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SUMMARY

Defects in patterning during human embryonic
development frequently result in craniofacial abnor-
malities. The gene regulatory programs that build
the craniofacial complex are likely controlled by in-
formation located between genes and within intronic
sequences. However, systematic identification of
regulatory sequences important for forming the hu-
man face has not been performed. Here, we describe
comprehensive epigenomic annotations from human
embryonic craniofacial tissues and systematic com-
parisons with multiple tissues and cell types. We
identified thousands of tissue-specific craniofacial
regulatory sequences and likely causal regions for
rare craniofacial abnormalities. We demonstrate
significant enrichment of common variants associ-
ated with orofacial clefting in enhancers active
early in embryonic development, while those associ-
ated with normal facial variation are enriched near
the end of the embryonic period. These data are
provided in easily accessible formats for both
craniofacial researchers and clinicians to aid future
experimental design and interpretation of noncod-
ing variation in those affected by craniofacial
abnormalities.
INTRODUCTION

Formation of the craniofacial complex is an intricate process of

precisely timed events that occurs relatively early in vertebrate

embryonic development. For example, in human embryonic

development, the majority of the events that lead to the forma-

tion of the human face and skull occur during the first 10 weeks

of gestation (Schoenwolf et al., 2009). Defects in the orchestra-

tion of these events result in several different congenital abnor-

malities, including orofacial clefting and craniosynostosis.

Worldwide, orofacial clefting is one of the most common birth

defects, affecting �1 in 700 live births (World Health Organiza-

tion, 2003). The majority of those affected with these types of
Ce
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clefting do not have defects in other tissues or organ systems,

and, thus, they are referred to as non-syndromic (Mossey and

Modell, 2012). While these birth defects are largely repairable

through surgical means, the financial, sociological, and psycho-

logical effects have a much broader impact and represent a sig-

nificant public health burden (Boulet et al., 2009; Wehby and

Cassell, 2010; Wehby et al., 2011, 2012). Screening, prevention,

and non-surgical therapeutic options are thus highly desirable.

The high heritability of such disorders suggests a major genetic

component (Grosen et al., 2010, 2011); however, causative ge-

netic changes have only been identified in a fraction of those

affected (Beaty et al., 2016; Thieme and Ludwig, 2017).

In the past decade, numerous genome-wide association

studies, copy number variant analyses, and whole-exome

sequencing studies have sought to identify genetic sources of

risk for craniofacial defects and normal human facial variation

(Beaty et al., 2010; Bureau et al., 2014; Camargo et al., 2012;

Claes et al., 2018; Conte et al., 2016; Leslie et al., 2017; Letra

et al., 2010; Lidral et al., 2015; Ludwig et al., 2012, 2016, 2017;

Mangold et al., 2010, 2016; Mostowska et al., 2018; Yu et al.,

2017; Yuan et al., 2011). These studies identified common and

rare variants associated with these phenotypes, but most are

located in noncoding portions of the genome preventing func-

tional interpretation and prioritization. Our genomes are littered

with gene regulatory sequences, located primarily in intronic

and intergenic sequences, which are active in a small number

of tissues and/or developmental stages in humans (Roadmap

Epigenomics Consortium et al., 2015). While the regulatory po-

tential of the human genome is still not completely understood,

defects in regulatory sequences can cause non-syndromic

developmental defects in humans and mice (Lettice et al.,

2003; Petit et al., 2016; Sagai et al., 2005; Weedon et al.,

2014). Of particular interest for craniofacial abnormalities, recur-

rent deletions of noncoding DNAnear theSOST andSOX9 genes

have been implicated in Van Buchem disease and Pierre Robin

sequence, respectively (Balemans et al., 2002; Benko et al.,

2009). These findings, coupled with the non-syndromic nature

of most orofacial clefting and craniosynostosis cases (Leslie

and Marazita, 2015; Timberlake et al., 2016), suggest defective

gene regulatory sequences may underlie much of the incidence

of craniofacial abnormalities.

Despite the common nature of such birth defects and defined

windows of embryonic development in which they likely occur,
ll Reports 23, 1581–1597, May 1, 2018 ª 2018 The Author(s). 1581
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mapping of chromatin states and identification of craniofacial-

specific regulatory sequences have not been addressed by large

functional genomics efforts such as Encyclopedia of DNA Ele-

ments (ENCODE) and Roadmap Epigenome (Roadmap Epige-

nomics Consortium et al., 2015). These large-scale projects

have profiled chromatin states in cultured cell types derived

in vitro from embryonic stem cells, fetal tissues from greater

than 90 days of gestation, or adult post mortem samples, but

they have not examined primary embryonic tissues. The embry-

onic period of human development, the first 8 weeks of gestation

when much of craniofacial development occurs (Schoenwolf

et al., 2009), has thus far been only characterized with a smaller

number of functional genomics experiments in the developing

limb and cortex and cultured cranial neural crest cells (CNCCs)

(Prescott et al., 2015). Particularly, comparisons of epigenomic

signals in human and chimp CNCCs revealed differential utiliza-

tion of regulatory sequences that may play roles in the normal

formation and evolution of the human face. However, it is unclear

how closely these culture models recapitulate early human

craniofacial development.

The lack of primary, tissue-specific genomic annotations from

this critical period of human development has impeded the iden-

tification of regulatory circuitry important for human craniofacial

development, and it has prevented accurate interpretation of

clinical genetic findings in patients with craniofacial disorders

(Thieme and Ludwig, 2017).Without sufficient biological context,

prioritization and developing of hypotheses to test genetic asso-

ciationswith craniofacial abnormalities are hindered (Dixon et al.,

2011; Khandelwal et al., 2013; Leslie and Marazita, 2015; Rahi-

mov et al., 2012). Here, we present a comprehensive resource

of functional genomics data and predicted chromatin states for

critical stages of early human craniofacial development. We

have profiled multiple biochemical marks of chromatin activity

in developing human craniofacial tissue samples encompass-

ing 4.5–8 post-conception weeks. We have comprehensively

compared these data with publicly available functional genomics

data from 127 epigenomes. We provide annotations consistent

with large consortia efforts (Roadmap Epigenomics Consortium

et al., 2015) in formats easily loadable into modern genome

browsers to enable exploration by other researchers without

large computational effort. In total, our analyses have identified

thousands of previously unknown craniofacial enhancer se-

quences that will enable future experimental testing of

enhancer-target gene interactions in developing craniofacial tis-

sues. More importantly, this resource will facilitate future clinical

interpretation of genetic variation in the context of congenital

craniofacial defects that lack clear changes in the copy number

or coding sequence of genes.

RESULTS

Profiling of Histone Modifications in Developing Human
Embryonic Craniofacial Tissue
Chromatin immunoprecipitation of post-translational histone

modifications coupled with next-generation sequencing (ChIP-

seq) is a powerful method to identify active regulatory sequences

in a global fashion from a wide variety of biological contexts

(Roadmap Epigenomics Consortium et al., 2015). Many of the
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regulatory elements identified by this method are specific to

the biological context queried (Visel et al., 2009; Zhu et al.,

2013) (i.e., tissue type or developmental stage), and they are en-

riched for genetic associations with disease in a relevant tissue

(i.e., immune-related disorder associations in immune cell-spe-

cific enhancers) (Farh et al., 2015; Pasquali et al., 2014).

To identify regulatory sequences important for human cranio-

facial development, we utilized ChIP-seq of six post-transla-

tional histone modifications across multiple stages and multiple

biological replicates of early human craniofacial development.

We focused our efforts on histone modifications profiled by

large consortia and strongly associated with multiple states

of chromatin activity. We performed parallel ChIP-seq experi-

ments on craniofacial tissues obtained from 17 individual

human embryos spanning a critical window for the formation

of the human orofacial apparatus (Figure 1A). Specifically, we

profiled marks ranging from those associated with repression

(H3K27me3), promoter activation (H3K4me3), active transcrip-

tion (H3K36me3), and various states of enhancer activation

(H3K4me1, H3K4me2, and H3K27ac) (Figure 1B) (Ernst et al.,

2011). We profiled at least three individual human embryonic

craniofacial samples from each of four distinct Carnegie stages

(CSs) (CS13, CS14, CS15, and CS17) encompassing 4.5 post-

conception weeks (pcw) to 6 pcw (Schoenwolf et al., 2009).

We also profiled single biological samples from CS20 (8-pcw)

and 10-pcw embryos (Figure 1C). We obtained over 5.3 billion

ChIP-seq reads across a total of 106 datasets, with mean

total reads and uniquely aligned reads per sample of 50.3 and

37.3 million, respectively, meeting guidelines proposed by

ENCODE (Landt et al., 2012) (Table S1).

Overall the samples correlated well by mark and stage of

development (Figures 2A, S1A, and S1B). We uniformly pro-

cessed these data to identify reproducibly enriched regions for

each mark within each stage. The genomic features identified

by each set of enriched regions closely mirror what has previ-

ously been reported for each of these post-translational marks

(Figures 2B and S1C) (Ernst et al., 2011; Zhu et al., 2013). For

example, we observed very strong enrichment of H3K4me3 at

promoters of genes, and we identified a large number of intronic

or intergenic regions enriched for H3K27ac. When we examined

all the samples for a given CS, we identified thousands of en-

riched regions, at each stage for each mark, that were found in

at least two biological replicates (Figure 2C). Combined, these

results indicated that our ChIP-seq data from primary human

embryonic tissues were of high quality, reflected the previously

described nature of these marks, and were likely to identify tis-

sue-specific regulatory sequences.

Generation of Human Craniofacial Chromatin State
Segmentations
Defining enriched regions for a single histone modification

such as H3K27ac has been utilized to identify active regulatory

sequences from a variety of tissues, biological contexts, and

different species (Cotney et al., 2013; Dickel et al., 2016; Nord

et al., 2013; Reilly et al., 2015; Villar et al., 2015). However, in

the absence of H3K27ac, other marks can identify active regula-

tory sequences, and low levels of H3K27ac may be present at

enhancers that are either about to become active or are no
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Figure 1. Overview of Epigenomic Profiling

of Early Human Craniofacial Development

(A) Stages and craniofacial tissues (orange

shading) of human embryonic development

sampled in this study, indicated as individual

Carnegie stages (CSs) or approximate post-

conception weeks (pcw). Voids or cleavages in the

embryo are indicated by black-shaded regions

and do not indicate deformities.

