

𝑘𝑏exp(𝑖𝑙6𝑞) 0 0 0 𝑘𝑎 𝑚𝑎2𝜔
2 − 𝑘𝑎 − 𝑘𝑏

|

|

= 0 
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Supplementary Note 3. Determination of the below-bandgap n′(λ) for (HA)PbI4 

The (HA)PbI4 single-crystal flakes (XRD pattern shown in Supplementary Fig. 17) exhibit 

interference patterns in the reflection spectrum (Supplementary Fig. 18) due to fissure formed 

inside the crystal. However, we could not locate a fissure extended to the edge of the crystal, as 

we could for N=1, for the determination of the corresponding thickness. Here we used a slightly 

different approach to obtain n′(λ) for (HA)PbI4. We first determined n′(λ) at the absorption edge 

as described in Supplementary Note 1, step 2. The determined n′(λ) at the absorption edge is 

shown as the cyan dot in Supplementary Figs. 18c and 18d. We then recall that, as discussed in 

the main text, 𝑇(𝜆) =
𝜆

2𝑣𝑛′(𝜆)
, or equivalently, 𝑣 =

𝜆

2𝑇(𝜆)𝑛′(𝜆)
. Because the velocity is fixed, we 

have 
𝜆1

2𝑇(𝜆1)𝑛′(𝜆1)
=

𝜆2

2𝑇(𝜆2)𝑛′(𝜆2)
, or 

𝑛′(𝜆2)

𝑛′(𝜆1)
=

𝜆2𝑇(𝜆1)

𝜆1𝑇(𝜆2)
, where 𝜆1 and 𝜆2 are any two wavelengths in the 

probed spectral window shown in Fig. 5a. Since 
𝜆2𝑇(𝜆1)

𝜆1𝑇(𝜆2)
 can be obtained from the transient 

spectral map, the equation 
𝑛′(𝜆2)

𝑛′(𝜆1)
=

𝜆2𝑇(𝜆1)

𝜆1𝑇(𝜆2)
 provides a constraint on the shape of the n′(λ) curve. As 

shown in Supplementary Fig. 18c, we first varied the value of m0 (the mode number of the first 

reflection dip), and found that the shape of n′(λ) cannot match with that predicted by the equation 

𝑛′(𝜆2)

𝑛′(𝜆1)
=

𝜆2𝑇(𝜆1)

𝜆1𝑇(𝜆2)
, regardless of any trial thickness. Only with the correct m0, as shown in 

Supplementary Fig. 18d, could we obtain the n′(λ) curve that both match with the equation 

𝑛′(𝜆2)

𝑛′(𝜆1)
=

𝜆2𝑇(𝜆1)

𝜆1𝑇(𝜆2)
, and the cyan dot. The correct n′(λ) curve for (HA)PbI4 is shown in Supplementary 

Fig. 18d as the red line. 
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Supplementary Note 4. Calculation of the mean square displacement 

The (time-averaged) mean square displacements of a bead in the bead-spring model is calculated 

as 〈|𝑢(𝑗, 𝑡)|2〉 =
ℏ

2𝑁𝑚𝑗
∑ [𝜔(𝐪)]−1𝐪 [1 + 2𝑛(𝐪, 𝑇)]|𝑒(𝑗, 𝐪)|2, where u stands for the displacement 

(see Supplementary Fig. 13), j labels the jth bead in a unit cell, ω(q) is the angular frequency at 

wavevector q, e(j,q) is the jth component of the polarization vector, n(q,T) is the phonon 

occupation number. For phonons we have 𝑛(𝐪, 𝑇) =
1

exp[ℏ𝜔(𝐪)/𝑘𝐵𝑇]−1
 with kB being the 

Boltzmann constant and T being the temperature. The computed dispersion diagrams and the 

e(j,q) of each individual bead are plotted in Supplementary Figs. 20 and 21, respectively. Note 

that in Supplementary Figs. 20 and 21, the maximum of q is 2π/b instead of π/b, because the unit 

cell length of the bead-spring model is half of that of the actual material’s unit cell; the latter is 

denoted as b. The pump pulse raises the temperature, and with it the mean square displacement 

via the change of 𝑛(𝐪, 𝑇), which is the only temperature dependent term. At small ΔT, the 

response of the mean square displacement to the temperature rise is written as 
Δ〈|𝑢(𝑗𝑙,𝑡)|2〉

Δ𝑇
=

ℏ

2𝑁𝑚𝑗
∑ [𝜔(𝐪)]−1𝐪 [1 + 2

Δ𝑛(𝐪,𝑇)

Δ𝑇
] |𝑒(𝑗, 𝐪)|2. The mean absolute displacement Δ〈|𝑢(𝑡)|〉 plotted in 

Fig. 5e is taken as the average value of Δ〈|𝑢(𝑗𝑙, 𝑡)|〉 of all the individual beads in a unit cell. The 

base temperature used in the calculation was 298 K. Qualitatively, the N dependence of 

Δ〈|𝑢(𝑡)|〉 arises from the different number densities of Pb-I octahedra. Upon the injection of the 

same amount of energy, lower members with smaller number densities of octahedra experience 

stronger vibration amplitudes as dictated by energy and momentum conservation. 

      Because only the acoustic phonons are responsible for the probe oscillations, the summation 

over q was performed for the acoustic branch only. We further assumed that acoustic phonons 

are only populated within a small Δ𝜔(𝐪) range of 0.1×1012 rad·s-1 wide near the Γ point, for the 

reason below.1 Assuming a skin depth of 100 nm (for the optical pump) and a sound velocity of 

1600 m·s-1, the temporal duration of the excited acoustic phonons is ~62.5 ps, which is converted 

to a frequency range of 0.1×1012 rad·s-1. The same Δ𝜔(𝐪) range was used in all the calculations. 

We found variations of the spectral location and width of Δ𝜔(𝐪) do not alter the trend of 

Δ〈|𝑢(𝑡)|〉 plotted in Fig. 5e.  
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      Both the thermoelastic and the deformation potential effects can be responsible for the 

generation of the CLAPs1. Thermoelastic effect relates impulsive heating of the lattice by hot 

carriers; these hot carriers (including both electrons and holes) quickly relax to the exciton 

energy though heat exchange with the lattice, which causes a lattice thermal expansion and with 

it CAPs. As to the deformation potential mechanism, strain is induced by the modification in 

energy of the electronic distribution, which in our case involves electrons and holes created by 

the above-exciton-gap pump. As shown in Supplementary Figs. 22, 23 and 24, our additional 

transient reflection measurements show that thermoelastic effect is mainly responsible for the 

CLAP signatures in the transient reflection spectral maps.   
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