Supporting Information

Species-selective pyrimidineamine inhibitors of *Trypanosoma brucei S*-adenosylmethionine decarboxylase.

Oleg A. Volkov,^{1,&} Anthony J. Brockway,^{2,&} Stephen A. Wring,³ Michael Peel,³ Zhe Chen,⁴ Margaret A. Phillips,^{1,2} and Jef K. De Brabander²

Departments of ¹Pharmacology, ²Biochemistry, and ⁴Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390-9041, United States ³Scynexis, Inc. (now Avista Pharma Solutions), 3501 Tricenter Boulevard, Suite C, Durham, North Carolina 27713, United States

[&]These authors contributed equally to this work

Table of Contents

Table S1. Biological activity data for pyrimidineamine analogs. Table S2. Crystallographic diffraction data and refinement statistics for the **44**-bound *T. brucei* AdoMetDC/prozyme crystal structure.

Figure S1. Placement of a ligand into the catalytic site of *Tb*AdoMetDC/prozyme co-crystallized with **44**.

H and ¹³C NMR spectra

References

Chemical structure	Manuscript number	Code number	<i>Tb</i> IC ₅₀ pH 6.8, uM ^b	<i>Tb</i> IC ₅₀ pH 7.2, uM ^c	<i>Tb</i> IC ₅₀ pH 7.7, uM ^d	<i>Hs</i> IC ₅₀ pH 7.2, uM ^e	$pK_a(N1)^f$	<i>Tb</i> 427 EC ₅₀ , uM ^a	EC ₅₀ Hill slope	Source
$ \begin{array}{c} H_2N, N, N$	7	UTSAM30	0.5 (0.42–0.6)	3.7 (3.3–4.1)	36 (29–44)	27% at 180	7.3	5.6 (4.5–7.1)	-1.9	Maybridge
$\overset{H_2N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{\overset{N}{\underset{N}{$	8	UTSAM473	nd	13 (11–15)	134 (96–188)	>180	6.6	9.9 (7.7–13)	-1.8	synthesized
$\overset{H_2N}{\underset{N}{\underset{C}{\overset{N}{\underset{C}}{\overset{N}{\underset{C}{\overset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{C$	9	UTSAM571	0.51 (0.46–0.56)	3 (2.7–3.3)	32 (29–36)	36% at 180	7.1	4.7 (4.1–5.4)	-2.9	synthesized
$\overset{H_2N}{\underset{N}{\underset{N}{\overset{N}{\underset{L}{}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{C$	10	UTSAM574	1.9 (1.7–2.2)	12 (10–14)	187 (154–225)	>180	7.0	4.7 (3.9–5.8)	-1.6	synthesized
$H_2N \xrightarrow{N} H \xrightarrow{C_1} C_1$	11	UTSAM569	4.6 (3.8–5.6)	24% at 21	>21	>21	6.1	7.2 (6.0–8.5)	-1.6	synthesized
$H_2N \xrightarrow{N}_{N} H \xrightarrow{C_1}_{C_1}$	12	UTSAM580	31% at 180	>180	>180	>180	6.0	13 (10–17)	-4.5	synthesized
$\begin{array}{c c} H_2N & H & H & L & L \\ \hline H_2N & N & N & C \\ N & C & C \\ 10 \\ H_7 \\ C \\ C \\ 1 \\ C \\ C \\ 1 \\ C $	13	UTSAM533	nd	>180	>180	>180	-2.2	8.9 (7.3–11)	-2.4	synthesized
$ \begin{array}{c} H_{2}N \\ H_{2$	14	UTSAM534	nd	>180	>180	>180	-3.3	10 (7.5–14)	-4.6	synthesized
$\overset{H_2N}{\underset{N}{}}\overset{N}{\underset{C_1}{}}\overset{H}{\underset{C_1}{}}\overset{Cl}{\underset{C_{13}H_{12}Cl_2N_4}{}}$	15	UTSAM578	1.7 (1.5–2.0)	12 (11–14)	>21	>21	6.8	19 (15–24)	-0.96	synthesized
$\overset{H_2N}{\underset{N}{\overset{N}{\underset{\leftarrow}{}{}{\underset{\leftarrow}{}{\underset{\leftarrow}{}{\underset{\leftarrow}{}{\underset{\phantom}{\underset{\leftarrow}{}{\underset{\phantom}{\underset{\phantom}{\underset{\phantom}{\underset{\phantom}{\underset{\phantom}{\underset{\phantom}{\phantom$	16	UTSAM576	0.88 (0.77–0.99)	4.8 (4.5–5.2)	39 (33–48)	25% at 180	7.0	17 (14–20)	-2.0	synthesized
$\overset{H_2N}{\underset{Cl}{\overset{N}{\underset{Cl}{\overset{N}{\underset{Cl}{\overset{N}{\underset{Cl}{\overset{N}{\underset{Cl}{\overset{N}{\underset{Cl}{\underset{Cl}{\underset{Cl}{\underset{Cl}{\underset{Cl}{\underset{Cl}{\underset{N}{\underset{Cl}{\underset{N}{\underset{Cl}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{$	17	UTSAM542	>180	>180	>180	>180	na	96 (66–140)	-1.2	synthesized
$\begin{matrix} N & H \\ N H_2 & Cl \\ Cl & Cl N_3 \end{matrix}$	18	UTSAM556	34% at 180	>180	>180	>180	na	38 (31–47)	-4.7	synthesized
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	19	UTSAM558	186 (160–217)	24% at 180	>180	>180	na	13 (8.2–22)	-5.3	synthesized
$H_{2N} \xrightarrow[C]{} H_{1}Cl_{2N_{3}}$	20	UTSAM561	3.4 (3-3.9)	15 (13–18)	69 (55–87)	>180	9.6	2.2 (1.7–2.9)	-4.4	synthesized
	21	UTSAM541	9.9 (8.9–11)	29 (27–31)	136 (115–161)	>180	9.4	11 (9.5–12)	-2.3	synthesized