(B) Six post-translational modifications of histones

were profiled in parallel from individual human

embryos via ChIP-seq.

(C) Signals from primary ChIP-seq data were

imputed using ChromImpute (Ernst and Kellis,

2015) to match the 12 epigenomic signals profiled

by Roadmap Epigenome (Roadmap Epigenomics

Consortium et al., 2015). Asterisks indicate signals

containing only imputed data. These imputed

datasets were then used to predict chromatin

states using a Hidden Markov Model approach

(ChromHMM) (Ernst and Kellis, 2012) across

the genome for each craniofacial tissue sample.

These chromatin states were then used for

downstream functional analyses to determine

relevance for craniofacial biology and disease.

(See also Figure S1 and Table S1.)
longer active (Bonn et al., 2012; Cotney et al., 2012; Kumar et al.,

2016). More advanced methods, such as using machine-

learning techniques and integrating multiple chromatin signals

from a single tissue, allow segmentation of the genome into a

more complex array of biological states (Ernst and Kellis, 2012;

Hoffman et al., 2012). These techniques can identify tissue-spe-

cific and disease-relevant regulatory information in heteroge-

nous tissues that might not be readily apparent from gene

expression data or analysis of promoter activation states (Ernst

et al., 2011; Hoffman et al., 2013).
Cell
To leverage such available data to

identify regulatory information likely to

be critical for craniofacial development,

we processed our data in a uniform

fashion to match those generated by

Roadmap Epigenome (Roadmap Epige-

nomics Consortium et al., 2015). We first

generated p value-based signals calcu-

lated on enrichment versus paired-input

controls (Feng et al., 2012; Landt et al.,

2012) for each of the six epigenomic

marks we assayed. Then, using the

same type of signals for 12 epigenomic

marks for 127 tissues and cell types

generated by Roadmap Epigenome, we

imputed our data to create a uniform,

directly comparable dataset of ChIP-

seq signals (Ernst and Kellis, 2015). The

imputed samples’ signals correlated

well with their primary signals and clus-

tered generally by mark and biological

function (Figures 3A, S1D, and S1E). Us-
ing the imputed craniofacial data, we then segmented the

genome using ChromHMM for each embryonic sample based

on previously generated models of 15, 18, and 25 states of

chromatin activity (Roadmap Epigenomics Consortium et al.,

2015). We identified similar numbers and proportions of seg-

ments in each state in our tissues (Figures 3B and S2). The

25-state model results showed the most similar trends across

these measures, and they utilized all of the primary data gener-

ated in our study when compared to those previously gener-

ated by Roadmap Epigenome (Figures 3C, 3D, and S2);
Reports 23, 1581–1597, May 1, 2018 1583
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Figure 2. Histone Modification Profiles in Human Craniofacial Development

(A) Heatmap and hierarchical clustering of pairwise Pearson correlations for non-overlapping 10-kb bins across the human genome for 114 individual histone

modification profiles from human craniofacial tissues. Relatedness of epigenomic profiles by sample is indicated by dendrogram along the vertical axes of the

heatmap. Darker orange indicates positive correlation between datasets.

(B) Genomic feature annotations identified by peak calls from six histone modification profiles from the same tissue sample plotted as cumulative percentage of

total peaks. Peak enrichments and genomic annotations were performed using HOMER (Heinz et al., 2010).

(C) Histone modification peaks identified in at least two separate tissue samples from the same developmental stage and annotated into three broad categories:

promoter (2 kb upstream of transcription start site [TSS]), exons, and all other intronic or intergenic locations. (See also Figure S1 and Table S1.)
therefore, we focused our downstream analyses on these

segmentations.

Large active chromatin domains over the promoters of genes

have been shown to identify critical regulators in developing tis-

sues and differentiation models (Bernstein et al., 2006; Cotney
1584 Cell Reports 23, 1581–1597, May 1, 2018
et al., 2012; Rada-Iglesias et al., 2012; Whyte et al., 2013). Addi-

tionally, overlapping domains of activation and repressive-

associated signals (H3K27ac, H3K4me3, and H3K27ame3) are

potent identifiers of genes poised for activation in embryonic

stem cells, or they display restricted domains or gradients of
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Figure 3. Imputation of Craniofacial Epigenomic Signals and Chromatin State Segmentation

(A) Principal-component analysis projection of first two component dimensions for 252 imputed and 114 primary epigenomic profiles for human craniofacial

samples across non-overlapping 10-kb bins. Samples are color coded by epigenomic mark and shapes indicate primary versus imputed data types. Samples

generally cluster into three broad categories of activity: repression, regulatory element activation, and transcription regulation. (See also Figures S1D and S1E.)

(B) Numbers of individual chromatin state segments identified by each of the color-coded 25 states of chromatin activity based on imputed epigenomic signals for

each of the 21 tissue samples profiled.

(C) Comparison of cumulative percentage of each chromatin state between craniofacial samples profiled here and 127 segmentations generated by Roadmap

Epigenome (Roadmap Epigenomics Consortium et al., 2015).

(D) Mean numbers of segments annotated in each of the 25 states across 21 craniofacial samples (orange) and 127 Roadmap Epigenomes (gray). Error bars

represent SD. Overall chromatin state segmentation in craniofacial samples identifies similar numbers and percentages of each of 25 states published by

Roadmap Epigenome (Roadmap Epigenomics Consortium et al., 2015). (See also Figure S2.)
expression in heterogenous embryonic tissue samples (Bern-

stein et al., 2006; Cotney et al., 2012; Rada-Iglesias et al.,

2012; Rada-Iglesias andWysocka, 2011). These bivalent signals

were originally identified in embryonic stem cell cultures (Bern-

stein et al., 2006), but they were most recently reported in devel-

oping mouse pharyngeal arch tissue as important markers for

the regulation of neural crest positional identity, and they were

shown to play important roles in Drosophila development

(Kang et al., 2017; Minoux et al., 2017). These findings empha-
size the biological importance of such chromatin states in devel-

opmental patterning, and they indicate that genes marked with

such states are likely important for proper craniofacial develop-

ment. These overlapping signals were annotated by a bivalent

state in the 25-state model (23_PromBiv) and identified 957

genes with bivalent promoters. The genes identified by this biva-

lent state were strongly enriched for DNA-binding proteins, most

significantly homeobox-containing transcription factors, and en-

riched for factors previously identified to play a role in embryonic
Cell Reports 23, 1581–1597, May 1, 2018 1585



A

B

(legend on next page)

1586 Cell Reports 23, 1581–1597, May 1, 2018



cranial skeletonmorphogenesis, such as the gene pairDLX5 and

DLX6 (Figures 4A and S3) (Robledo et al., 2002).

In total, we identified 189 DNA-binding factors likely to be crit-

ical regulators of craniofacial development based on chromatin

states (Table S2). Because of the important role ascribed to

genes with bivalent status, as mentioned above, we sought to

determine if any of the bivalent marks we identified were shared

with previous data or specific for craniofacial tissue. To address

this, we overlapped our bivalent state calls with the same biva-

lent state calls from all samples profiled by Roadmap Epige-

nome. Of the 957 genes identified above, only 7 genes were

shown to have bivalent regions within 5 kb of their transcription

start site (Table S2). In particular, we identified EGR1 and

COX7A1 with a bivalent chromatin status not previously

observed in Roadmap Epigenome. EGR1 has been implicated

in cranial cartilage development in zebrafish and expressed in

early cartilage in mice (McMahon et al., 1990), while COX7A1

was shown to be differentially expressed in samples from pa-

tients with cleft lip only versus cleft lip and palate (Jakobsen

et al., 2009). When we analyzed genes reported to have bivalent

status in mouse craniofacial tissues (Minoux et al., 2017), 106 of

708 genes shared this status between human and mouse. Of

these 106, 62 were DNA-binding proteins identified in our data,

representing a significant enrichment in this class of protein

among all bivalent genes (2.77-fold increase, Fisher p <

0.0001; Figure 4B; Table S2).

Lastly, to determine if this trend extends beyond chromatin

marks to regions actively engaged by both activating and repres-

sing complexes, we interrogated genes cobound in HUES64 hu-

man embryonic stem cells (ESCs) by BRD1, a component of the

MOZ/MORF acetyltransferase complex, and RING1B, a compo-

nent of Polycomb Repressive Complex 1 (PRC1) (Kang et al.,

2017). We observed 134 genes of 609 cobound by these com-

plexes had bivalent status in our data, the majority being DNA-

binding factors (n = 92; 2.2-fold enrichment, Fisher p < 0.0001;

Table S2). Follow-up studies of these bivalent genes, especially

the DNA-binding proteins, and the complexes that generate

these states in a craniofacial context may reveal previously un-

known roles in normal formation of the mammalian face and

skull.

Identification of Craniofacial-Specific Enhancers and
Craniofacial Super-enhancers
Having shown that our segmentations identify activation and/or

poising of promoters important for craniofacial development,

we next turned to regulatory portions of the genome. Using

the 25-state segmentations, we reproducibly identified 75,928

segments in our craniofacial sample from at least one of six

enhancer categories defined by Roadmap Epigenome (EnhA1,

EnhA2, EnhAF, EnhW1, EnhW2, and EnhAc). To determine if

our chromatin state segmentations identify bona fide craniofa-

cial enhancers, we first compared craniofacial enhancer seg-
Figure 4. Large Bivalent Domains at Gene Pair DLX5 and DLX6

(A) UCSC Genome Browser shot of locus encompassing the DLX5/DLX6 locus.

indicate bivalent regions. Imputed signals and peak calls for representative sam

(B) DNA-binding proteins identified as having a bivalent promoter state in huma

having bivalent status during early mouse craniofacial development (Minoux et a
ments with H3K27ac ChIP-seq peak calls previously identified

in cultured CNCCs (Prescott et al., 2015). We found 30-fold

(p < 10�4) and 12-fold (p < 10�4) enrichment of overlaps with

the top 5,000 active CNCC enhancers and the top 1,000 hu-

man-biased CNCC enhancers, respectively (Figures S4A and

S4B).

