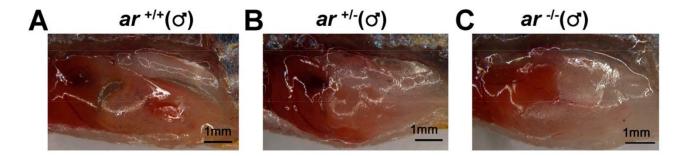
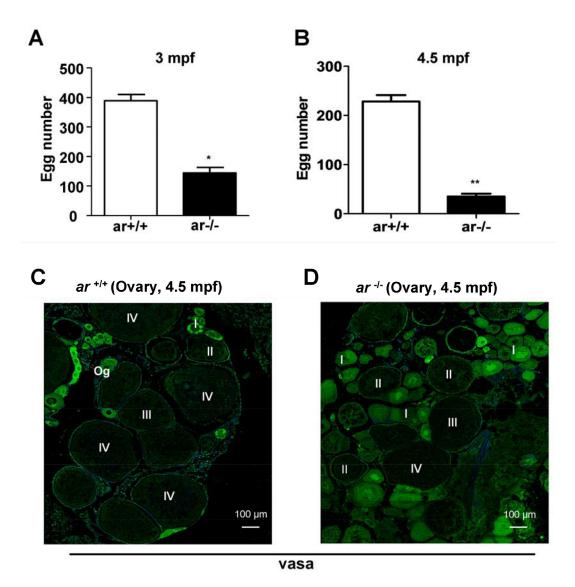
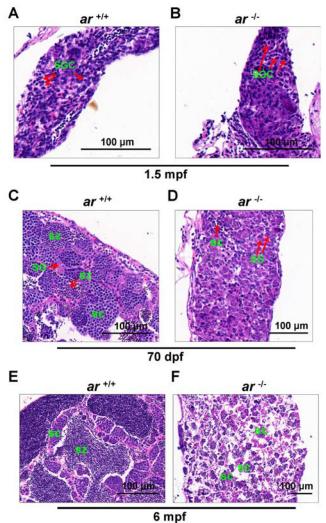
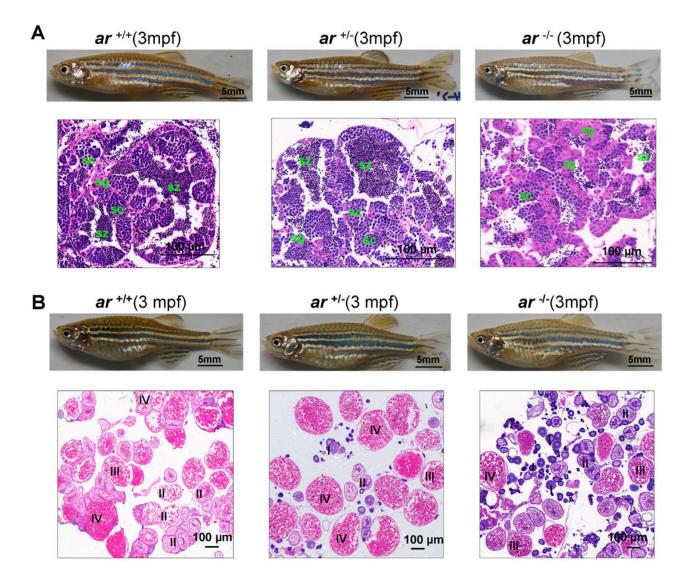

Zebrafish androgen receptor is required for spermatogenesis and maintenance of ovarian function


SUPPLEMENTARY MATERIALS


Supplementary Figure 1: Alignment of amino acid sequences of human *AR* (ENSP00000363822), mouse *Ar* (ENSMUSP00000052648), Rat *Ar* (ENSRNOP0000009129) and zebrafish *ar* (ENSDARP00000088795). N-terminal transactivation domain (NTD) is circled by red box; DNA-binding domain (DBD) is circled by green box; ligand-binding domain (LBD) is circled by black box. The same amino acids are marked by deep-blue background.


Supplementary Figure 2: Sequencing results of the targeted region from wildtype $(ar^{+/+})$, heterozygous $(ar^{+/-})$ and homozygous $(ar^{-/-})$ zebrafish. (A) The mutant $ar^{ihb1225/ihb1225}$. (B) The mutant. ar $^{ihb1226/ihb12}$.

Supplementary Figure 3: General appearance of testis from wildtype (ar ^{+/+}), heterozygous (ar ^{+/-}) and homozygous (ar ^{-/-}) zebrafish at 4.5 mpf. (A) $ar^{+/+}$. (B) $ar^{+/-}$. (C) $ar^{-/-}$. Mpf, months post fertilization.



Supplementary Figure 4: (**A**, **B**) At 3 or 4.5 mpf, ovary eggs were fewer in $ar^{-/-}$ females compared to wildtype siblings ($ar^{+/+}$) (n=5 groups, which were measured everyday for 2 weeks). (**C**, **D**) Immunofluorescent staining using anti-vasa antibody identified different stages of oogenesis in ovaries from wildtype ($ar^{+/+}$) and homozygous ($ar^{-/-}$) ($ar^{-ihb1225/ihb1225}$) zebrafish at 4.5 mpf. I, stage I oocyte; II, stage II; III, stage III; IV, stage IV. Mpf, months post fertilization.

e mpi

Supplementary Figure 5: Histology of testis from wildtype $(ar^{+/+})$, and homozygous $(ar^{-/-})$ (the mutant 1) zebrafish at 1.5 mpf, 70dpf and 5 mpf. (A, B) Histology of testes from the wildtype $(ar^{+/+})$ and homozygous $(ar^{-/-})$ $(ar^{-ihbl225/ihbl225})$ zebrafish at 1.5 mpf. No obvious difference between $ar^{-/-}$ and wildtype sibling $(ar^{+/+})$ testes. SGC, spermatogonial cysts (indicated with red arrows). (C, D) Histology of testes from the wildtype $(ar^{+/+})$ and homozygous $(ar^{-/-})$ ($ar^{-ihbl225/ihbl225}$) zebrafish at 70 dpf. Compared with wildtype sibling testes, spermatogenesis of $ar^{-/-}$ testes was delayed as indicated by more spermatogonia (SG) and fewer spermatocytes (SC), but no spermatozoa (SZ). (E, F) Histology of testes from the wildtype $(ar^{+/+})$ and homozygous $(ar^{-/-})$ zebrafish at 6 mpf. $ar^{-/-}$ testes were degenerated and loose; but spermatozoa were filled in wildtype sibling $(ar^{+/+})$ testes. Dpf, days post fertilization; Mpf, months post fertilization.

Supplementary Figure 6: Histology of testis and ovary from wildtype $(ar^{+/+})$, heterozygous $(ar^{+/-})$ and homozygous $(ar^{-/-})$ (the mutant 2) zebrafish at 3 mpf. (A) Testis. (B) Ovary. Mpf, months post fertilization.

Supplementary Table 1: List of gene symbol and gene name used in the text and figures.

See Supplementary File 1

Supplementary Table 2: The primer sequences.

See Supplementary File 2