Types of papers.

This is a Multimedia Appendix to a full manuscript published in the J Med Internet Res. For full copyright and citation information see http://dx.doi.org/10.2196/jmir.9123.

Clinical-focused papers (N=9)		
Reference	Description	
Cohort Studies (N=2)		
[36]	Compared the physical and psychological effects on patients who either used a Kinect- based rehabilitation, or a bicycle ergometre training system.	
[57]	Compared the effects of using Kinect-based training games on stroke patients with varied cerebral hemisphere-affected areas.	
Case Reports (N=2)		
[49]	Evaluated a developed reaching exercise game for clinical effectiveness with 15 patients in a non-controlled setting.	
[50]	Evaluated the clinical effectiveness of an off-the-shelf Kinect-based game for rehabilitation. Changes in the activated brain regions were also observed.	
Randomised Controlled Trials (N=5)		
[71]	Study protocol: will evaluate the feasibility, efficacy and saftey of a Kinect-based system.	
[72]	Study protocol: will assess the impact on patients who will use an interactive system at home, with a traditional home exercise programme.	
[37,38]	Compared the effects of using Kinect-based games along with usual therapy on patient muscle strength and tone, against patients who only performed traditional therapy.	
[39]	Assessed the clinical effectiveness of a tele-motion rehabilitation system by comparing the effects on patients who used the system, against those who performed traditional home-based exercises.	

Table 5. Clinical-focused papers.

Table 6. Technical papers.

Technical papers (N=32)		
Reference	Description	
Survey (N=1)		
[51]	Used a questionnaire to gather user perceptions, and preferences to design a mode of	
	interaction with a visual object in an augmented reality environment.	
Proof of concep	t (N=5)	
Tested the concept of K-SRS, and using other technologies with Kinect, for stroke rehabilitation.		
[48]	Assessed the feasibility of using a gamified, home-based rehabilitation system for stroke	
	patients.	
[40]	Investigated the feasibility of using functional electrical stimulation to upper limb muscles	
	for completion of tasks; and using iterative learning control algorithms to control the FES	
	signals applied to the muscles.	
[45]	Tested the concept of using body machine interfaces with Kinect.	
[41]	Tested a Kinect-based model for assessing individual components of the timed-up and go	
	test, followed by an assessment of the system's reliability.	
[61]	Assessed the feasibility of a system for robot-assisted rehabilitation through gaze tracking, a	
	brain-computer interface, and Kinect.	
Application Dev	elopment (N=17)	
Primarily described the process of designing or building a system for stroke rehabilitation.		
[22,35,43,47,5	Developed a system to provide movement or posture therapy.	
2,56,63,64,65,	Additionally: [66] included a monitoring component for falls prevention among the elderly;	

68]	[47] provided speech therapy; [43] re-engineered a previously-developed immersive
-	multimedia rehabilitation environment for improved control; and [56] used 'intelligent
	objects' with sensors to aid in ADL recovery.
[46,55]	Developed a system to assess movement capabilities of patients.
	Additionally: [46] provided rehabilitation for motor function.
[23]	Developed a system to assist patients in improving movement, and predicted their
	recovery.
[53]	Developed a hybrid system that incorporated a low cost brain computer interface system
	called MindWave for brain signal input, with Kinect tracking user movement.
[65]	Digitised box-and-blocks test, where a traditional BBT was used but the progress, quantified
	by the number of blocks moved within a period of time, was tracked by Kinect.
[42]	Virtualised BBT, with patients controlling a virtual hand to move virtual blocks.
[69]	Proposed an exercise game system framework that provides online biofeedback to patients
	and therapists based on patient movements for safer and better exercise sessions.
Platform Dev	velopment (N=6)
Explained ho	ow multiple body-tracking technologies could be integrated in one system.
[54,70]	Developed platforms that made use of multiple consumer body-tracking devices, e.g.,
	Kinect and Nintendo Wii, as input devices.
[59]	Developed a platform that made use of multiple consumer body-tracking devices, i.e.,
	Kinect, Leap Motion, and Orbotix Sphero to be used simultaneously to track multiple parts
	of the body.
[67]	Offered gamified rehabilitation exercises to patients (which therapists can prescribe],
	monitor their performance, and connect with online health records to share information
	with clinicians; while wearables send updates for regular monitoring of patients' well-being.
[58]	Developed a K-SRS, and a cuffless blood pressure device with a chair-based
	electrocardiogram and photoplethysmograph for monitoring.
[60]	Developed a smart glove in-house to work with Kinect and track fine motor finger
	movement.
Assessment	(N=3)
Conducted t	echnical assessments of Kinect as a body-tracking device for stroke rehabilitation.
[44]	Assessed its tracking and evaluation of components of spatiotemporal gait movements.
[30]	Assessed Kinect's test-retest reliability in finding movement indices.
[62]	Compared the precision of Kinect against another device, Shimmer, in tracking exercise
	movements.