We then turned to a large catalog of experimentally validated

developmental enhancers tested in mouse embryos and avail-

able in the Vista Enhancer Browser (Visel et al., 2007). We iden-

tified over 80%of all craniofacial-positive enhancers in this data-

base (n = 170). Moreover, our enhancer annotations were

significantly enriched for craniofacial enhancers versus those

that lacked craniofacial activity (p = 3.28 3 10�14) (Figures 5A,

5B, and S4C). While these results are encouraging, namely,

that our data identified true craniofacial developmental en-

hancers, the chromatin state annotations alone do not reveal

the specificity of individual regulatory regions nor do they identify

target genes. To initially address this question, we quantitatively

compared enhancer-associatedH3K27ac signals at 425,380 en-

hancers from our craniofacial segmentations and 127 segmenta-

tions from Roadmap Epigenome. Both hierarchical clustering

and principal-component analysis showed that our samples

were well correlated with one another in this multi-tissue context

(Figures 5C and S5). They were most similar to ESCs and cell

types derived from them (embryonic stem cell-derived; ESDR),

but they were distinct from fetal and adult samples present in

Roadmap Epigenome data, suggesting our annotations harbor

regulatory information not previously annotated by Roadmap

Epigenome. We also uniformly processed raw epigenomic

data from human CNCCs (Prescott et al., 2015) with our align-

ment, imputation, and segmentation pipeline. We found that

the chromatin state segmentations for CNCC samples showed

significant differences in the overall number and size of all chro-

matin states versus our data as well as Roadmap Epigenome

(Figures S2I and S2J). Additionally, principal-component anal-

ysis of H3K27ac signal showed these cell types formed a cluster

distinct from both the other ESDR types and our craniofacial

samples (Figure 5C). These results are likely due to differences

in sequencing depth, the host of marks profiled, or distinct differ-

ences in the derivation of these cell types versus primary tissues

that we cannot tease apart in this study. We therefore excluded

chromatin state segmentations from these cell types from down-

stream multi-tissue comparisons.

Due to the isolated, tissue-specific nature of many craniofacial

defects, we hypothesized that enhancers identified only in devel-

oping craniofacial tissues would be enriched near genes impli-

cated in craniofacial abnormalities. To identify such enhancers

in craniofacial tissue, we determined if any of our enhancer seg-

ments were ever annotated in Roadmap Epigenome. Overlaying

our segmentations on those from 127 samples identified

6,651 enhancer segments specific for craniofacial development

(8.7% of total craniofacial enhancer segments) (Table S1;
At top are chromatin state segmentations for all tissue samples. Purple states

ples from each stage and for each indicated histone mark are shown below.

n embryonic craniofacial development. Genes in bold were also identified as

l., 2017). (See also Figure S3 and Table S2.)
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Figure S6). To determine if these sites are relevant for craniofa-

cial development or represent spurious segmentations in our

data, we analyzed sequence content of these regions and func-

tional enrichments of genes potentially regulated by these re-

gions. When we assessed the craniofacial-specific enhancers

for enrichment of transcription factor-binding sites, we identified

motifs matching those of TWIST2, LMX1B, SIX1, NKX6.1, multi-

ple members of the LHX and HOX families, and TCF12, all of

which have been implicated in craniofacial and skeletal develop-

ment (Brunskill et al., 2014; Chen et al., 1998; Gendron-Maguire

et al., 1993; Laclef et al., 2003; Marchegiani et al., 2015; Sharma

et al., 2013; Zhao et al., 1999; Figure 5D; Table S3). Utilizing the

Genomic Regions Enrichment of Annotations Tool (GREAT)

(McLean et al., 2010), we found significant enrichment of cranio-

facial-specific enhancers assigned to genes associated with

craniofacial abnormalities, such as cleft palate in both humans

and mice (Figure 5E). Interestingly, we also identified more gen-

eral categories of enrichment among the putative gene targets,

including general transcriptional activators (Table S3). When

we interrogated this list of transcription factors for tissue-specific

biology (Gokhman et al., 2017), we found significant enrichment

for phenotypes related to craniofacial and appendicular skeleton

(Figure 5F).

The above analyses focused on the annotation and activation

state of individual genome segments. However, these enhancers

likely do not operate in isolation, and clusters of enhancers acti-

vated in concert have been shown to be powerful regulators of

important genes for a given tissue or cell type (Whyte et al.,

2013). To identify such enhancer clusters, we applied the rank

order of super enhancers (ROSE) (Whyte et al., 2013) algorithm

for identifying super-enhancers as well as a sliding window

approach to detect enrichment of craniofacial enhancer states

relative to both randomly chosen sequences as well as those

identified by Roadmap Epigenome. We identified 581 regions

across the genome that demonstrated enrichment for craniofa-

cial enhancers or identified as a super-enhancer region (Table

S4). These windows had an average size of �400 kb but ranged

up to 2 Mb in length. In many cell types, these clusters of en-

hancers are embedded in the genome both surrounding and

within the introns of their likely tissue-specific target (Hnisz

et al., 2013). Indeed, most of the super-enhancer regions and

enhancer-enriched windows we identified contained multiple

genes (mean of 4.7 genes per window) and were enriched for
Figure 5. Chromatin State Segmentations Identify Craniofacial-Specifi

(A) Percentage of in vivo-validated embryonic enhancers with (orange) or without

identified by craniofacial chromatin segments annotated as enhancer states. Sig

(B) Selected validated enhancers with craniofacial activity identified by this study

(C) Principal-component analysis projection of second and third component dim

segments in any of the samples profiled here or by Roadmap Epigenome. Sampl

craniofacial samples from this study. Percentages of variance across samples exp

(D) Transcription factor position weight matrices identified by HOMER (Heinz et

Table S3.)

(E) Significant enrichments of human disease phenotypes for genes assigned to c

2010). (See also Figures S6 and S7.)

(F) Enrichment of anatomical expression of transcription factors identified as pot

GeneORGANizer (Gokhman et al., 2017). Heat indicates fold enrichment of expr

skeleton showed the most significant enrichments.
developmental genes, including multiple FZD, WNT, ALX, DLX,

and TBX family members (Table S4). These super-enhancer

regions encompass virtually all of the same bivalent domains

identified above (951 of 957), suggesting they have complex,

concerted activation by regulatory elements throughout the

developing craniofacial complex.

The most significantly enriched super-enhancer region based

on both fractions of bases annotated as an enhancer state and

H3K27ac signals across all craniofacial samples encompassed

the PRDM16 gene. The promoter of this gene is identified as a

bivalent region, and both the large noncoding region upstream

and large intronic sequences are littered with strongly active en-

hancers (Figure S7). Work in mice has identified point mutations

in Prdm16 that give rise to cleft palate, but a role for this gene in

human craniofacial abnormalities has not been concretely iden-

tified (Bjork et al., 2010). The PRDM16 protein has been impli-

cated in the methylation of H3K9, suggesting this protein could

also be involved in maintaining bivalent states described above

(Pinheiro et al., 2012). The strong epigenomic signals we identi-

fied in primary tissue surrounding this gene, its bivalent pro-

moter, and reported histone modification activity suggest this

gene may contribute to the regulation of many genes in craniofa-

cial development.

Enrichment of Orofacial Clefting and Facial Variation
Genetic Associations in Craniofacial Enhancers
The results above suggest that many of the craniofacial en-

hancers we identified are likely to play a direct role in the

patterning of bones of the face, jaws, and portions of the skull.

However, it is unclear whether they are directly involved in hu-

man craniofacial abnormalities. To begin to explore whether

the enhancers we identified play a role in craniofacial abnormal-

ities, we first turned to regulatory regions previously identified as

causative in two distinct craniofacial syndromes. Van Buchem

disease is a rare disorder characterized by bone overgrowth in

the jaws and skull (Van Hul et al., 1998). A large noncoding dele-

tion was identified in a Dutch family between the MEOX1 and

SOST genes (Balemans et al., 2002). All of our chromatin state

segmentations identified several strong enhancer states in this

window, including at least one region previously tested in the

developing mouse based on conservation (Loots et al., 2005).

However, we also identified a craniofacial-specific enhancer

state overlapping a deeply conserved sequence (ERC7) as well
c Regulatory Sequences

(gray) craniofacial activity from the Vista Enhancer Browser (Visel et al., 2007)

nificance was determined by Fisher’s exact test.

from the Vista Enhancer Browser. (See also Figure S4.)

ensions for 149 H3K27ac profiles at 425,568 regions annotated as enhancer

es are color coded by group annotations assigned by Roadmap Epigenome or

lained by each component are indicated along each axis. (See also Figure S5.)

al., 2010) as enriched in craniofacial-specific enhancer segments. (See also

raniofacial-specific enhancer segments, as reported by GREAT (McLean et al.,

entially regulated by craniofacial-specific enhancer segments, as reported by

ession in individual anatomical region or organ. Craniofacial and appendicular
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Figure 6. Human Craniofacial Enhancers Identify Regions Important for Van Buchem Disease and Pierre Robin Sequence

(A) UCSC Genome Browser shot of locus encompassing the large noncoding region flanked byMEOX1 and SOST. Region deleted in a Dutch family affected by

Van Buchem disease is indicated by the black bar. Conserved regions (ERC) tested by Loots et al. (2005) are indicated above conservation tracks. Craniofacial-

specific enhancer near ERC7 is indicated in orange. Additional regions annotated with strong craniofacial enhancer states but with relatively low conservation in

the Van Buchem interval are indicated by purple box.

(B) UCSC Genome Browser shot of locus encompassing the large noncoding region flanked by KCNJ2 and SOX9 and associated with Pierre Robin sequence

(PRS). Black bars indicate intervals altered in PRS families as previously reported by Benko et al. (2009). Region encompassing the F2 mutation is highlighted in

the following panel.