Table S1. Biological activity data for pyrimidineamine analogs

Chemical structure	Manuscript number	Code number	<i>Tb</i> IC ₅₀ pH 6.8, uM ^b	<i>Tb</i> IC ₅₀ pH 7.2, uM ^c	$Tb IC_{50} pH 7.7,$ uM^{d}	<i>Hs</i> IC ₅₀ pH 7.2, uM ^e	$pK_a(N1)^f$	<i>Tb</i> 427 EC ₅₀ , uM ^{<i>a</i>}	EC ₅₀ Hill slope	Source
	22	UTSAM562	135 (113–163)	21% at 180	>180	>180	8.4	18 (14–24)	-6.7	synthesized
$\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	23	UTSAM475	nd	>180	>180	>180	5.2	27 (22–33)	-1.9	synthesized
	24	UTSAM539	16% at 63	>63	>63	>63	7.1	2.7 (2.4–3.1)	-3.5	synthesized
$ \begin{array}{c} \begin{matrix} I \\ I \\ I \\ N \end{matrix} \\ \begin{matrix} I \\ I \\ I \end{matrix} \\ \begin{matrix} I \\ C \\ I \end{matrix} \\ \begin{matrix} C \\ C_{13} H_{14} Cl_{2} N_{4} \end{matrix} \\ \end{array} $	25	UTSAM540	>180	>180	>180	>180	7.0	14 (8.1–24)	-6.3	synthesized
$ \begin{array}{c} H_2N \bigvee N & H \\ N \bigvee N & Cl \\ NH_2 & Cl \\ C_{10}H_9Cl_2N_5 \end{array} $	26	UTSAM584	5.8 (4.9-6.8)	48 (43–54)	18% at 180	>180	6.4	14 (12–17)	-2.0	synthesized
$ \begin{array}{c} & H \\ & H \\ & H_2 \\ & H_2 \\ & C_1 \\ & C_{11}H_{10}BrClN_4 \end{array} $	27	UTSAM626	50 (34–72)	24% at 180	>180	>180	6.4	20 (17–24)	-2.7	synthesized
$\overset{ }{\underset{C}{\overset{I}}}$	28	UTSAM544	21 (19–23)	81 (74–89)	23% at 180	>180	7.2	38 (34–43)	-4.0	synthesized
$\overbrace{C_{11}H_9Cl_2N_3S}^{H_2N}$	29	UTSAM536	nd	>180	>180	>180	4.3	>25	na	synthesized
$ \begin{array}{c} H_2 N \\ N \\ N \\ C I \\$	30	UTSAM579	31 (28–34)	139 (130–150)	17% at 180	>180	8.1	11 (9.9–13)	-2.6	synthesized
$H_2N \underset{N}{\overset{N}{\longrightarrow}} H \underset{C_1}{\overset{C_1}{\longrightarrow}} C_1$	31	UTSAM575	6.6 (5.9–7.4)	28 (25–32)	45% at 180	29% at 180	8.2	5.7 (1.6–21)	-8.7	synthesized
H_2N N H C_1 H_0BrCIN	32	UTSAM572	0.31 (0.28–0.35)	2.2 (2.0–2.4)	26 (23–30)	33% at 180	7.3	4.7 (3.9–5.8)	-4.2	synthesized
	33	UTSAM567	0.46 (0.41–0.52)	3.9 (3.2–4.83)	53 (45-63)	29% at 180	7.3	12 (10–14)	-1.9	synthesized
$H_2N \bigvee_{N} N \downarrow_{F} H_{F} \downarrow_{F} C^{I}$	34	UTSAM564	0.71 (0.59–0.85)	3.9 (3.4–4.4)	42 (34–51)	39% at 180	7.3	13 (11–15)	-4.0	synthesized
$H_2N + N + H + CI $	35	UTSAM573	0.52 (0.46–0.58)	3.3 (2.8–3.9)	40 (34–47)	30% at 63	7.3	4.5 (2.1–9.4)	-6.6	synthesized
$H_2N \xrightarrow{N} H \xrightarrow{CI} CI$ SF ₅ C ₁₁ H ₁₀ CIF ₅ N ₄ S	36	UTSAM606	1.9 (1.7–2.1)	16 (14–18)	38% at 180	>180	7.3	13 (11–15)	-4.5	synthesized

