
MODELS AND SMALL SAMPLE ADJUSTMENTS

NOTATION

Suppose we have i patients, with i ∈ {1, ...,n}. Let Ti ∈ {1,2} indicate the treatment arm of
patient i . The baseline ACR-N score is yi 0, with Yi 1, Yi 2 denoting the continuous ACR-N
scores at the week 12 visit and week 24 visit respectively. Fi 1 is an indicator variable taking
a value equal to 1 if the patient discontinues treatment or requires rescue medication before
the week 12 visit. Fi 2 is the corresponding indicator for the period between the week 12 and
week 24 visit. Si is then a binary variable indicating whether or not patient i was a responder.
For the ACR20 endpoint, Si = 1 if Yi 2 Ê 20 and Fi 1 = Fi 2 = 0.

STANDARD BINARY METHOD

The standard binary method is a logistic regression on the binary indicator Si .

log i t
(
P

(
Si = 1|Ti , yi 0

))=α+βTi +γyi 0 (1)

This provides us with maximum likelihood estimates θ̂SB = {
α,β,γ

}
and Cov( ˆθSB ). From

this we can obtain a fitted probability of response for each patient i as if they were treated
with the experimental treatment p̃i 1 and the control treatment p̃i 0.

From this we can then can construct various quantities of interest:

1. Difference in Response Probabilities

δ̃1 =
∑n

i=1 p̃i 1 −∑n
i=1 p̃i 0

n
(2)

2. Risk ratio

δ̃2 =
∑n

i=1 p̃i 1∑n
i=1 p̃i 0

(3)

3. Odds ratio

δ̃3 =

( ∑n
i=1 p̃i 1

n −∑n
i=1 p̃i 1

)
( ∑n

i=1 p̃i 0

n −∑n
i=1 p̃i 0

) (4)

Confidence intervals for these treatment effect estimates can be constructed by obtaining
standard error estimates through the delta method. This requires the covariance matrix of
the maximum likelihood estimates Cov(θ̂SB ) and the vector of partial derivatives of δ̃ with
respect to each of the parameter estimates, ′′δ̃.
For example, the variance of δ̃1:

V ar (δ̃1) = (′′δ̃1)T Cov(θ̂SB )(′′δ̃1) (5)
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AUGMENTED BINARY METHOD

The augmented binary method models the joint distribution of (Y1,Y2,F1,F2)|T,Y0 by em-
ploying factorisation techniques to model each of the components separately, as shown by
the equations below.

Yi j =α+β1Ti I { j = 1}+β2Ti I { j = 2}+γyi 0 +δ j +εi j

(εi 1,εi 2|Ti , yi 0) ∼ N

(
(0,0),

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]) (6)

log i t
(
P (Fi 1 = 1|Ti , yi 0,Yi 1,Yi 2)

)=αF 1 +βF 1Ti +γF 1 yi 0 (7)

log i t
(
P (Fi 2 = 1|Fi 1 = 0,Ti , yi 0,Yi 1,Yi 2)

)=αF 2 +βF 2Ti +γF 2Yi 1 (8)

We fit repeated measures models using both generalised least squares (GLS) and gener-
alised estimating equations (GEE) to the continuous component. GLS estimates the variance-
covariance matrix using restricted maximum likelihood methods and GEE makes use of ro-
bust variance estimation techniques.

After fitting these models and obtaining maximum likelihood estimates
θ̂AB = {α̂, β̂1, β̂2, γ̂, δ̂1, δ̂2, ˆαF 1, ˆβF 1, ˆγF 1, ˆαF 2, ˆβF 2, ˆγF 2}, we can obtain the overall probability in
response in each arm. For patient i, the probability of response in the ACR20 endpoint is:

P (Yi 2 Ê 20,Fi 1 = Fi 2 = 0|Ti , yi 0)

=
∫ ∞

−∞

∫ ∞

−∞
P (Yi 2 Ê 20,Fi 1 = Fi 2 = 0|Ti , yi 0,Yi 1 = yi 1,Yi 2 = yi 2) fyi 1,yi 2 (yi 1, yi 2;Ti , yi 0)d yi 2d yi 1

=
∫ ∞

−∞

∫ ∞

20
P (Fi 1 = Fi 2 = 0|Ti , yi 0,Yi 1 = yi 1,Yi 2 = yi 2) fyi 1,yi 2 (yi 1, yi 2;Ti , yi 0)d yi 2d yi 1

=
∫ ∞

−∞

∫ ∞

20
P (Fi 2 = 0|Fi 1 = 0,Ti , yi 0,Yi 1 = yi 1)P (Fi 1 = 0|Ti , yi 0,Yi 1 = yi 1) fyi 1,yi 2 (yi 1, yi 2;Ti , yi 0)d yi 2d yi 1

Again, we can obtain a fitted probability of response for each patient i as if they were treated
with the experimental treatment p̃i 1 and the control treatment p̃i 0. Treatment effect esti-
mates and confidence intervals are constructed as before, where Cov(θ̂AB ) is as shown in
equation (9).

Cov(θ̂AB ) =

Cov(α̂, β̂1, β̂2, γ̂, δ̂1, δ̂2) 0 0
0 Cov( ˆαF 1, ˆβF 1, ˆγF 1) 0
0 0 Cov( ˆαF 2, ˆβF 2, ˆγF 2)

 (9)
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BINARY COMPONENT ADJUSTMENT

The penalised likelihood is shown below, where L(θ) is the usual likelihood function for a logit
model and I (θ) is the information matrix.

L∗(θ) = L(θ)|I (θ)| 1
2 (10)

CONTINUOUS COMPONENT ADJUSTMENT

The standard robust sandwich covariance estimator is shown in equation 11.

Vsand wi ch = (
∑n

i=1 Di V −1
i Di )−1(

∑n
i=1 Di V −1

i Cov̂(Yi )V −1
i Di )(

∑n
i=1 Di V −1

i Di )−1 (11)

where:
Di = ∂µi

∂β

µi is the vector of mean responses
β the parameter vector
Vi is the working variance-covariance matrix for Yi

Cov̂(Yi ) = (Yi − µ̂i )(Yi − µ̂i )′.

The small sample adjusted variance estimator is shown in equation 12.

VMB N = (∑n
i=1 Di V −1

i Di
)−1 (∑n

i=1 Di V −1
i

(
kCov̂(Yi )+δmξVi

)
V −1

i Di
)(∑n

i=1 Di V −1
i Di

)−1
(12)

where:
k = N−1

N−p
n

n−1
p is the number of parameters
N is the total number of observations

δm =
{ p

n−p , if n>3p
1
2 , otherwise

ξ= max

(
1,

tr ace
(
(
∑n

i=1 Di V −1
i Di )−1(

∑n
i=1 Di V −1

i Cov(Yi )V −1
i Di )

)
p

)
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