(C) Enlarged view of F1 deletion region and conserved noncoding element affected by F2 mutation (HCNE-F2). Craniofacial-specific enhancer regions are

indicated by orange bars. A portion of one of these regions was tested in the Vista Enhancer Browser (mm628). Inset panel shows enhancer activity of mm628 in

embryonic day (E) 11.5 mouse embryos from the Vista Enhancer Browser. (See also Figures S8 and S10–S17.)
as enhancers that lacked significant conservation in this interval

that could play a role in Van Buchem disease (Figure 6A). We

then turned to Pierre Robin sequence (PRS), a syndrome charac-

terized by a reduced lower jaw, misplacement of the tongue, and

frequent occurrence of cleft palate (Tan and Farlie, 2013). Ge-
1590 Cell Reports 23, 1581–1597, May 1, 2018
netic mapping in several multi-generational families affected

by PRS identified recurrent deletions and translocations in a

2.46-Mb noncoding region between KCNJ2 and SOX9 (Benko

et al., 2009; Gordon et al., 2014). Our data identified numerous

shared and craniofacial-specific enhancers throughout this



region (Figure 6B). Most importantly, for two families with over-

lapping genetic changes, we identified craniofacial-specific

enhancers within this region, including one overlapping the

200-bp sequence hypothesized to be causative in at least one

of these families (F1 and F2 from Benko et al., 2009). Our cranio-

facial-specific segmentations also identified at least two other

highly conserved regions upstream of the originally tested

sequence, one of which showed craniofacial regulatory capacity

(Figure 6C) (Gordon et al., 2014).

The first genome-wide association for non-syndromic cleft lip

and/or palate was identified at the 8q24 locus encompassing a

640-kb noncoding region downstream of the MYC gene (Fig-

ure S8A) (Birnbaum et al., 2009). This region has a very significant

impact on nonsyndromic cleft lip and/or palate (NSCLP) risk, the

rs987525 SNP in this region yielding odds ratios ranging from

2.07 to 4.68 (Ludwig et al., 2012). While we did not annotate an

enhancer directly overlapping this SNP position, we did identify

a craniofacial enhancer state in all of our samples �2 kb down-

stream (Figure S8B). Additionally, this large noncoding region

has been studied with a number of mouse deletion lines (Uslu

et al., 2014). Overlapping deletions revealed a 280-kb region

dubbed amedionasal enhancer region (MNE) and a 106-kb nasal

epithelial enhancer region (NEE) in the developing mouse. Dele-

tion of the MNE resulted in lower Myc expression in multiple

developing mouse tissues and an elevated incidence of cleft

lip and palate. Inspection of these orthologous regions in the

human genome revealed multiple craniofacial enhancers active

across multiple states, several of which were more strongly

active later in development. In particular, the only strong

enhancer states annotated in each region were located near

the center of both deletion intervals (Figures S8C and S8D).

Our data support the findings reported for this region in the

mouse for orofacial clefting, but our annotations narrow the

search for causative regulatory regions within these still relatively

large regions to less than 5 kb.

We next turned to the most recent genome-wide associations

from several comprehensive meta-analyses focused on orofa-

cial clefting (Leslie et al., 2017; Ludwig et al., 2017; Yu et al.,

2017). We overlaid associations from these studies along with

SNPs in strong linkage disequilibrium with each of the segmen-

tation maps from our data, as well as data from Roadmap

Epigenome, andwe assessed enrichment using genomic regula-

tory elements and GWAS overlap algorithm (GREGOR) (Schmidt

et al., 2015). As a control, we also interrogated associations for

Crohn’s disease for enrichment in our enhancers (Welter et al.,

2014). We did not observe any significant enrichment of

Crohn’s-associated SNPs in our craniofacial segmentations.

However, we did observe strong enrichment among enhancers

identified in immune-related cell types and tissues. This result

agreed with previous findings, and it validated our approach

for assessing enrichment of genetic associations (Figure S9A)

(Lee et al., 2017). When we analyzed associations for orofacial

clefting, we observed significant enrichment of SNPs reported

from all three studies in our craniofacial enhancers. The most

significant findings in our data were consistently observed from

SNPs reported by Yu et al. (2017) (Figures 7A, S9B, and S9C).

However, only the credible SNPs for 24 regions based on impu-

tation of genotyping data showed enrichment in our much
smaller number of craniofacial-specific enhancers relative to

total enhancers in each segmentation (Figure S9C) (Ludwig

et al., 2017).

Interestingly, for all three orofacial clefting studies, enhancer

segmentations from our early samples (CS13–CS15) showed

the most significant enrichments. These results suggested

defective patterning events during early embryonic development

drive these abnormalities. For example, we identified a discrete

enhancer state in the noncoding region between IRF6 andDIEXF

that contains a tag SNP previously associated with non-syn-

dromic cleft lip and palate (Zucchero et al., 2004; Figure 7B).

This particular enhancer region has been reported to influence

IRF6 expression, and it is potentially causative for orofacial cleft-

ing, particularly cases of cleft lip without cleft palate (Rahimov

et al., 2008). In our data, we observe an enhancer state from

CS13 to CS15, but not in samples from CS17 and beyond.

This finding would agree with the stronger genetic associations

for this region with cleft lip alone as the external features of the

human face, particularly the lip, close earlier in human develop-

ment than the palate (Schoenwolf et al., 2009). Our datamay also

be informative for other large loci previously implicated in orofa-

cial clefting. Inspection of several of these loci, including 1p22,

1p36, 10q25, 15q13, 17q22, and 20q12, identified craniofacial

enhancer states near tag SNPs previously reported (Leslie

et al., 2015, 2017; Ludwig et al., 2017; Mangold et al., 2016; Yu

et al., 2017). However, our annotations also identified regulatory

regions some distance away, near bivalent genes or the pro-

posed target gene in these intervals that may also be important

and potentially harbor rare variation not detectable in a genome-

wide association study (GWAS) (Figures S10–S17).

Finally, while the regulatory regions identified here were

enriched for associations with craniofacial abnormalities, it is

unclear if these regions were also informative for understating

the wide variety of craniofacial shapes and appearances among

humans. Recent GWAS searching for genetic associations with

variability in multiple measures of facial shape identified 38 loci

in those of European ancestry (Claes et al., 2018). These loci

were reported to be enriched near regions with elevated

H3K27ac signals in cultured human CNCCs. Indeed, when we

interrogated our enhancer segmentations with the craniofacial

measure SNPs using the same approach as above for orofacial

clefting SNPs, we also observed significant enrichment (Fig-

ure 7C). However, unlike the orofacial clefting associations, the

craniofacial measure associations were most strongly enriched

in enhancers from later stages of our cohort, particularly CS17

and beyond. This would suggest regulatory events in late embry-

onic and early fetal development contribute to human facial

variation. In summary, these results demonstrate that our chro-

matin state maps are enriched for genetic information necessary

for normal craniofacial development and will be extremely useful

in identifying and prioritizing causative variation in patients

affected by craniofacial abnormalities as well as understanding

normal human facial variation.

DISCUSSION

Recent large consortia efforts to identify the genetics of common

disease have gained traction utilizing tissue-specific annotations
Cell Reports 23, 1581–1597, May 1, 2018 1591



A

B

C

Figure 7. Enrichment of Orofacial Clefting andCranio-

facialMeasureAssociations inCraniofacial Enhancers

(A) Enrichment of orofacial cleft GWAS tag SNPs identified by

Yu et al. (2017) in enhancer segmentations was assessed

using GREGOR (Schmidt et al., 2015). Orange circles indicate

craniofacial enhancer annotations identified by a 25-state

chromatin model from this study, while gray circles indicate

those previously published by Roadmap Epigenome (Road-

map Epigenomics Consortium et al., 2015).

(B) Enhancer state analysis permits placement of a potentially

causative allele for non-syndromic CL/P (rs642961) (Rahimov

et al., 2008) within a predicted early development enhancer

state. This enhancer state is located between IRF6 and DIEXF

and may influence expression of IRF6. (See also Table S4.)

(C) Same analysis as in (A) using GWAS tag SNPs reported for

craniofacial measures by Claes et al. (2018). (See also Fig-

ure S9.)
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of the genome to identify potential regulatory regions and over-

lying genetic associations (Farh et al., 2015; Pasquali et al.,

2014). Such genetic association data exist for craniofacial abnor-

malities, but the lack of craniofacial-specific annotations of

regulatory function has prevented systematic identification of

causal genetic changes. We have addressed this need by gener-

ating an extensive resource of functional genomics data

obtained directly from human craniofacial tissues during impor-

tant stages of formation of the orofacial apparatus. We have

uniformly processed our data to allow integration of these data

with similarly generated signals from a variety of human tissues

and developmental stages. These analyses have allowed us to

generate craniofacial-specific annotations of chromatin states

across the human genome. These chromatin state segmenta-

tions reveal tens of thousands of regions with potential gene

regulatory activity in craniofacial development.

Our analyses identified a significant proportion of previously

known genes and loci important for normal craniofacial develop-

ment in mice and humans. Specifically, our bivalent promoter

and super-enhancer annotations identified key developmental

transcription factors as well as large noncoding regions that

showed extensive activation during early craniofacial develop-

ment. The bivalent promotersmost likely reflect two possibilities:

genes that have restricted patterns of expression in the devel-

oping craniofacial tissues or poised genes that can be rapidly

activated during development. Due to the heterogeneous nature

of the tissue and processing in bulk, it is difficult to determine

between these two possibilities. Further efforts using gene

expression data, such as single-cell RNA-seq, a battery of

in situ hybridizations, or sequential ChIP-seq experiments, will

be required to elucidate the exact nature of chromatin at these

genes and determine the contributions that genes identified

here make to normal craniofacial development.

The systematic localization of SNPs associated with orofacial

clefting and normal facial variation in our craniofacial enhancer

annotations agrees with previous work from other human fetal

tissues (Maurano et al., 2012), but it extends this to a tissue/dis-

ease-specific context. Specifically, our results support the idea

that common variants associated with risk for orofacial clefting,

particularly in the case of the cleft lip association for an enhancer

of IRF6, manifest early in embryonic development, likely in the

first 3–5 weeks of gestation. This is in contrast to our results

from analyzing craniofacial measure associations. These genetic

associations were most strongly enriched in samples from 6

to 9 weeks of gestation, implicating fine-tuning of craniofacial

appearance after most of the external features have been

established.