Chemical structure	Manuscript number	Code number	<i>Tb</i> IC ₅₀ pH 6.8, uM ^b	<i>Tb</i> IC ₅₀ pH 7.2, uM ^c	<i>Tb</i> IC ₅₀ pH 7.7, uM ^d	<i>Hs</i> IC ₅₀ pH 7.2, uM ^e	$pK_a(N1)^f$	<i>Tb</i> 427 EC ₅₀ , uM ^{<i>a</i>}	EC ₅₀ Hill slope	Source
$H_2N \xrightarrow{N} H \xrightarrow{Br} Br$ SF_5 $C_{11}H_{10}BrF_5N_6S$	37	UTSAM604	1.0 (0.93–1.1)	8.7 (7.4–10)	167 (110–253)	>180	7.3	0.45 (0.32–0.62)	-6.3	synthesized
$ \begin{array}{c} H_2 N \\ N \\ N \\ \end{array} \begin{array}{c} H_2 N \\ N \\ \end{array} \begin{array}{c} H_1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	38	UTSAM628	1.2 (0.96–1.5)	7.6 (5.7–10)	80 (60–106)	>180	7.3	5.5 (4.6-6.6)	-3.8	synthesized
H_2N	39	UTSAM633	1.0 (0.61–1.7)	6 (5.2–6.9)	57 (49–65)	36% at 180	7.3	4.4 (4.2–4.7)	=-8.0	synthesized
H_2N, N, H, F_3N, Br O, CF_3 $C_{13}H_{12}BrF_3N_4O$	40	UTSAM627	0.23 (0.17–0.32)	1.6 (1.1–2.4)	13 (8–23)	44 (33–58)	7.3	4.2 (3.6–4.8)	-3.8	synthesized
$H_2N \xrightarrow{N} H \xrightarrow{Br} C_{14}H_{15}BrN_4O$	41	UTSAM634	0.64 (0.43–0.96)	4.5 (4.1–4.9)	52 (45-60)	28% at 180	7.3	4.4 (3.7–5.3)	-3.9	synthesized
	42	UTSAM635	0.74 (0.56–0.98)	4.5 (4.0–5.1)	56 (45–70)	>180	7.3	1.9 (1.7–2.1)	-4.1	synthesized
$H_2N N H F C_{15}H_{19}BrN_4O$	43	UTSAM636	1.9 (1.2–2.8)	11 (9.5–12)	153 (124–187)	>180	7.3	4.4 (3.5–5.5)	-4.4	synthesized
$\overset{H_2N}{\underset{N}{\bigvee}}\overset{N}{\underset{Br}{\bigvee}}\overset{H}{\underset{Br}{\int}}\overset{Br}{\underset{C_{11}H_{10}Br_2N_4}{}}$	44	UTSAM568	0.21 (0.18–0.23)	1.9 (1.7–2.1)	20 (18–22)	31% at 180	7.3	4.8 (4.1–5.6)	-4.8	synthesized
$H_2N \underset{N}{\longleftarrow} N \underset{O=S=O}{\overset{N}{\longleftarrow}} H \underset{C_{13}H_{16}N_4O_4S_2}{\overset{O}{\longleftarrow}}$	45	UTSAM602	0.20 (0.18–0.24)	1.5 (1.3–1.7)	15 (13–18)	39% at 180	7.3	>100	na	synthesized
$H_2N \underset{N}{\bigvee} N \underset{F}{\overset{H}{\underset{F}}} H_2 \underset{F}{\overset{F}{\underset{F}}} F$	46	UTSAM547	1.4 (1.1–1.6)	11 (9.8–12)	143 (116–176)	>180	7.3	14 (11–17)	-4.0	synthesized
$H_2N \underset{N}{\longrightarrow} N \underset{O}{\longrightarrow} C_{13}H_{16}N_4O_2$	47	UTSAM474	3.4 (2.7–4.2)	17 (14–20)	131 (110–56)	21% at 180	7.3	41 (33–51)	-1.7	synthesized
$\begin{array}{c} H_2N & H \\ & H_2N & CO_2H \\ & CO_2H \\ & CO_2H \\ & C_{13}H_{12}N_4O_4 \end{array}$	48	UTSAM565	>180	>180	>180	>180	7.3	>100	na	synthesized
$ \begin{array}{c} H_2 N \\ N \\ N \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	49	UTSAM566	38 (32–44)	40% at 180	>180	>180	7.3	42 (22–78)	-5.7	synthesized

Chemical structure	Manuscript number	Code number	<i>Tb</i> IC ₅₀ pH 6.8, uM ^b	<i>Tb</i> IC ₅₀ pH 7.2, uM ^c	$Tb IC_{50} pH 7.7,$ uM^{d}	<i>Hs</i> IC ₅₀ pH 7.2, uM ^e	$pK_a(N1)^f$	<i>Tb</i> 427 EC ₅₀ , uM ^a	EC ₅₀ Hill slope	Source
$ \begin{array}{c} H_2 N \\ N \\ N \\ N \\ \end{array} \\ \begin{array}{c} H_1 \\ N \\ \end{array} \\ \begin{array}{c} H_1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	50	UTSAM570	109 (90–132)	>180	>180	>180	7.3	1.5 (1.3–1.6)	=-8.0	synthesized
H_2N	51	UTSAM591	12% at 180	>180	>180	>180	7.3	2.0 (1.2–3.7)	=-8.0	synthesized
$ \begin{array}{c} H_2 N \underbrace{ \begin{array}{c} N \\ N \end{array} } C_{13} H_{16} N_4 \end{array} $	52	UTSAM546	35 (32–38)	141 (119–167)	>180	>180	7.3	19 (17–22)	-1.8	synthesized
$ \begin{array}{c} H_2 N \bigvee N \bigvee H \\ N \bigvee V \\ K \\ C_{19} H_{28} N_4 \end{array} $	53	UTSAM593	42 (36-49)	>63	>63	>63	7.3	4.1 (4.1–4.5)	=-8.0	synthesized
$H_2N \underset{N}{\longleftarrow} N \underset{C_{11}H_{11}F_5N_4S}{H} SF_5$	54	UTSAM597	84 (72–99)	23% at 180	>180	>180	7.3	14 (11–17)	-4.1	synthesized
$\begin{array}{c} H_2 N \underset{N}{ } \underset{V}{ } \underset{C_1}{ } \underset{C_1}{ } \underset{C_1 H_{11} \text{CIN}_4}{ } \end{array}$	55	UTSAM543	75 (69–83)	35% at 180	>180	>180	7.3	42 (34–52)	-1.7	synthesized
$\overset{H_2N}{\underset{N}{\bigvee}}\overset{N}{\underset{Br}{\bigvee}}\overset{H}{\underset{Br}{\bigvee}}_{C_{11}H_{11}BrN_4}$	56	UTSAM490	nd	41% at 180	>180	>180	7.3	22 (19–26)	-1.7	ChemBridge
$ \begin{array}{c} H_2 N \underset{N}{ H_2 N} \underset{K}{ H_2 N} \underset{K}{ H_2 N} \underset{K}{ H_2 N} \underset{K}{ H_1 } $	57	UTSAM492	nd	>180	>180	>180	7.3	>25	na	ChemBridge
$ \begin{array}{c} H_2 N \underset{N}{ \searrow} N \underset{S_{\sim}}{ \longrightarrow} H \underset{S_{\sim}}{ \longrightarrow} C_{12} H_{14} N_4 S \end{array} $	58	UTSAM488	nd	149 (122–181)	>180	23% at 180	7.3	>25	na	ChemBridge
$\overset{H_2N}{\underset{N}{\bigvee}}\overset{N}{\underset{N}{\bigvee}}\overset{H}{\underset{N}{\bigvee}}$	59	UTSAM477	nd	>180	>180	>180	7.3	>25	na	ChemBridge
$\overset{H_2N}{\underset{N}{}} \overset{N}{\underset{F}{}} \overset{N}{\underset{C_{11}H_{10}F_2N_4}{\overset{H}{\underset{F}}}} F$	60	UTSAM538	38 (35–41)	180 (160–201)	>180	>180	7.3	70 (61–80)	-1.6	synthesized
$ \begin{array}{c} H_2 N \\ N \\ N \\ T \\ F \\ C_{11} H_{10} CIFN_4 \end{array} $	61	UTSAM560	3.3 (2.8–3.9)	32 (13-82)	41% at 180	>180	7.3	17 (15–20)	-2.4	synthesized
$ \begin{array}{c} H_2 N \overbrace{N} H \overbrace{C_1} H \overbrace{C_1} H \overbrace{C_1} H \overbrace{C_1} H _3 Cl_2 EN_4 \end{array} $	62	UTSAM559	0.18 (0.15–0.23)	1.5 (1.4–1.8)	19 (16–22)	160 (135–191)	7.3	4.8 (3.3–7.0)	-5.9	synthesized
$H_2N \xrightarrow{N} H \xrightarrow{Br}_F$ Br $C_{11}H_9Br_2FN_4$	63	UTSAM589	0.21 (0.20-0.23)	1.6 (1.3–1.8)	16 (13–18)	43% at 180	7.3	4.6 (3.6–5.9)	-4.5	synthesized

