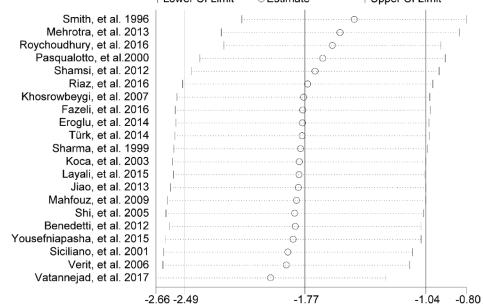
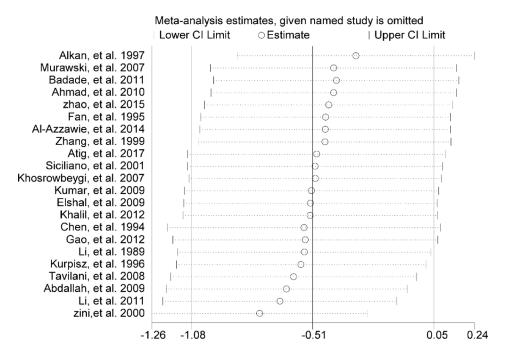
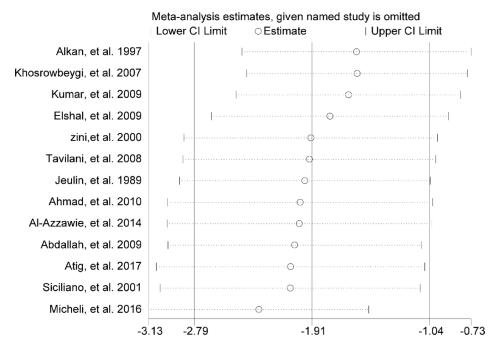

Is male infertility associated with increased oxidative stress in seminal plasma? A-meta analysis


SUPPLEMENTARY MATERIALS

Supplementary Figure 1: Risk of bias by domain (in bold) and question in nine case-control studies using the Newcastle–Ottawa Scale. Numbers on the green bar represent the number of studies with low risk of bias over the number of studies assessed.



Supplementary Figure 2: Sensitivity analysis was performed to evaluate the robustness of conclusion addressing the risk factor of MDA.



Meta-analysis estimates, given named study is omitted

Supplementary Figure 3: sensitivity analysis was performed to evaluate the robustness of conclusion addressing the risk factor of TAC.

Supplementary Figure 4: Sensitivity analysis was performed to evaluate the robustness of conclusion addressing the risk factor of SOD.

Supplementary Figure 5: Sensitivity analysis was performed to evaluate the robustness of conclusion addressing the risk factor of catalase.

Supplementary Figure 6: Sensitivity analysis was performed to evaluate the robustness of conclusion addressing the risk factor of GPX.

Outcomes	Illustrative comparative risks [*] (95% CI)		Relative effect	No of	Quality of the	Commente
	Assumed risk	Corresponding risk	effect (95% CI)	Participants (studies)	evidence (GRADE)	Comments
MDA concentration	See comment	See comment		2283 (28 studies1)	⊕ ා very low ^{2,3}	1412 cases and 871 controls in case-control studies
Total antioxidant capacity	See comment	See comment		1808 (21 studies1)	$\oplus \bigcirc \bigcirc \bigcirc$ very low ²	1255 cases and 553 controls in case-control studies
Superoxide dismutase activity	See comment	See comment		2568 (22 studies1)	$\oplus \bigcirc \bigcirc \bigcirc$ very low ²	1808 cases and 760 controls in case-control studies
Catalase activity	See comment	See comment		1003 (13 studies1)	⊕⊙⊙⊙ very low ²	740 cases and 263 controls in case- control studies
Glutathione peroxidase activity	See comment	See comment		738 (11 studies1)	$\oplus \bigcirc \bigcirc \bigcirc$ very low ^{2,3}	458 cases and 280 controls in case- control studies
GSH concentration	See comment	See comment		633 (8 studies1)	$\oplus \bigcirc \bigcirc \bigcirc$ very low ²	388 cases and 245 controls in case- control studies
Nitric oxide concentration	See comment	See comment		548 (6 studies1)	$\oplus \bigcirc \bigcirc \bigcirc$ very low ²	326 cases and 222 controls in case- control studies
Vitamin E concentration	See comment	See comment		432 (5 studies1)	$\oplus \bigcirc \bigcirc \bigcirc$ very low ²	257 cases and 175 controls in case- control studies
Vitamin C concentration	See comment	See comment		389 (4 studies1)	⊕⊖⊃⊖ very low ⁴	226 cases and 163 controls in case- control studies
Carbonyl protein concentration	See comment	See comment		387 (4 studies1)	$\oplus \bigcirc \bigcirc \bigcirc$ very low ⁴	197 cases and 190 controls in case- control studies

Supplementary Table 1: Summary of findings for the main comparison

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹case-control.

²With notable statistical heterogeneity.

³Egger's regression analysis displayed an evidence of publication bias.

⁴Total population size is less than 400.