Related to this idea, we processed previously published

epigenomic data from cultured CNCCs (Prescott et al., 2015).

We observed significant overlaps between our craniofacial

enhancer segments and CNCC H3K27ac peak calls as well as

human-biased CNCC H3K27ac regions. These findings suggest

that we have identified regulatory information that is important

for the evolution of the human face and that culture models

may reflect some of the regulatory architecture of primary human

craniofacial development. However, upon further interrogation

with our uniform pipeline, we found that the chromatin state seg-

mentations for CNCC samples showed distinct differences in the
overall number and size of all chromatin states versus our data as

well as Roadmap Epigenome (Figures S2I and S2J). This is

potentially due to differences in depth of sequencing, the collec-

tion of histone modifications profiled, or the derivation of these

cell types versus normal embryonic development. On this last

point, enrichment of craniofacial measure associations in

enhancers at later stages of development would indicate that

the CNCC system generates cells much more differentiated or

derived than previously appreciated. This also challenges the

previous interpretation that normal variation of the human face

is influenced strongly by early embryonic cell types (Claes

et al., 2018). Instead, our findings support the idea that these

variations result from fine-tuning of the structures after the basic

structure of the face has been patterned. Further global charac-

terization of culture models of early craniofacial development,

using our epigenomic data as a guide, will be necessary to

generate conditions that yield differentiation schemes more

reflective of the primary tissue environment. Such systems will

be necessary to perform systematic genomemodification exper-

iments (deletions, rearrangements, etc.) targeting the regions we

have identified to understand their function.

Our data represent one of the most comprehensive epigenetic

profiles of primary tissue from the embryonic period of human

development. Over 6,000 of the enhancer segments we defined

are newly identified, and, as we have shown, they reveal regions

with functional contribution to genetic variation associated with

disease and facial shape. These regions are strongly enriched

near genes implicated in craniofacial development, and they

would have remained unknown to craniofacial researchers

relying solely on the current state of genome annotations.

Indeed, recent targeted sequencing of GWAS intervals at

13 loci in patients affected by craniofacial abnormalities likely

included many inert regions but also excluded important cranio-

facial regulatory regions due to the lack of appropriate chromatin

state annotations (Leslie et al., 2015) (top black bars in Figures

S6B, S10, S12, S13, S14, S16, and S17). These results illuminate

that our current understanding of the regulatory information our

genomes encode is incomplete and reinforce the need for

more, higher-resolution, tissue-specific profiling of multiple

epigenomic marks to yield comparable chromatin state annota-

tions from primary tissues.

We provide all our craniofacial functional genomics data and

resulting chromatin state segmentations totaling 1,978 tracks

in several standard formats as well as a complete catalog of

tracks that can be easily loaded into many modern genome

browsers. Our data are listed in the public track hub section of

the University of California, Santa Cruz (UCSC) GenomeBrowser

as well as the Track Hub Registry (http://trackhubregistry.org/).

Additionally, we have preloaded our annotations and chromatin

signals at multiple genes implicated in craniofacial abnormalities

in the UCSC Genome Browser that can be opened with a single

click on links found at our laboratory website (https://cotney.

research.uchc.edu/data/). In total, this resource will allow the

craniofacial community and other developmental biologists to

develop hypotheses that are rooted in human craniofacial

biology instead of using chromatin state annotations from other

tissues not directly related to the tissue of interest. This work

brings the craniofacial research world firmly into the functional
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genomics era, advances our understanding of these disorders

from a regulatory perspective, and provides tools for clinicians

and researchers seeking to diagnose patients utilizing whole-

genome sequencing.

EXPERIMENTAL PROCEDURES

Further details and an outline of resources used in this work can be found in the

Supplemental Experimental Procedures.

Tissue Collection and Fixation

Use of human fetal tissue was reviewd and approved by the Human Subjects

Protection Program at UConn Health (UCHC 710-2-13-14-03). Human embry-

onic craniofacial tissue was collected, staged, and provided by the Joint MRC/

Wellcome Trust Human Developmental Biology Resource (www.hdbr.org).

Information describing the developmental stage, termination method, collec-

tion site, and karyotype of each embryo is found in Table S1. Tissues were

flash frozen upon collection and stored at �80�C. Fixation for ChIP-seq was

performed as described in Cotney and Noonan (2015). Fixed tissue pellets

were stored at �80�C until batch processing for ChIP.

Quantification and Statistical Analysis

ChIP-Seq

Fixed tissue pellets were processed for ChIP as previously described (Cotney

and Noonan, 2015). Antibodies used in this study were as follows: anti-

H3K27ac (ab4729, Abcam), anti-H3K4me1 (ab8895, Abcam), anti-H3K4me2

(ab7766, Abcam), anti-H3K4me3 (ab8580, Abcam), anti-H3K27me3 (07-449,

EMD Millipore), and anti-H3K36me3 (ab9050, Abcam). ChIP-seq libraries

were quantified by qPCR (NEBNext Library Quant Kit for Illumina), multiplexed,

and sequenced for 75 cycles across multiple flow cells on an Illumina NextSeq

500 instrument.

Primary ChIP-Seq Data Analysis

ChIP-seq reads were aligned to the human genome (hg19) using Bowtie2

(version [v.] 2.2.5) (Langmead and Salzberg, 2012). Fragment sizes of each

library were estimated using PhantomPeakQualTools (v.1.14) (Landt et al.,

2012). Histone modification-enriched regions were identified and annotated

using Hypergeometric Optimization of Motif Enrichment (HOMER, v.4.8.3)

(Heinz et al., 2010). Reproducibly enriched regions were determined by

creating a union of all enriched regions for a respective histone modification

from all replicates of a single CS and filtering for regions identified in at least

two biological replicates using BEDtools (v.2.25.0) (Quinlan and Hall, 2010).

We then generated p value-based signal tracks relative to appropriate input

controls based on estimated library fragment size using MACS2

(2.1.1.20160309) (Feng et al., 2012). All signal and enriched region files were

converted for display in the UCSC Genome Browser using the Kent Source

Tools (v.329) (Kent et al., 2002). Correlations of ChIP-seq signals and prin-

cipal-component analysis across samples and marks were calculated in

non-overlapping 10-kb windows using deepTools2 (v.2.5.0.1) (Ramı́rez et al.,

2014).
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effect of systematic pediatric care on neonatal mortality and hospitalizations

of infants born with oral clefts. BMC Pediatr. 11, 121.

Wehby, G.L., Pedersen, D.A., Murray, J.C., and Christensen, K. (2012). The

effects of oral clefts on hospital use throughout the lifespan. BMC Health

Serv. Res. 12, 58.

Welter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P., Junkins, H., Klemm,

A., Flicek, P., Manolio, T., Hindorff, L., and Parkinson, H. (2014). The NHGRI

GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids

Res. 42, D1001–D1006.

Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H.,

Rahl, P.B., Lee, T.I., and Young, R.A. (2013). Master transcription factors and

mediator establish super-enhancers at key cell identity genes. Cell 153,

307–319.

World Health Organization (2003). World Atlas of Birth Defects, Second Edition

(Geneva, Switzerland: World Health Organization).

Yu, Y., Zuo, X., He, M., Gao, J., Fu, Y., Qin, C., Meng, L., Wang, W., Song, Y.,

Cheng, Y., et al. (2017). Genome-wide analyses of non-syndromic cleft lip with

palate identify 14 novel loci and genetic heterogeneity. Nat. Commun. 8,

14364.

Yuan, Q., Blanton, S.H., and Hecht, J.T. (2011). Association of ABCA4 and

MAFB with non-syndromic cleft lip with or without cleft palate. Am. J. Med.

Genet. A. 155A, 1469–1471.

Zhao, Y., Guo, Y.J., Tomac, A.C., Taylor, N.R., Grinberg, A., Lee, E.J., Huang,

S., and Westphal, H. (1999). Isolated cleft palate in mice with a targeted

mutation of the LIM homeobox gene lhx8. Proc. Natl. Acad. Sci. USA 96,

15002–15006.

Zhu, J., Adli, M., Zou, J.Y., Verstappen, G., Coyne, M., Zhang, X., Durham, T.,

Miri, M., Deshpande, V., De Jager, P.L., et al. (2013). Genome-wide chromatin

state transitions associated with developmental and environmental cues. Cell

152, 642–654.

Zucchero, T.M., Cooper, M.E., Maher, B.S., Daack-Hirsch, S., Nepomuceno,

B., Ribeiro, L., Caprau, D., Christensen, K., Suzuki, Y., Machida, J., et al.