Chemical structure	Manuscript number	Code number	<i>Tb</i> IC ₅₀ pH 6.8, uM ^b	<i>Tb</i> IC ₅₀ pH 7.2, uM ^c	$Tb IC_{50} pH 7.7,$ uM^{d}	<i>Hs</i> IC ₅₀ pH 7.2, uM ^e	$pK_a(N1)^f$	<i>Tb</i> 427 EC ₅₀ , uM ^a	EC ₅₀ Hill slope	Source
$H_2N \underset{N}{ N} \underset{Cl}{ H_2N} H_{1} \underset{Cl}{ H_2Cl_3N_4} H_{2} \underset{Cl}{ Cl} Cl$	64	UTSAM563	1.1 (0.94–1.3)	11 (8.8–13)	31% at 63	>63	7.3	4.5 (3.4–5.9)	-5.2	synthesized
$ \begin{array}{c} H_2 N \underbrace{ N}_{N} \underbrace{ N}_{V} \underbrace{ N}_{Cl} \underbrace{ Cl}_{Cl_2} H_1 Cl_2 N_4 \\ Cl_2 H_1 Cl_2 N_4 \end{array} $	65	UTSAM590	3.4 (2.9–3.9)	20 (17–24)	14% at 63	>63	7.3	4.4 (4.2–4.8)	=-8.0	synthesized
	66	UTSAM603	25 (21–31)	38% at 180	>180	>180	7.3	1.1 (0.97–1.3)	-1.4	synthesized
$H_2N \underset{N}{\longrightarrow} N \underset{Cl}{\longrightarrow} H_{1} \underset{Cl}{\longrightarrow} Cl$	67	UTSAM586	35 (30-41)	33% at 180	>180	>180	7.0	13 (10–16)	-1.1	synthesized
$\begin{array}{c} H_2 N \\ & & \\ & \\$	68	UTSAM594	42% at 63	>63	>63	>63	7.3	4.5 (3.7–5.4)	-3.8	synthesized
$ \begin{array}{c} H_2 N \underset{N}{\longrightarrow} N \underset{C_1}{\longrightarrow} H \underset{C_1 }{\longrightarrow} C_1 \\ & & \\ &$	69	UTSAM625	85 (71–104)	>180	>180	>180	7.3	5.8 (4.2–7.9)	=-8.0	synthesized
H_2N	70	UTSAM620	>180	>180	>180	>180	7.3	18 (14–24)	-7.4	synthesized
$H_2N \xrightarrow{N} H \xrightarrow{C_1} C_1$	71	UTSAM623	226 (160–319)	>180	>180	>180	7.3	2.1 (1.3–3.2)	=-8.0	synthesized
$ \begin{array}{c} H_2 N \underset{N}{\longleftarrow} N \underset{Cl}{\longleftarrow} H_1 \overset{OH}{\longleftarrow} Cl \\ \downarrow \\ Cl \\ Cl_1 H_{10} Cl_2 N_4 O \\ \end{array} $	72	UTSAM577	4.2 (3.6–4.9)	37 (29–46)	23% at 180	>180	7.1	26% at 100	na	synthesized
$ \begin{array}{c} H_2 N \underset{N}{\longrightarrow} N \underset{Cl}{\longrightarrow} H \underset{Cl}{\longrightarrow} F \underset{Cl}{\longleftarrow} F \underset{Cl_1 H_8 Cl_2 F_2 N_4}{\longrightarrow} \\ \end{array} $	73	UTSAM617	0.33 (0.25–0.43)	2.2 (2.0–2.6)	21 (18–23)	>63	7.2	10 (8.5–12)	-2.3	synthesized
$\overset{H_2N}{\underset{N}{\overset{N}{\underset{C_l}{}}}} \overset{H_1}{\underset{C_l}{}} \overset{Cl}{\underset{C_{l1}H_{l0}Cl_2N_4}{}}$	74	UTSAM501	nd	115 (89–150)	>180	>180	7.2	23% at 25	na	ChemBridge
$H_2N \underset{N}{\overset{N}{\longrightarrow}} H \underset{C_{11}H_{10}Cl_2N_4}{\overset{Cl}{\longleftarrow}}$	75	UTSAM500	nd	137 (95–198)	>180	>180	7.3	27% at 25	na	ChemBridge
$\overset{H_2N}{\underset{N}{\longleftarrow}}\overset{N}{\underset{C_1}{\overset{Cl}{\longleftarrow}}}\overset{Cl}{\underset{C_1}{\overset{Cl}{\longleftarrow}}}_{C_1}$	76	UTSAM502	nd	>180	>180	>180	7.3	28% at 25	na	ChemBridge
$ \begin{array}{ c c c c c } \hline H_2N & H & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	77	UTSAM478	nd	>180	>180	>180	7.3	>25	na	ChemBridge

