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Figure S1, related to Figure 1
(A) CoMut plot displaying multiple tracks with all 149 non-hypermutated samples displayed as columns and 
overall number of mutations/Mb and clinicopathologic data at the top. Mutation type is indicated in the legend. 
Clinical tracks are plotted as in Figure 1. Significantly mutated genes with q value ≤ 0.1 that were identified by 
MutSig2CV analysis of exome sequencing data are listed vertically in order of q value. The percentage of 
PDAC samples with a mutation detected by automated calling is noted at the left. Samples are arranged to 
emphasize mutual exclusivity among mutations. Syn, synonymous. Germline data for analysis of known 
PDAC inherited susceptibility genes as described in main text. (B) Clinically relevant alterations with potential 
therapeutic relevance are shown, with genes grouped according to therapy class shown on the left.  (C) Lego 
plot showing identification of two signatures:  Signature A, resembling COSMIC signature 1; Signature B, 
resembling COSMIC signature 14. (D) GISTIC peaks for high-level amplifications and deletions corresponding 
to Supplemental Table 4.
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Figure S2, related to Figure 2
 (A) Model demonstrating that greater sequencing depth improves the sensitivity to detect mutations at lower 
CCF and purity values. ABSOLUTE tumor purity (X-axis) and mutation cancer cell fraction (CCF, Y-axis) are 
plotted. Colored lines depict constant detection power = 0.95 for standard TCGA WES sequencing (~100x, 
black) and for the three data types utilized in this study: PDAC WES data (~400x, blue solid), PDAC targeted 
sequencing (~600x, red), and PDAC KRAS mutation hotspot deep sequencing data (~30000x, pink).  The 
actual WES coverage at observed KRAS mutations averaged closer to 200x (blue dashed), rather than the 
mean coverage across all coding regions of ~400x. Each curve defines a region of CCF and purity values to 
the right of that line in which the demonstrated sequencing depth would be predicted to detect mutations with 
the indicated power. Importantly, the combined depth of coverage across multiple modalities used in this proj-
ect enabled high-confidence detection of mutations, including subclonal mutations that would have been 
missed at lower sequencing depths. Iteratively downsampling WES data to evaluate the number of KRAS 
mutations observed at 4 or more reads that we would have missed by sequencing to conventional TCGA 
depths of ~100X (data not shown) suggested that 11% (15/139) of KRAS mutations would have been missed 
at conventional lower sequencing depths.
(B) Analysis of the depth of sequencing required to detect clonal KRAS mutation in our samples. Absolute 
purity (Y-axis) and depth of sequencing (X-axis) are shown for each clonal KRAS mutant sample in the cohort. 
Filled circles demonstrate the estimated local depth of sequencing coverage required at the KRAS locus to 
detect clonal KRAS mutations with 95% power given the tumor purity and local copy number in each of our 
samples (Carter et al., 2012). “x” demonstrate the actual coverage achieved at the KRAS locus for that particu-
lar sample in which we detected 4 or more reads. Gray, mutations detected in WES; Red, mutations detected 
in targeted panel that were not detected with WES; Blue, mutations detected in KRAS hotspot deep coverage 
sequencing but not in targeted panel sequencing or WES. As expected, we observed a general trend of 
increasing predicted depth of sequencing required to detect KRAS mutation in lower purity samples (filled 
circles). For most samples, the actual depth of sequencing performed at the KRAS locus with deep WES 
(mean ~200X at KRAS locus, ~400X across all exons) was greater than this predicted depth needed to detect 
a mutation; thus, most KRAS mutations in our cohort were identified by deep WES (gray “x”). However, even 
with deep WES, approximately 6% (8/139) of KRAS mutations were not detected by deep WES but were iden-
tified only through deeper targeted KRAS sequencing.
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Figure S3, related to Figure 4
(A) Principal component plots of multiple platforms with samples colored by ABSOLUTE purity are shown for  
mRNA expression, miRNA expression, lncRNA expression, DNA methylation, and RPPA expression. In each 
plot, a dashed line denotes the projection of a sample with 100% purity based on a linear fit of purity to the first 
two PC values. (B) Consensus clustered heatmap of all 150 PAAD tumor samples using the gene set from 
Bailey et al.(Bailey et al., 2016) (from supplemental table of multiclass SAM differentially expressed). Above 
the heatmap are tracks showing mutation status of GNAS and TP53, class memberships from other platforms, 
and ABSOLUTE purity. Along the right side of the heatmap are red and blue indicators of whether or not a 
gene was significantly over or under expressed in one of the Bailey et al. subtypes (supplemental table, Bailey 
et al.(Bailey et al., 2016)). Farthest to the right are tracks indicating which genes were marker genes from each 
of the published subtypes. (C-D) As in described in (B) but for the (C) Collisson et al.(Collisson et al., 2011) 
and (D) Moffitt et al.(Moffitt et al., 2015) subtypes. (E-G) Venn diagrams show the high level of concordance 
between mRNA classifications and categorical purity. (E) Bailey pancreatic progenitor and Collisson classical 
is nearly the intersection of Moffitt classical and high purity. (F) Bailey squamous is nearly the intersection of 
Moffitt basal-like and high purity, and both basal-like and squamous are associated with quasimesenchymal. 