(2004). Interferon regulatory factor 6 (IRF6) gene variants and the risk of

isolated cleft lip or palate. N. Engl. J. Med. 351, 769–780.
Cell Reports 23, 1581–1597, May 1, 2018 1597

http://refhub.elsevier.com/S2211-1247(18)30517-5/sref81
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref81
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref82
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref82
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref83
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref83
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref83
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref83
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref84
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref84
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref84
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref85
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref85
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref85
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref85
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref86
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref86
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref86
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref87
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref87
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref87
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref88
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref88
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref88
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref89
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref89
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref89
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref89
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref89
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref90
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref90
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref91
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref91
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref91
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref91
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref92
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref92
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref92
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref93
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref93
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref93
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref93
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref94
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref94
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref94
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref94
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref95
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref95
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref96
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref96
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref96
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref96
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref97
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref97
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref97
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref98
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref98
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref98
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref98
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref99
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref99
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref99
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref99
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref100
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref100
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref100
http://refhub.elsevier.com/S2211-1247(18)30517-5/sref100


Cell Reports, Volume 23
Supplemental Information
High-Resolution Epigenomic Atlas

of Human Embryonic Craniofacial Development

Andrea Wilderman, Jennifer VanOudenhove, Jeffrey Kron, James P. Noonan, and Justin
Cotney



Supplemental Experimental Procedures 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Tissue Collection and fixation 

Use of human fetal tissue was reviewed and approved by the Human Subjects Protection 

Program at UConn Health. Human embryonic craniofacial tissue was collected, staged and 

provided by the Joint MRC/Wellcome Trust Human Developmental Biology Resource 

(www.hdbr.org). Tissues were flash frozen upon collection and stored at -80℃. Fixation for 

ChIP-Seq was performed as described in Cotney and Noonan, 2015 (Cotney and Noonan, 

2015). Briefly, each tissue sample was rapidly thawed in 1 mL of ice cold phosphate buffered 

saline (PBS) and briefly homogenized with a disposable plastic pestle in a 1.5 mL 

microcentrifuge tube. Samples were then fixed by the addition of formaldehyde to a final 

concentration of 1% and incubated at room temperature on a rotisserie for 15 minutes. Samples 

were then quenched with 150 mM glycine at 10 minutes at room temperature. Tissue was 

collected by centrifugation (5 min, 2500g, 4℃) and washed with 1 mL of fresh PBS. Fixed tissue 

pellets were then rapidly frozen in a dry ice/alcohol bath and stored at -80℃ until batch 

processing for chromatin immunoprecipitation (ChIP). 

  

METHOD DETAILS 

ChIP-Seq 

Fixed tissue pellets were processed for ChIP as previously described (Cotney and Noonan, 

2015). Briefly, samples were thawed in 1 mL of 1x Cell Lysis buffer and incubated on ice for 20 

minutes. Cells were lysed with dounce homogenization and nuclei were collected by 

centrifugation (5 min, 2500g, 4℃). Nuclei were resuspended in 300 µL of 1x Nuclear Lysis 

buffer + 0.3% SDS + 2 mM sodium butyrate and incubated on ice for 20 minutes. Chromatin 

was sheared with a Qsonica Q800R1 sonicator system operating at amplitude 20 and 2℃ for 30 

minutes (10 seconds duty, 10 seconds rest). Samples were cleared by centrifugation (5 min, 

20,000g, 4℃) and soluble chromatin was transferred equally into six separate tubes with 10% 

reserved as an input control. SDS concentration was reduced to 0.18% with ChIP Dilution 

buffer. Protein G Dynabeads (ThermoFisher) separately preloaded with 2 µg of antibodies were 



added to each chromatin aliquot. Antibodies used in this study: anti-H3K27ac (ab4729, Abcam), 

anti-H3K4me1 (ab8895, Abcam), anti-H3K4me2 (ab7766, Abcam), anti-H3K4me3 (ab8580, 

Abcam), anti-H3K27me3 (07-449, EMD Millipore), anti-H3K36me3 (ab9050, Abcam). Specificity 

of all antibodies was validated using Absurance H3 Histone Peptide Array (16-667, Millipore). 

ChIP samples were incubated overnight at 4℃ on a rotisserie. Chromatin was then 

immunoprecipitated on a magnet and supernatant was discarded. Beads were washed 8 times 

with 1 mL of 500 mM LiCl ChIP-Seq Wash Buffer and once with 1 mL of TE. Chromatin was 

eluted from the beads twice with ChIP Elution buffer at 65℃ for 10 minutes with constant 

agitation. Combined eluates for each ChIP were subjected to crosslink reversal overnight at 

65℃. Samples were then sequentially treated with RNAse A and proteinase K, purified with a 

PCR Purification Kit (Qiagen), and eluted in 50 uL of EB. ChIP samples were then quantified 

with picoGreen (ThermoFisher) and prepared for sequencing on Illumina instruments using the 

Thruplex 48S Library Prep kit (Rubicon Genomics) according to manufacturer's instructions. 

Final libraries were quantified by QPCR (NEBNext Library Quant Kit for Illumina), multiplexed, 

and sequenced for 75 cycles across multiple flow cells on an Illumina NextSeq 500 instrument. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 
Primary ChIP-Seq Data Analysis 
Sequencing data was directly retrieved from Illumina’s Basespace Cloud service using 

Basemount command line tools provided by Illumina. Multiple FASTQs for each ChIP were 

combined and assessed for quality using FASTQC (v0.11.2) (Andrews, 2010) and compared 

visually using MultiQC (v0.9) (Ewels et al., 2016). Reads were then aligned to the human 

genome (hg19) using Bowtie2 (v2.2.5) (Langmead and Salzberg, 2012) keeping only uniquely 

mapped reads. Fragment sizes of each library were estimated using PhantomPeakQualTools 

(v.1.14) (Landt et al., 2012). Histone modification enriched regions were identified and 

annotated using HOMER (v4.8.3) (Heinz et al., 2010). Reproducibly enriched regions were 

determined by creating a union of all enriched regions for a respective histone modification from 

all replicates of a single Carnegie stage and filtering for regions identified in at least two 

biological replicates using BEDtools (v2.25.0) (Quinlan and Hall, 2010). We then generated p-

value based signal tracks relative to appropriate input controls based on estimated library 

fragment size using MACS2 (2.1.1.20160309) (Feng et al., 2012). All signal and enriched region 

files were converted for display in the UCSC Genome Browser using the Kent Source Tools 



(v329) (Kent et al., 2002). Correlations of ChIP-Seq signals and Principal Component Analysis 

across samples and marks were calculated in non-overlapping 10kb windows using deepTools2 

(v2.5.0.1) (Ramírez et al., 2014). 

Roadmap Epigenome and cultured CNCC Data Retrieval 

Aligned and consolidated primary ChIP-Seq reads in tagAlign format were retrieved from 

Roadmap Epigenome for eleven epigenomic signals: H2A.Z, H3K4me1, H3K4me2, H3K4me3, 

H3K9ac, H3K9me3, H3K27ac, H3K27me3, H3K36me3, H3K79me2, and H4K20me1. 

(http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/). To ensure the most 

compatible signals with our data, p-value signals were generated by MACS2 from these data 

based on library fragment sizes reported by Roadmap Epigenome as above. DNase p-value 

signals were retrieved directly from Roadmap Epigenome 

(http://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidated/macs2signal/pval/) and 

converted from bigWig to bedGraph for use with ChromImpute (Ernst and Kellis, 2015) using 

Kent Source Tools (Kent et al., 2002). Chromatin state segmentations for 127 epigenomes and 

associated 15-, 18-, and 25-state model files were retrieved from Roadmap Epigenome 

(http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/). 

Raw reads for all human CNCC ChIP-Seq from Prescott et al 2015 were retrieved from GEO 

accession GSE70751 and processed using procedures as above.  

Chromatin Imputation 

Bedgraph files for all p-value signals from primary ChIP-Seq data were converted to 25 bp 

resolution and processed for model training and generation of imputed signals for all samples 

using ChromImpute (v1.0.1) as previously described (Ernst and Kellis, 2015). Resulting imputed 

signal tracks were converted to bigWig format for display in UCSC genome browser and 

converted to combined signal format at 200 bp resolution for use with ChromHMM (v1.12) 

(Ernst and Kellis, 2012) using deepTools2 (Ramírez et al., 2014). 

Chromatin State Segmentation 

Signal files for individual chromosomes for each craniofacial epigenome were binarized and 

segmentation was performed using previously published joint 15-, 18-, and 25-state chromatin 

models using ChromHMM as previously described(Roadmap Epigenomics et al., 2015). 

Following segmentation, annotation of states and generation of genome browser files was 



performed based on annotations provided by Roadmap Epigenome. Individual models of 15, 18 

and 25 chromatin states were also learned for each craniofacial epigenome using default 

settings in ChromHMM. Pearson Correlations and Principal Component Analyses were 

performed on total H3K27ac signals extracted observed in all imputed p-value signal tracks for 

craniofacial and Roadmap Epigenome samples from the union of all enhancer state 

segmentations (EnhA1, EnhA2, EnhAF, EnhW1, EnhW2, and EnhAc) using deepTools2 

(Ramírez et al., 2014). All plots were made in R (v3.3.3) (R Core Team, 2017) using tabular 

data generated by deepTools2.  

Functional Enrichments in Craniofacial Epigenomes 

Craniofacial enhancer state segmentations (EnhA1, EnhA2, EnhAF, EnhW1, EnhW2, and 

EnhAc) were interrogated for tissue activity in the developing mouse embryo from the Vista 

Enhancer Browser (Visel et al., 2007). Significance of overlap of enhancers identified in human 

craniofacial tissue and shown to be active in mouse craniofacial tissue relative to all other tissue 

annotations was determined using Fisher’s exact test. To identify totally novel craniofacial 

enhancers, enhancer state segmentations for all craniofacial segmentations were interrogated 

for single base overlap with the same states from all Roadmap Epigenomes using BEDtools 

(Quinlan and Hall, 2010). These novel craniofacial enhancer segmentations were assessed for 

gene ontology and functional enrichments based on assigned target genes using GREAT 

(v3.0.0) (McLean et al., 2010). Genes identified as transcriptional regulators by GREAT were 

assessed for enrichment of anatomical expression using default parameters in 

GeneORGANizer (Gokhman et al., 2017). Sequence from novel craniofacial enhancer 

segmentations was extracted from hg19 using fastaFromBed within BEDTools (Quinlan and 

Hall, 2010). The resulting sequences were assessed for transcription factor motif enrichment 

using HOMER (Heinz et al., 2010). Enhancer state segmentations from craniofacial epigenomes 

and all Roadmap epigenomes were interrogated for significance of overlap with GWAS tag 

SNPs associated with orofacial clefting and craniofacial morphology (Beaty et al., 2011; 

Birnbaum et al., 2009; Grant et al., 2009; Ludwig et al., 2012; Mangold et al., 2010; Shaffer et 

al., 2016; Shi et al., 2012) obtained from the GWAS Catalog (retrieved 2017-02-20)(Welter et 

al., 2014) using Fisher’s exact test within BEDTools (Quinlan and Hall, 2010). Adjusted p-value 

thresholds for 154 comparisons were determined using the Benjamini-Hochberg method 

(Benjamini and Hochberg, 1995).  