Chemical structure	Manuscript number	Code number	<i>Tb</i> IC ₅₀ pH 6.8, uM ^b	<i>Tb</i> IC ₅₀ pH 7.2, uM ^c	$\frac{Tb \operatorname{IC}_{50} \operatorname{pH} 7.7}{\operatorname{uM}^d}$	<i>Hs</i> IC ₅₀ pH 7.2, uM ^e	$pK_a(N1)^f$	<i>Tb</i> 427 EC ₅₀ , uM ^a	EC ₅₀ Hill slope	Source
H_2N N N N N N N N N N	78	UTSAM487	nd	>180	>180	>180	7.3	>25	na	ChemBridge
	79	UTSAM491	nd	>180	>180	>180	7.3	>25	na	ChemBridge
$H_2N \bigvee_N \bigvee_{C_{12}H_{13}ClN_4} H \bigvee_{C_{13}H_{13}ClN_4} H \bigvee_{C_{13}H_{13}ClN_$	80	UTSAM496	nd	>180	>180	>180	7.3	29% at 25	na	ChemBridge
H ₂ N N H Cl N Cl ₁₂ H ₁₃ ClN ₄	81	UTSAM494	nd	>180	>180	>180	7.3	28% at 25	na	ChemBridge
$ \begin{array}{c} H_2N \\ N \\ N \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	82	UTSAM495	nd	>180	>180	>180	7.3	>25	na	ChemBridge
$H_2N \bigvee_{N} H \downarrow_{Br}$	83	UTSAM497	nd	>180	>180	>180	7.2	25% at 25	na	ChemBridge
$H_2N \underset{N}{ \parallel} N \underset{F}{ \parallel} H_2 \underset{F}{ \parallel} H_1 \underset{F}{ \downarrow} H_1 \underset{F}{ \iota} H_1 $	84	UTSAM499	nd	199 (164–240)	>180	>180	7.3	28% at 25	na	ChemBridge
	85	UTSAM489	nd	>180	>180	>180	7.3	28% at 25	na	ChemBridge
	86	UTSAM480	nd	>180	>180	>180	7.3	19 (17–22)	-3.5	ChemBridge
$ \begin{array}{c} H_2 N \bigvee N & H \\ N & & \\ N & & \\ \end{array} \\ C_{14} H_{18} N_4 \end{array} $	87	UTSAM481	nd	>180	>180	>180	7.3	11 (8.5–15)	-5.0	ChemBridge
$ \begin{array}{c} H_2N \\ N \\ N \\ H_2 \\ H_1 \\ H_2 \\ H_1 \\ H$	88	UTSAM493	nd	>180	>180	>180	7.3	15 (13–17)	-3.1	ChemBridge
$H_2N \xrightarrow{N} H \xrightarrow{H} Cl$	89	UTSAM592	42% at 180	>180	>180	>180	7.3	1.0 (0.88–1.2)	-2.9	synthesized
$H_2N \underset{N}{ H_2N} \underset{P}{ H_2N} \underset{P}{ H_2N} \underset{P}{ H_2N} \underset{P}{ H_2N} \underset{P}{ H_2N} \underset{P}{ H_2N} \underset{C_{11}H_{10}F_2N_4}{ H_2N} \underset{P}{ $	90	UTSAM498	nd	33% at 180	>180	>180	7.3	25% at 25	na	ChemBridge
$H_2N \xrightarrow{N} H \xrightarrow{CI} CI$	91	UTSAM610	0.14 (0.12–0.15)	1.1 (0.95–1.2)	13 (7.5–21)	>21	7.3	1.6 (0.94–2.8)	-6.8	synthesized