(G) Bailey ADEX is a subset of Collisson exocrine-like, and both ADEX and, along with immunogenic samples, 
they are overrepresented in the low purity samples. (H-J) A grid of plots showing correlation to class centroid 
(rows and y-axes) versus purity (x-axes) for samples of the same class (columns) in panels for (H) 2-class 
lncRNA subtypes, (I) mRNA Moffitt subtypes, and (J) mRNA Bailey subtypes. In each plot, a linear regression 
line is shown in black, along with the corresponding model equation relating correlation (rho) to purity. As purity 
increased, some clusters showed stronger correlations to their centroids. (K) Unsupervised clustering of DNA 
methylation data for the high purity samples revealed two major subgroups. In the lower purity sample set, we 
identified three clusters. For the integrative multi-platform analyses, we merged the higher purity H1 cluster 
and lower purity L2 cluster to create a DNA hypermethylation subgroup 1 (n=55), and the higher purity H2 clus-
ter and lower purity L3 cluster to form a DNA hypermethylation subgroup 2 (n=65). (L) Clustering of “High-
Purity” samples (Top) by SCNAs reveals “high” and “low” SCNA clusters corresponding to the number of 
SCNAs in each group. “High” and “low” SCNA clusters projected onto “Low-Purity” samples (Bottom) are also 
shown. (M,N) Dotplots showing significant difference between (M) the number of SCNAs or (N) neoplastic 
cellularity in the “high” and “low” SCNA clusters. Dots show all data values, wide horizontal bar is mean of data 
values, and narrow horizontal bars are mean +/- one standard deviation of data values.
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Figure S4, related to Figure 5
(A) Consensus clustering of the 31 miRNA mature strands that were 1) were among the 303 most robustly 
expressed, 2) had a mean abundance in the high purity subset larger than the mean abundance in the low 
purity subset, and 3) were differentially expressed between the 3 classes in the high purity cohort (one class 
vs. all t-test, with a B-H corrected p value of 0.1). Tracks across the top show the lncRNA and mRNA subtypes 
as well as ABSOLUTE purity. The class membership of the 76 samples in the high purity group during the 
unsupervised discovery phase are shown as a track, demonstrating stability of class membership. (B) Survival 
analysis for patients having tumors belonging to each of the three clusters. (C) Heatmap of a subset of highly-
ranked SAM multiclass contrasts for miRs that were differentially abundant across the 3 miR clusters in the 
high purity samples (Fig. 4A).  (D) Heatmaps of a subset of highly-ranked contrasts for lncRNAs that were 
differentially abundant in a SAM (Li and Tibshirani, 2013) multiclass analysis for the 2-cluster solution (Fig. 
4C). (E) Selecting 360 input lncRNAs by thresholding on variance and mean normalized abundance (FPKM). 