Identification of Enhancer Clusters 

Enhancers have been shown to cluster spatially over long distances and within topological 

domains (Ing-Simmons et al., 2015), thus to identify clusters of craniofacial enhancers we first 

generated overlapping 200kb windows (median contact domain size from high resolution Hi-C 

(Rao et al., 2014)) with a 50kb step size using BEDtools (Quinlan and Hall, 2010). Next, we 

intersected these windows with all enhancer chromatin state segmentations from craniofacial 

tissues. We then calculated the fraction of each window annotated as an enhancer state. We 

tested for enrichment of enhancers in each window using permutation testing by randomly 

shuffling the craniofacial enhancer segments across the genome 1000 times using BEDtools 

(Quinlan and Hall, 2010) and determining the fraction of each window annotated as an 

enhancer. Permutation p-values were corrected using the Benjamini-Hochberg method 

(Benjamini and Hochberg, 1995) for 60739 200kb windows and additionally filtered for a 

minimum fraction of enhancer states of 0.15 to ensure strong enhancer activation. Overlapping 

windows passing these criteria were merged into a single contiguous region. Final enriched 

regions were assessed for overlap with gene annotations and validated craniofacial enhancers 

using BEDtools (Quinlan and Hall, 2010). We also identified super-enhancer regions using 

H3K27ac ChIP-Seq reads at all craniofacial enhancer segments with default parameters in 

ROSE (Whyte et al. 2013).  

 

DATA AND SOFTWARE AVAILABILITY  

All data can be visualized in the UCSC Genome Browser using publically available track hub 

functionality. Hub files and interesting browser examples can be found on our website: 

http://cotney.research.uchc.edu/data/ 

 

ChIP-Seq signals, peak calls, chromatin state segmentations are available at GEO accession 

GSE97752.  

 

All generic scripts used in processing ChIP-Seq and generating chromatin states are available 

on github: https://github.com/cotneylab/ChIP-Seq 

  



RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Rabbit Polyclonal Anti-H3K27ac  Abcam Cat# ab4729; RRID: 

AB_2118291 
Rabbit Polyclonal Anti-H3K4me1  Abcam Cat# ab8895; RRID: 

AB_306847 
Rabbit Polyclonal Anti-H3K4me2  Abcam Cat# ab7766; RRID: 

AB_2560996 
Rabbit Polyclonal Anti-H3K4me3  Abcam Cat# ab8580; RRID: 

AB_306649 
Rabbit Polyclonal Anti-H3K27me3  EMD Millipore Cat# 07-449; RRID: 

AB_310624 
Rabbit Polyclonal Anti-H3K36me3  Abcam Cat# ab9050; RRID: 

AB_306966 
Biological Samples   
Human embryonic craniofacial tissue Joint MRC/Wellcome 

Trust Human 
Developmental 
Biology Resource 

www.hdbr.org 

Critical Commercial Assays 
Absurance H3 Histone Peptide Array Millipore 16-667 
Thruplex 48S Library Prep kit Takara Bio R400427 
NextSeq 500/550 High Output v2 kit (75 cycles) IIumina FC-404-2005 
NEBNext Library Quant Kit for Illumina New England Biolabs E7630S 
   
   
Deposited Data 
ChIP-Seq signals, peak calls, chromatin state 
segmentations 

This Paper GEO: GSE97752 

UCSC Genome Browser Track Hubs This Paper https://cotneylab.ca
m.uchc.edu/~jcotney
/CRANIOFACIAL_H
UB/Craniofacial_Dat
a_Hub.txt 

   
Software and Algorithms 
Basemount Illumina https://basemount.ba
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Supplemental Figures 
 