Chemical structure	Manuscript number	Code number	<i>Tb</i> IC ₅₀ pH 6.8, uM ^b	<i>Tb</i> IC ₅₀ pH 7.2, uM ^c	<i>Tb</i> IC ₅₀ pH 7.7, uM ^d	<i>Hs</i> IC ₅₀ pH 7.2, uM ^e	$pK_a(N1)^f$	<i>Tb</i> 427 EC ₅₀ , uM ^{<i>a</i>}	EC ₅₀ Hill slope	Source
$H_2N \xrightarrow{N} H \xrightarrow{C_1} C_1$	92	UTSAM582	0.25 (0.22–0.28)	1.7 (1.6–2.0)	25 (20–30)	>63	7.3	2.2 (1.8–2.7)	-4.5	synthesized
$H_2N \xrightarrow{N} H \xrightarrow{Ci} Gi$	93	UTSAM581	0.33 (0.29–0.37)	2.3 (2.1–2.6)	32 (26-40)	>180	7.3	4.5 (3.1-6.6)	-5.5	synthesized
$\begin{array}{c} H_2 N \swarrow N \swarrow H \\ N \swarrow V \swarrow C_{18} H_{17} Cl \\ C_{18} H_{17} Cl N_4 \end{array}$	94	UTSAM583	0.58 (0.51–0.65)	4.6 (4.0–5.3)	66 (50–87)	>63	7.3	4.3 (3.3–5.7)	-5.1	synthesized
$\overset{H_2N}{\underset{N}{\bigvee}}\overset{N}{\underset{CF_3}{\bigvee}}\overset{H}{\underset{CI_8H_{14}\mathrm{CIF}_3N_4}{\bigvee}}$	95	UTSAM585	0.72 (0.63–0.84)	4.7 (3.9–5.7)	28% at 21	>21	7.3	2.0 (1.4–3.0)	-6.3	synthesized
$ \begin{array}{c} H_2N \bigvee N \bigvee H \\ N \bigvee V \\ C \\ C \\ C \\ C \\ C \\ C_{18}H_{14}CIN_5 \end{array} $	96	UTSAM612	0.84 (0.67–1.1)	7.6 (3.2–18)	>6.8	>6.8	7.3	1.0 (0.96–1.1)	-3.7	synthesized
$ \overset{H_2N}{\underset{N}{\bigvee}} \overset{N}{\underset{N}{\bigvee}} \overset{H}{\underset{C_{19}H_{17}CIN_4O}} C^{I}$	97	UTSAM608	5.7 (4.8–6.8)	28% at 21	>21	>21	7.3	6.7 (4.1–11)	=-8.0	synthesized
$ \begin{array}{c} H_2 N \\ N \\ N \\ H_2 N \\ N \\ H_2 \\ H_3 \\ H_4 \\ H_1 \\ H_2 \\ $	98	UTSAM588	20 (16–25)	143 (115–178)	>180	>180	7.3	9.7 (7.5–13)	-2.1	synthesized
	99	UTSAM609	14 (12–15)	167 (150–190)	>180	>180	7.3	0.91 (0.82–1.0)	-3.1	synthesized
$H_2N \xrightarrow{N} H \xrightarrow{CI} CI$	100	UTSAM614	26 (20–34)	34% at 180	>180	>180	7.3	5.0 (4.2-6.0)	-4.6	synthesized
$H_2N \xrightarrow{N} H \xrightarrow{Cl} Cl$ $C_{17}H_{14}Cl_2N_4$	101	UTSAM618	2.9 (2.0-4.1)	26 (22–33)	>180	>180	7.3	8.5 (7.6–9.5)	-2.3	synthesized

Chemical structure	Manuscript number	Code number	<i>Tb</i> IC ₅₀ pH 6.8, uM ^b	<i>Tb</i> IC ₅₀ pH 7.2, uM ^c	<i>Tb</i> IC ₅₀ pH 7.7, uM ^d	<i>Hs</i> IC ₅₀ pH 7.2, uM ^e	$pK_a(N1)^f$	<i>Tb</i> 427 EC ₅₀ , uM ^{<i>a</i>}	EC ₅₀ Hill slope	Source
$H_2N \xrightarrow{N} H \xrightarrow{Cl} Cl$	102	UTSAM616	9.2 (7.6–11)	81 (57–114)	>180	>180	7.3	1.9 (1.6–2.3)	-5.3	synthesized
H_2N	103	UTSAM587	6.9 (6.1–8.0)	102 (82–125)	>180	>180	7.3	2.9 (1.3-3.6)	=-8.0	synthesized
$H_{2}N \xrightarrow{N}_{N} H \xrightarrow{C_{1}}_{F} C_{1}$	104	UTSAM615	14 (11–18)	157 (95–260)	>180	>180	7.3	3.2 (2.8–3.7)	-3.0	synthesized
$H_2N \xrightarrow{N} H \xrightarrow{C_1} G_1$ $F_3C \xrightarrow{C_1} G_1$ $F_3C \xrightarrow{C_1} G_1$	105	UTSAM607	6.6 (5.8–7.4)	53 (46–61)	16% at 180	>180	7.3	1.5 (1.0-2.2)	-5.8	synthesized
$H_2N \xrightarrow{N} H_3C \xrightarrow{H} CI$ $F_3C \xrightarrow{C_1} CF_3$ $C_{19}H_{13}CIF_6N_4$	106	UTSAM611	2.7 (2.5–2.9)	28 (25–31)	13% at 180	>180	7.3	0.53 (0.47–0.59)	-4.6	synthesized
	107	UTSAM605	5.7 (5.1-6.3)	57 (51–64)	>180	>180	7.3	1.7 (1.4–2.0)	=-8.0	synthesized
H ₂ N N H Cl N Cl C ₂₅ H ₁₉ ClN4	108	UTSAM613	198 (129–304)	>180	>180	>180	7.3	1.8 (1.5–2.1)	-5.1	synthesized
$ \overset{H_2N}{\underset{N}{\bigvee}} \overset{N}{\underset{V}{\bigvee}} \overset{H}{\underset{V}{\bigvee}} \overset{Cl}{\underset{O}{\bigvee}} \overset{Cl}{\underset{O}{\bigcup}} \overset{Cl}{\underset{O}{\bigg}} $	109	UTSAM624	0.86 (0.61–1.2)	6.2 (4.6-8.3)	19% at 21	>21	7.3	2.3 (1.6–3.2)	=-8.0	synthesized
$ \underbrace{ \begin{array}{c} H_{2N} \\ H_{2N} \\ N \\ N \\ N \\ O - N \\ C_{17}H_{13}ClN_{6}O \end{array} } C_{17}H_{13}ClN_{6}O $	110	UTSAM598	0.96 (0.66–1.4)	27 (21–35)	27% at 180	>180	7.3	0.57 (0.13–2.5)	-8.4	synthesized
$ H_2 N N N H_1 H_2 H_1 H_$	111	UTSAM596	1.2 (1.0–1.4)	7.4 (6.2–8.7)	85 (72–100)	30% at 180	7.3	7.1 (5.7–8.8)	-5.1	synthesized