(F) Consensus membership heatmaps for 2- and 5-cluster solutions. (G) Comparing sample order across 
2-cluster (Fig. 4C) and 5-cluster solutions. Vertical covariate tracks (blue/orange) show the two mRNA sub-
types. Silhouette width profiles were calculated from consensus membership matrices. Each curve represents 
an individual tumor sample, and curve colors show the 2 lncRNA clusters. (H) 2-cluster lncRNA solution on full 
data set (n=150). Consensus clustering of the 86 lncRNA transcripts that were 1) were among the 360 most 
robustly expressed lncRNAs, 2) had a mean abundance in the high purity subset larger than the mean abun-
dance in the low purity subset, and 3) were differentially expressed between the 2 classes in the high purity 
cohort (t-test, with a B-H corrected p value of 0.1). Tracks above the heatmap show the miRNA subtypes, 
ABSOLUTE purity, then class membership of the 76 samples in the high purity group during the unsupervised 
discovery phase, for both the five and two sample solutions, demonstrating the stability of the two-cluster class 
membership. (I) Heatmap of normalized abundance (row-scaled log10[FPKM+1]) for the 5-cluster solution, 
showing the 360 input lncRNAs. The silhouette width profile (Wcm) was calculated from the consensus mem-
bership matrix. Covariate track P-values are from Chi-square or Fisher exact tests for categorical variables, 
and a Kruskal test for purity, and are uncorrected for multiple testing; values are shown only for p < 0.15. Purity 
was estimated by ABSOLUTE (Carter et al., 2012). Cluster 2 was entirely basal-like and cluster 5 entirely clas-
sical; clusters 3 and 4 were largely classical. Distributions of abundance for certain lncRNAs (e.g. DANCR, 
EVADR, GAS5, HNF1A-AS1, LINC00152, LINC00483, NORAD [LINC00657], UCA1) varied between the 
largely basal-like clusters 1 and 2, and across the largely classical clusters 3 to 5 (see G, H).  (J) Heatmaps of 
a subset of highly-ranked contrasts for lncRNAs that were differentially abundant in a SAM (Li and Tibshirani, 
2013) multiclass analysis for the 5 cluster solution. (K) Distributions of abundance across the 5 lncRNA clus-
ters for a subset of lncRNAs that were both differentially abundant and abundant in at least one cluster, or 
have been reported as associated with cancers. Boxplots show median values, and the 25th to 75th percentile 
range in the data. Whiskers extend up to 1.5 times the interquartile range. All data points are shown as indi-
vidual dots. For pancreatic cancer, lncRNAs that have been reported as functional and differentially expressed 
between tumours and controls include: CCAT1 (8q24.21)(Yu et al., 2016), CCDC26 (8q24.21)(Peng and 
Jiang, 2016), EVADR (6q13)(Gibb et al., 2015), H19 (11p15.5)(Ma et al., 2016), HOTAIR (12q13.13)(Kim et 
al., 2013), HOTTIP (7p15.2)(Li et al., 2015), lncRNA-ATB (Yuan et al., 2014), MALAT1 (11q13.1)(Zhang et al., 
2017), the miRNA host gene MIR31HG (9p21.3)(Yang et al., 2016), NEAT1 (11q13.1)(Huang et al., 2017), 
NUTF2P3 (9p21.2)(Li et al., 2016), PCAT-1 (Prensner et al., 2011) and UCA1 (19p13.12) (Chen et al., 2016).  
Here, lncRNAs that were differentially abundant between the 2 lncRNA subtypes, and across the 5 subtypes, 
included lncRNAs that have been reported as differentially expressed between pancreatic cancer tumours and 
controls, and in many cases functional (e.g. EVADR, GAS5, H19, HNF1A-AS1, LINC00152, MEG3, NEAT1, 
RP11-567G11.1, SNHG8, UCA1), and also included lncRNAs that have been reported as functionally impor-
tant in e.g. differentiation or in other cancers, but not yet in pancreatic cancer (BLACAT1 [link-UBC1], DANCR, 
DEANR1, and NORAD [LINC00657]). 
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Figure S5, related to Figure 7
(A) Table showing the overlap among molecular classifications in either the high purity (upper right) or low purity 
(lower left) sub sets of our cohort. For each pair of classifications, color is used to indicate higher than expected 
frequencies as measured by a one-tailed Fisher’s exact test. (B) 2-group Cluster of Clusters result when aggregat-
ing clusters from mRNA (each of Bailey et al., Moffitt et al., and Collisson et al.), miRNA, lncRNA, RPPA, SCNA, 
and DNA methylation. SNF cluster calls, purity, and mutation information are shown, but were not used in deter-
mining dendrogram order. (C-D) Similarity network fusion (SNF) based on miRNA, mRNA, lncRNA, and DNA 
methylation data from the high purity samples. (C) A sample-to-sample similarity heat map showing three large 
clusters plus one outlier. The outlier sample (US-A776), was determined during pathology review to mostly consist 
of non-invasive Intraductal papillary mucinous neoplasm (IPMN) with only a small component of associated inva-
sive cancer. This pathology evaluation is consistent with the 89% tumor purity estimated by ABSOLUTE, but this 
estimate likely does not reflect the minority invasive adenocarcinoma fraction present in the sample. (D) The same 
result as in (C) visualized as network fusion diagrams of the high purity samples: each node is a sample, with node 
color indicating various cluster labels and node size proportional to ABSOLUTE purity. Edges are colored accord-
ing to the datatype giving the strongest similarity between patients. 