Figure S1. Detailed Histone Modification Profiles in Human Craniofacial Development. a. 
Heatmap and hierarchical clustering of pairwise Pearson correlations for 114 individual histone 
modification profiles from human craniofacial tissues. Darker orange indicates positive 
correlation between datasets. Enlarged from Fig. 2a to include sample details, showing samples 
cluster closely by histone mark. b. Correlation of only H3K27ac data contained in the area 
boxed in black in part a. Heatmap and hierarchical clustering show that the samples cluster well 
into groups by early or late stage of development. c. Genomic feature annotations identified by 
peak calls from six histone modification profiles from all craniofacial samples, across all 
Carnegie stages, plotted as cumulative percentage of total peaks. Peak enrichments and 
genomic annotations were performed using HOMER (Heinz et al., 2010). d. Heatmap and 
hierarchical clustering of pairwise Pearson correlations for imputed histone modification profiles 
from human craniofacial tissues. Darker orange indicates positive correlation between datasets. 
e. Heatmap and hierarchical clustering of pairwise Pearson correlations for imputed and primary 
histone modification profiles from human craniofacial tissues. Darker orange indicates positive 
correlation between datasets. Related to Figure 2. 
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Figure S1. Detailed Histone Modification Profiles in Human Craniofacial Development. a. 
Heatmap and hierarchical clustering of pairwise Pearson correlations for 114 individual histone 
modification profiles from human craniofacial tissues. Darker orange indicates positive 
correlation between datasets. Enlarged from Fig. 2a to include sample details, showing samples 
cluster closely by histone mark. b. Correlation of only H3K27ac data contained in the area 
boxed in black in part a. Heatmap and hierarchical clustering show that the samples cluster well 
into groups by early or late stage of development. c. Genomic feature annotations identified by 
peak calls from six histone modification profiles from all craniofacial samples, across all 
Carnegie stages, plotted as cumulative percentage of total peaks. Peak enrichments and 
genomic annotations were performed using HOMER (Heinz et al., 2010). d. Heatmap and 
hierarchical clustering of pairwise Pearson correlations for imputed histone modification profiles 
from human craniofacial tissues. Darker orange indicates positive correlation between datasets. 
e. Heatmap and hierarchical clustering of pairwise Pearson correlations for imputed and primary 
histone modification profiles from human craniofacial tissues. Darker orange indicates positive 
correlation between datasets. Related to Figure 2. 
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Figure S2. Imputation of Craniofacial Epigenomic Signals and Chromatin State 
Segmentation in the 15-State (Primary) and 18-State (Auxiliary) ChromHMM models. a. 
Numbers of individual chromatin state segments identified by each of the color- coded 15 states 
of chromatin activity based on imputed epigenomic signals for each of the 21 tissue samples 
profiled. b. Comparison of cumulative percentage of each chromatin state between craniofacial 
samples profiled here and 127 segmentations generated by Roadmap Epigenome (Roadmap 
Epigenomics et al., 2015). c. Mean numbers of segments annotated in each of the 15 states 
across 21 craniofacial samples (orange) and 127 Roadmap Epigenomes (gray). d. Mean 
percentages of segments annotated in each of the 15 states across 21 craniofacial samples 
(orange) and 127 Roadmap Epigenomes (gray). e. Same as in panel a, but for 18-State Model. 
f. Same as in panel b, but for 18-State Model. g. Same as in panel c, but for 18-State Model. h. 
Same as in panel d, but for 18-State Model. Overall chromatin state segmentation in 
craniofacial samples identifies similar numbers and percentages of each of the states published 
by Roadmap Epigenome (Roadmap Epigenomics et al., 2015). i. Numbers of individual 
chromatin state segments for each of the colored 25 states in human craniofacial tissues and 
CNCCs. j. Mean numbers of segments annotated in each of the 25 states across craniofacial 
samples (orange), Roadmap (grey), and CNCCs (black). Error bars in all plots represent 
standard deviation. Related to Figure 3. 
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Figure S3. Large Bivalent Domains at Gene Pair DLX5 and DLX6.  UCSC Genome Browser 
shot of locus encompassing the DLX5/DLX6 locus.  At top are chromatin state segmentations 
for all tissue samples.  See Figure S2 for color code.  Purple states indicate bivalent regions.  
Imputed signals and peak calls for representative samples from each stage and for each mark 
are shown below. Related to Figure 4. 
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Figure S4. Overlap with CNCC enhancers and All Enhancers Tested for Craniofacial 
Activity a. Distribution of overlaps of CNCC active enhancer regions with 10,000 trials of 
random enhancer sets equal in number, length, and chromosomal distribution to the top 10% of 
craniofacial enhancer segments (n=7500). Red vertical line indicates observed number of 
overlaps between CNCC enhancers and craniofacial enhancers. b. Distribution of overlaps of 
human biased CNCC enhancer regions with 10,000 trials of random enhancer sets equal in 
number, length, and chromosomal distribution to the top 10% of craniofacial enhancer segments 
(n=7500). Red vertical line indicates observed number of overlaps between human biased 
CNCC enhancers and craniofacial enhancers. c. All enhancers identified and tested by this 
study from the Vista Enhancer Browser. Enhancers with hs prefix indicated the human genomic 
sequence was tested while those with the mm prefix indicate that the orthologous sequence 
from mouse identified by this study was tested. Related to Figure 5. 
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Figure S5 H3K27ac Signal at Enhancer Segments Allows for Correlation by Tissue Type. 
a. Heatmap and hierarchical clustering of pairwise comparisons of H3K27ac signals at all 
enhancer segments in our craniofacial data and the 127 samples from Roadmap Epigenome. 
Red coloring indicates positive correlation between datasets, blue indicates less correlation. b. 
Principal component analyses of the first four component dimensions of H3K27ac signals in a 
serial progressive fashion (i.e PC1 vs PC2, PC2 vs PC3, etc.). Samples are color coded by 
tissue type. Related to Figure 5. 
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Figure S6. Identification of Craniofacial-specific Enhancers Flanking MSX2 and BMP4. a. 
Enhancer states annotated by the 25-state model that are found only in craniofacial tissue but 
not the 127 samples from Roadmap Epigenome are located upstream and downstream of 
MSX2, a gene implicated in multiple craniofacial abnormalities. The enhancer states fall within a 
region of conservation and are supported at top by ChIP signals from a single human 
craniofacial tissue sample. b. Targeted sequencing of 13 Loci Identified by GWAS studies to be 
important In craniofacial development misses a regulatory region in BMP4. The study by Leslie 
et al. (Leslie et al., 2015) performed targeted sequencing of a region of ~60 kb surrounding the 
BMP4 gene (black bar at top of figure). This region excluded a region immediately adjacent 
(outlined by green box) identified as an enhancer by the 25-State, Imputed ChromHMM model 
in all 21 craniofacial tissues analyzed. Related to Figure 5. 
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Figure S7. The PRDM16 locus is a Super-enhancer region. UCSC Genome Browser shot of 
locus encompassing the PRDM16 locus and the noncoding region upstream.  Super-enhancer 
regions as identify by ROSE are indicated by orange bars (Whyte et al., 2013).  Craniofacial 
specific enhancers indicated by darker orange bars.  Numerous craniofacial enhancer segments 
are annotated throughout this regions in all samples profiled. Related to Figure 7. 
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Figure S8. Human Craniofacial Enhancer States prioritize regions within the 8q24 Clefting 
locus. a. UCSC Genome Browser shot of 8q24 locus implicated in orofacial clefting in humans 
and mice.  This region has been examined using multiple mouse deletion lines as indicated by 
black bars and deletion number (Uslu et al., 2014). Two regions implicated as harboring 
important regulatory elements are indicated by MNE and NEE. Strongest risk allele position 
from orofacial clefting GWAS indicated in purple (Birnbaum et al., 2009). b. Enlarged region 
encompassing the rs987525 position.  A consistent craniofacial enhancer segment is identified 
less than 2kb downstream of this risk position.  c. Enlarged region encompassing the MNE 
interval.  A reproducibly strong human craniofacial enhancer state is located in the center of this 
interval as indicated by red box. A single common human SNP is located in this region 
rs7821930. d. Enlarged region encompassing the NEE interval.  A reproducibly strong human 
craniofacial enhancer state is located in the center of this interval as indicated by red box. 
Related to Figure 7. 
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Figure S9. Significant enrichment of orofacial GWAS SNPs but not Crohn’s GWAS SNPs 
in human craniofacial enhancers. a. Enrichment of Crohn’s GWAS tag SNPs retrieved from 
the GWAS Catalog in enhancer segmentations assessed using GREGOR (Schmidt et al., 
2015). Orange circles indicate craniofacial enhancer annotations identified by a 25 State 
chromatin model from this study while grey circles indicate those previously published by 
Roadmap Epigenome (Roadmap Epigenomics et al., 2015). No significant enrichment was 
detected for craniofacial segmentations,but was observed for multiple immune cell types. b. 
Same analysis as in a using GWAS tag SNPs reported for orofacial clefting by Leslie et al 2017. 
c. Same analysis as in a using GWAS tag SNPs reported for 24 regions by Ludwig et al 2017. 
Related to Figure 7. 
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Figure S10 Orofacial Clefting Locus 1p36.13 PAX7 Approximately 2Mb window surrounding 
PAX7 (A).  The region selected for targeted sequencing (Leslie et al. 2015). The lead SNP 
rs742071 and the associated SNP by sequencing, rs1339062, are shown. The PAX7 promoter 
region was also investigated in Ludwig et al. (2017) where rs4920524 was identified as 
contributing the largest posterior probability risk. Bivalent states (purple) are present at the 
PAX7 promoter and the promoter of IGSF21. A craniofacial superenhancer overlaps the PAX7 
bivalent region (B) and SNPs including rs1339062, rs742071 and rs4920524 are present within 
a portion of the superenhancer region that has not been identified as a superenhancer in any 
tissues or cell types in the dbSuper database (Khan and Zhang, 2016). Other large craniofacial 
superenhancers carrying craniofacial-specific enhancers are within 1Mb of PAX7.  The region 
near IFFO2 (C) is shown as an example. Related to Figure 7. 
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Figure S11 Orofacial Clefting Locus 1p36.11 GRHL3 Approximately 2Mb region surrounding 
GRHL3, a gene implicated in Van der Woude syndrome and non-syndromic cleft palate only 
(Peyrard-Janvid et al., 2014). (A). GRHL3 itself shows a poised promoter state.  Amplicons for 
targeted sequencing in cases of individuals with non-syndromic orofacial clefts by Mangold et al. 
(Mangold et al., 2016), truncations mutations and the likely deleterious SNP rs41268753 are 
shown in panel B.  Additionally, an intronic region between amplicons 7 and 8 contains 
enhancer states in all craniofacial timepoints surveyed. Regions to either side of GRHL3 contain 
craniofacial superenhancers and many enhancer states, including craniofacial-specific 
enhancers suggesting this area may contain several genes important in early craniofacial 
development (C,D). Related to Figure 7. 
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Figure S12 Orofacial Clefting Locus 1p22.1 ARHGAP29 Approximately 2Mb region 
surrounding rs560426 (A). The region was selected for targeted sequencing (Leslie et al. 2015).  
The region also contains rs35298667, identified as a likely significant contributor to nsCL/P 
(Ludwig et al., 2017) and multiple SNPs identified in GWAS for non-syndromic orofacial clefting 
(Yu et al. 2017 and Leslie et al. 2017 reported loci) are present within craniofacial 
superenhancer within the region of targeted resequencing (B).  Additional craniofacial 
superenhancers including craniofacial-specific superenhancer regions neighboring the region of 
targeted resequencing (C). Related to Figure 7. 
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Figure S13 Orofacial Clefting Locus 1q32.2 IRF6 Approximately 2Mb region surrounding 
IRF6. (A)   The lead SNP rs642961 falls within a region marked as an active enhancer in 
embryonic craniofacial tissue (arrow, B). Additional SNPs identified through targeted 
sequencing (Leslie et al., 2015) or GWAS (Yu et al., 2017; Leslie et al., 2017) are found near 
enhancers active in craniofacial tissue. (B)  Craniofacial-specific enhancers and craniofacial-
specific superenhancers located adjacent to the region of targeted sequencing (C). Related to 
Figure 7. 
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Figure S14 Orofacial Clefting Locus 10q25.3 VAX1 Approximately 1.5Mb region surrounding 
VAX1 (A).  The VAX1 promoter region contains a bivalent chromatin state and SNPs associated 
with non-syndromic oral clefts are located near a craniofacial-specific enhancer (B).  The 
neighboring gene EMX2 also shows a bivalent chromatin state as well as proximity to a 
craniofacial-specific enhancer (C). Related to Figure 7. 
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Figure S15 Orofacial Clefting Locus 15q13.3 GREM1 Approximately 2Mb region containing 
the intergenic region between GREM1 and FMN1, found to have a strong association with 
nsCL/P and to be predominant in a rare form of clefting with lip and soft palate cleft but intact 
hard palate (Ludwig et al. 2016) (A).  SNPs identified in the intergenic region and in the 
promoter and intronic region of FMN1 are shown in panel B.  The SNP rs17816375, found to 
have the strongest eQTL effect by Ludwig et al. is near craniofacial-specific enhancers in the 
intron of FMN1.  Additionally, FMN1 introns contain many enhancer states with patterns that 
suggest differences in enhancer activity between embryonic and fetal craniofacial development 
(C). Related to Figure 7. 
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Figure S16 Orofacial Clefting Locus 17q22 NOG Approximately 2Mb region surrounding the 
gene for the BMP antagonist NOG (A).  The active promoter and bivalent states of NOG at 
different stages of embryonic and fetal development reflect the expression of NOG in early 
craniofacial development (Matsui and Klingensmith, 2014). SNPs associated with non-
syndromic oral clefts reside near or in enhancer states active in early craniofacial development 
(B,C). Related to Figure 7. 

  



Scale
chr20:

GWAS loci
CF shape SNPs

CS13-combined_25state
CS14-combined_25state
CS15-combined_25state
CS17-combined_25state

CS20-12104_25state
F2-N2108_25state

craniofacial superenhancer regions
dbSuper enhancers

Rhesus
Mouse

Dog
Elephant
Chicken

X_tropicalis
Zebrafish
Lamprey

1 Mb hg19
38,500,000 39,000,000 39,500,000 40,000,000

rs2865509
rs13041247

SNORD112 MAFB 5S_rRNA
AK023614

TOP1

TOP1
BC035080

PLCG1
ZHX3

LPIN3
EMILIN3

CHD6
Mir_147

20q12

100 Vert. Cons
4.88 -

-4.5 _

0 -

Scale
chr20:

GWAS loci

CS13-combined_25state
CS14-combined_25state
CS15-combined_25state
CS17-combined_25state

CS20-12104_25state
F2-N2108_25state

dbSuper enhancers

Rhesus
Mouse

Dog
Elephant
Chicken

X_tropicalis
Zebrafish
Lamprey

50 kb hg19
39,250,000 39,300,000 39,350,000

rs2865509
rs13041247

MAFB

20q12

100 Vert. Cons
4.88 -

-4.5 _

0 -

Scale
chr20:

CS13-combined_25state
CS14-combined_25state
CS15-combined_25state
CS17-combined_25state

CS20-12104_25state
F2-N2108_25state

dbSuper enhancers

Rhesus
Mouse

Dog
Elephant
Chicken

X_tropicalis
Zebrafish
Lamprey

100 kb hg19
38,450,000 38,500,000 38,550,000 38,600,000 38,650,000

20q12

100 Vert. Cons
4.88 -

-4.5 _

0 -

Cranofacial-specific enhancers

GWAS loci selected for targeted 
sequencing in Leslie et al. 2015

Cranofacial-specific enhancers

BC

A

B

C

Ludwig et al. 2017 SNPs

Ludwig et al. 2017 SNPs rs13041247



Figure S17 Orofacial Clefting Locus 20q12 MAFB Approximately 2Mb region around MAFB 
(A). SNPs associated with non-syndromic oral clefts reside in or near enhancer states active in 
early craniofacial development (B). A region <1Mb away from MAFB contains several 
craniofacial-specific enhancers and patterns of enhancer state that may suggest differences in 
early vs. late craniofacial development (C). Related to Figure 7. 
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