Chemical structure	Manuscript number	Code number	<i>Tb</i> IC ₅₀ pH 6.8, uM ^b	<i>Tb</i> IC ₅₀ pH 7.2, uM ^c	<i>Tb</i> IC ₅₀ pH 7.7, uM ^d	<i>Hs</i> IC ₅₀ pH 7.2, uM ^e	$pK_a(N1)^f$	<i>Tb</i> 427 EC ₅₀ , uM ^a	EC ₅₀ Hill slope	Source
$ \begin{array}{c} H_2N \swarrow N \swarrow H \\ N \swarrow V \swarrow C \\ \\ C_{19}H_{15}CIN_4O \end{array} $	112	UTSAM599	14 (11–18)	23% at 63	>63	>63	7.3	1.4 (1.4–1.5)	=-8.0	synthesized
H_2N N H Cl S $C_{15}H_{13}CIN_4S$	113	UTSAM600	3.9 (3.2-4.8)	26 (22–32)	34% at 180	30% at 180	7.3	29 (23–35)	-4.5	synthesized
$ \begin{array}{c} H_2N \bigvee N \bigvee H \\ N \bigvee I & I \\ S \\ C_{19}H_{15}CIN_4S \end{array} $	114	UTSAM601	4.9 (4.4–5.6)	41 (36–46)	14% at 180	>180	7.3	1.6 (1.5–1.8)	=-8.0	synthesized
$ \begin{array}{c} H_{2N} \\ N \\ N \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	115	UTSAM595	4.6 (3.8–5.6)	42% at 21	>21	>21	7.3	3.6 (3.1–4.1)	-3.2	synthesized
H_2N N H C_1 C	116	UTSAM622	24 (18–34)	164 (132–203)	>180	>180	7.3	6.7 (4.7–9.6)	=-8.0	synthesized
$ \begin{array}{c} H_2 N \bigvee N \bigvee H & C \\ N \bigvee V & C \\ N \bigvee N & C_{15} H_{13} C I N_6 \end{array} \end{array} $	117	UTSAM621	36% at 180	>180	>180	>180	7.3	58 (33–100)	=-8.0	synthesized
H_2N N H $C_{19}H_{19}FN_4$	118	UTSAM629	0.36 (0.26–0.49)	2.7 (2.2–3.4)	22 (18–27)	>180	7.3	1.3 (1.1–1.5)	-2.5	synthesized
$ _{2N, N} _{N} _{N} _{N} _{C_{15}H_{14}N_{4}} _{C_{15}H$	na	UTSAM476	nd	>180	>180	>180	7.3	27% at 25	na	ChemBridge
$ \begin{array}{c} H_2 N \bigvee N \bigvee H \\ N \bigvee \\ N \bigvee \\ C_{13} H_{16} N_4 \end{array} $	na	UTSAM479	nd	>180	>180	>180	7.3	>25	na	ChemBridge
$ \begin{array}{c} H_2 N \\ N \\ N \\ \end{array} \begin{array}{c} H_1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	na	UTSAM482	nd	>180	>180	>180	7.3	>25	na	ChemBridge
$H_2N \underset{N}{\overset{N}{\longleftarrow}} H \underset{C_{13}H_{16}N_4}{\overset{H}{\longleftarrow}}$	na	UTSAM483	nd	>180	>180	>180	7.3	>25	na	ChemBridge
	na	UTSAM484	nd	>180	>180	>180	7.3	>25	na	ChemBridge

Chemical structure	Manuscript number	Code number	<i>Tb</i> IC ₅₀ pH 6.8, uM ^b	<i>Tb</i> IC ₅₀ pH 7.2, uM ^c	$Tb IC_{50} pH 7.7,$ uM^{d}	<i>Hs</i> IC ₅₀ pH 7.2, uM ^e	$pK_a(N1)^f$	<i>Tb</i> 427 EC ₅₀ , uM ^{<i>a</i>}	EC ₅₀ Hill slope	Source
H_2N N H $C_{13}H_{16}N_4$	na	UTSAM485	nd	>180	>180	>180	7.3	>25	na	ChemBridge
$H_2N \underset{N}{\overset{N}{\longrightarrow}} H \underset{F}{\overset{F}{\longrightarrow}} C_{11}H_{10}F_2N_4$	na	UTSAM503	nd	>180	>180	>180	7.1	>25	na	ChemBridge
	na	UTSAM504	nd	>180	>180	>180	7.3	>25	na	ChemBridge
	na	UTSAM545	>180	>180	>180	>180	6.9	41 (33–50)	-4.4	synthesized
	na	UTSAM548	28% at 180	>180	>180	>180	8.0	>100	na	synthesized
$H_2N \bigvee N \bigvee H \\ N \bigvee C_{11}H_{18}N_4$	na	UTSAM549	>180	>180	>180	>180	8.1	36% at 100	na	synthesized
	na	UTSAM550	>180	>180	>180	>180	8.1	>100	na	synthesized
	na	UTSAM551	28% at 180	>180	>180	>180	8.0	24% at 100	na	synthesized
	na	UTSAM552	142 (123–163)	>180	>180	>180	7.2	>100	na	synthesized
	na	UTSAM553	>180	>180	>180	>180	8.2	>100	na	synthesized
	na	UTSAM554	>180	>180	>180	>180	8.1	>100	na	synthesized
H_2N N N $C_9H_{14}N_4$	na	UTSAM555	25% at 180	>180	>180	>180	8.0	>100	na	synthesized
H_2N N H N N N N N $C_{10}H_{11}N_8$	na	UTSAM557	54 (45-64)	35% at 180	>180	>180	7.3	>100	na	synthesized
H_2N N H F F F $C_{11}H_3F_5N_4$	na	UTSAM619	60 (46-80)	23% at 180	>180	>180	7.1	>100	na	synthesized