(E-K) For each group of mRNA, lncRNA, miRNA, and DNA methylation we conducted 9M correlations, 71% of 
which were miRNA-mRNA and 28% were miRNA-lncRNA pairs and the remaining 1% were methylation interac-
tions, identifying interactions with an overall FDR<0.01, and visualizing the interactions as networks. For the 
networks in (E,H-K), the edges (interactions) represent significantly negatively correlated (spearman metric) enti-
ties. MiRNA-mRNA interactions are colored based on support from algorithms or databases: green: rna22, 
magenta: MiRTarBase, red: TargetScan, blue: support from two or more algorithms/databases.  (E) Full observed 
interaction network in the high purity samples resemble scale-free networks (Barabasi and Oltvai, 2004) with 
miRNAs being the main hubs of the network because many mRNAs were all negatively correlated with few 
miRNAs. (F) Distribution of the number of interactions per miRNA for the high purity (left) and low purity (right) 
network. Interestingly, out of more than 1,000 miRNAs quantified in the 150 PAAD samples, five or fewer miRNAs 
accounted for more than 30% of the interactions in both the high and the low purity groups (G) Venn diagram 
showing the number of common interactions between the high and low purity sample derived networks. Most of 
the 103 common interactions are methylation features. Among the gene-methylation interactions observed in both 
networks, of interest are the GABRP, a GABA receptor subunit that has been previously implicated in pancreatic 
cancer growth (Takehara et al., 2007) as well as basal-like breast cancer (Sizemore et al., 2014), and the non-
coding RNA XIST with evident cancer roles (Weakley et al., 2011; Yildirim et al., 2013).(H) The miRNA-mRNA and 
miRNA-lncRNA interactions of the high purity network with the nodes colored based on the differential expression 
between the classical and the basal subtypes. Note that miRNAs have the opposite color with their first neighbors 
in the network indicating differential expression in the opposite direction. In the high purity network, miR-335-5p, 
miR-193b-3p, miR-194-5p and miR-192-5p were the hubs (highest numbers of significant anti correlations), (I) 
The miRNA-mRNA, miRNA-lncRNA and methylation-miRNA/mRNA/lncRNA interactions of the high purity 
network among differentially expressed mRNAs, miRNAs and mRNAs and differential methylation. The mature 
miRNA products of the mir-192 and mir-194 miRNAs were of significantly lower expression in the classical as 
compared to the basal subtype whereas the mRNAs/lncRNAs that were negatively correlated with them exhibited 
significantly higher expression in the same subtype. The opposite trend was observed for miR-193b-3p. The 
mature miRNA products of these arms have been previously implicated with pancreatic cancer (Rachagani et al., 
2015; Zhang et al., 2014; Zhao et al., 2013) but also with disease in general (Moore et al., 2015; Parrizas et al., 
2015). (J) The miRNA-mRNA and miRNA-lncRNA interactions of the low purity network with the nodes colored 
based on the differential expression between the union of the squamous and progenitor samples against the union 
of the ADEX and immunogenic samples. miR-30b-5p, both arms of mir-141, miR-21-5p and miR-200c-3p were the 
hubs in the low purity network. One significant miRNA in the context of cancer, miR-21-5p (Cortez et al., 2011; De 
Mattos-Arruda et al., 2015; Shi, 2016; Telonis et al., 2015), is of higher expression in the ADEX and immunogenic 
subtypes. Previous reports have implicated miR-21-5p in the tumor microenvironment and stroma (MacKenzie et 
al., 2014; Munch-Petersen et al., 2015; Nouraee et al., 2016) and have argued for its increased importance in 
stroma than tumor cells (Uozaki et al., 2014). (K) The miRNA-mRNA and miRNA-lncRNA interactions of the low 
purity network for the differentially expressed mRNAs, miRNAs and mRNAs from (J). 
One potential view of the networks in D-G is that the high purity network reflects events and interactions that are 
cancer-related while the low purity network describes a stroma-related signature. However, as there is manifested 
crosstalk between cancer and stroma cells at the miRNA-mRNA level (He et al., 2014; Kourembanas, 2015; 
Valadi et al., 2007), compartmentalization of interactions within the pancreatic tumor, and direct causality links 
remain to be explored. These results show a highly complex epigenetic and post-transcriptional regulatory land-
scape of gene expression with tumor-purity-dependent as well as independent components. This integrative 
analysis further elucidates the influence of tumor purity and sample selection in pancreatic cancer subtyping and, 
importantly, extends the mRNA-defined subtypes to the miRNA and methylation level. From a systems and 
network perspective, the results signify the importance of integrative analyses to provide a global perception and 
detailed insight of the multilevel biomolecular interactions in the context of complex diseases (Vidal et al., 2011). 
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