^a Mean EC₅₀ as measured in the ATP-bioluminescence *T. brucei* viability assay, in triplicate, with 95 % confidence interval (CI) shown in parentheses. ^{b,c,d} Mean IC₅₀ for *T. brucei*

AdoMetDC/prozyme at pH 6.8 (^b), 7.2 (^c), and 7.7 (^d) determined using the RapidFire–MS-based enzyme activity assay, in triplicate, with 95 % CI shown in parentheses. ^e Mean IC₅₀ for human AdoMetDC at pH 7.2 determined using the RapidFire–MS-based enzyme activity assay, in triplicate, with 95 % CI shown in parentheses. Percent inhibition at the maximal tested concentration (in μ M) is shown when maximum mean inhibition was <50%. ^f The pKa value of the conjugated acid of the pyrimidine nitrogen N1 estimated using *MarvinSketch*. na, not applicable; nd, not determined.

Table S2. Crystallographic diffraction data and refinement statistics for the 44-bound *T*. *brucei* AdoMetDC/prozyme crystal structure

Data collection									
Symmetry	P2 ₁ (No. 4)								
Unit cell dimensions (Å; °)	a=81.09, b=96.25, c=98.84; β=102.43								
Wavelength (Å)	0.9191								
Average mosaicity (°)	1.09								
Resolution range (Å)	50-3.00 (3.05-3.00) ^a								
Unique number of reflections before merging Friedel pairs	50,684								
Unique number of reflections	30,294								
Average redundancy	6.8 (6.3)								
Completeness (%)	99.8 (99.1)								
$R_{\rm r.i.m.}$ (%) ^b	19.4								
$R_{\text{p.i.m.}}$ (%) ^c	7.4 (38.2)								
$<$ I> $/<\sigma_{I}>$	10.0 (1.9)								
$CC_{1/2}$ in the last resolution shell	0.71								
CC* in the last resolution shell	0.91								
Wilson <i>B</i> -factor $(\text{\AA}^2)^d$	49.2								
Refinement									
Resolution range (Å)	45.8–2.98 (3.08–2.98)								
Number of reflections $R_{\text{work}}/R_{\text{free}}$	29,991 / 1,499 (2,518 / 126)								
Atoms (non-H protein/ligands/solvent)	10,183 / 127 / 7								
Protein residues (resolved/sequence)	1,278 / 1,390 ^{<i>e</i>,<i>f</i>}								
R_{work} (%)	20.0 (27.5)								
$R_{\rm free}$ (%)	25.3 (35.2)								
RMSD bond length (Å)	0.003								
RMSD bond angle (°)	0.56								
Average B-factor (Å ²) (protein/ligands/solvent)	53.2 / 63.0 / 29.2								
Ramachandran plot (%) (favored/allowed/disallowed)	97.5 / 2.5 / 0								
Poor rotamers (%)	0.27								
Clashscore	2.73								

^{*a*} Numbers in parentheses correspond to the last resolution shell.

^b Redundancy-independent merging R factor, $R_{r.i.m.} = \sum_{hkl} \{N(hkl) / [N(hkl) - 1]\}^{1/2} \times$

 $\sum_{i} |I_{i(hkl)} - \langle I(hkl) \rangle| / \sum_{hkl} \sum_{i} I_{i} (hkl)^{l}$

^c Precision-indicating merging R factor, $R_{p.i.m.} = \sum_{hkl} \{1/[N(hkl) - 1]\}^{1/2} \times \sum_{i} |I_{i(hkl)} - 1| \}^{1/2}$

 $\langle I(hkl) \rangle | / \sum_{hkl} \sum_{i} I_i (hkl)^l$

^d Maximum likelihood estimate of the overall *B*-value reported in *Phenix*.

^{*e*} Residue count includes Pvl.

^f Residue count excludes the first Ser after Ulp1 cleavage site.

Figure S1. Placement of a ligand into the catalytic site of *Tb*AdoMetDC/prozyme co-crystallized with **44**. (**A**) Positive (green mesh) and negative (red mesh) mF_o-DF_c electron density countered at 3 and -3σ , respectively, and $2mF_o-DF_c$ electron density (blue mesh) countered at 1 σ after the first round of positional refinement before ligand coordinates were included in the model. (**B**) $2mF_o-DF_c$ electron density (blue mesh) countered at 1 σ observed for the final refined model including the bound ligand. (**C**) Simulated annealing composite omit $2mF_o-DF_c$ electron density (blue mesh) countered at 1 σ based on the final refined model including the bound ligand. (**D**) Anomalous difference map (blue mesh) showing positions of bromines in bound ligand countered at 2 σ .

References

 Weiss, M. S. (2001) Global indicators of X-ray data quality. *J Appl Crystallogr 34*, 130-135. DOI: 10.1107/S0021889800018227.