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Abstract 18 

Background: Taxonomic profiling of ribosomal RNA (rRNA) sequences has been the 19 

accepted norm for inferring the composition of complex microbial ecosystems. QIIME and 20 

mothur have been the most widely used taxonomic analysis tools for this purpose, with 21 

MAPseq and QIIME 2 being two recently released alternatives. However, no independent 22 

and direct comparison between these four main tools has been performed. Here, we compared 23 

MAPseq, mothur, QIIME, and QIIME 2 using synthetic simulated datasets comprised of 24 

some of the most abundant genera found in the human gut, ocean and soil environments. We 25 

evaluate their accuracy when paired with both different reference databases and variable sub-26 

regions of the 16S rRNA gene.  27 

 28 

Findings: We show that QIIME 2 with the SILVA 128 database provided the best recall at 29 

the genus level, and the lowest distance estimates between the observed and simulated 30 

samples. However, MAPseq showed the highest precision, with miscall rates consistently 31 

below 2%. Notably, QIIME 2 was the most computationally expensive tool, with CPU time 32 

and memory usage almost two and 30 times higher than MAPseq, respectively. Using the 33 

SILVA database generally yielded a higher recall than using Greengenes, while assignment 34 

results of different 16S rRNA variable sub-regions varied by up to 35% between samples 35 

analysed with the same pipeline.  36 

 37 

Conclusions: Our results support the use of either QIIME 2 or MAPseq for optimal 16S 38 

rRNA gene profiling, and we suggest that the choice between the two should be based on the 39 

level of recall, precision and/or computational performance required.  40 

 41 

 42 
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Findings 43 

Background 44 

Genome sequencing has provided an unprecedented view of the microbial diversity of 45 

ecosystems from wide-ranging environments. For example, the commensal flora of the 46 

human gut has been extensively explored for potential associations with the onset of many 47 

human diseases [1–3]. Similarly, the rich microbial diversity of environments such as soil and 48 

oceans have been studied in depth, yielding important ecological inferences [4–6]. There are 49 

now a substantial number of such microbial community datasets deposited in sequence 50 

archives (for example, the European Nucleotide Archive currently holds over 600 000 51 

environmental samples [7]) and the rate of deposition is increasing. Drawing relevant 52 

biological correlations from this vast amount of data requires accurate and reliable tools and 53 

methods.  54 

 55 

One of the crucial steps in almost all microbiome-based analyses is inference of community 56 

composition through taxonomic classification. For a few decades now [8], the common 57 

approach for taxonomic assignment of microbial species has been the classification of 58 

ribosomal RNA (rRNA) sequences. Currently, the most widely used tools for this purpose are 59 

the mothur [9] and “Quantitative Insights Into Microbial Ecology” (QIIME) software 60 

packages [10]. Both tools take individual genetic markers (e.g. the 16S rRNA gene, 61 

conserved across the prokaryotic domains) and compare them to a reference database, 62 

assigning a taxonomic lineage to each of the queried sequences. Greengenes [11], NCBI [12], 63 

RDP [13] and SILVA [14] are some of the most widely used rRNA sequence databases. 64 

Ultimately, the success of these analyses is not only dependent on the breadth and diversity 65 

of annotated sequences available in public repositories, but also on the accuracy of the 66 

classification algorithms used by each of the tools. By default, QIIME makes use of the 67 
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UCLUST clustering method [15] to assign biological sequences to a reference database, 68 

while mothur wraps the naïve Bayesian RDP classifier, developed by Wang, et al. [16], for 69 

sequence classification. Two other tools — MAPseq [17] and QIIME 2 (https://qiime2.org/) 70 

— have recently been released, providing additional assignment methods. QIIME 2 also 71 

makes use of a naïve Bayes classifier [18], and MAPseq is a k-mer search approach that 72 

outputs confidence estimates at different taxonomic ranks.  73 

 74 

A community-driven initiative known as the “Critical Assessment of Metagenome 75 

Interpretation” (CAMI) benchmarked a range of software tools for the analysis of shotgun 76 

metagenomic datasets [19]. In regard to amplicon-based approaches, previous studies have 77 

mainly evaluated the classification methods of QIIME and mothur, highlighting some of their 78 

advantages and pitfalls [20–22]. However, until now, no independent study has compared the 79 

accuracy of these methods to MAPseq and QIIME 2 whilst also taking into account potential 80 

differences arising from the use of distinct reference databases. Furthermore, for genotyping 81 

the 16S rRNA gene there is also much debate within the scientific community on the most 82 

informative variable sub-region to target [23]. Strong arguments have been made towards 83 

sequencing specific or combined sub-regions, such as the V4 [24] and V3-V4 [25], while 84 

difficulty in amplifying bacterial species, such as those from the Actinobacteria group, has 85 

prompted the development of more specialized primers [26,27]. The impact of variable 86 

region choice on the taxonomic classification performance of different tools or databases is 87 

therefore also important to assess. 88 

 89 

The use of mock communities in microbiome studies has revealed that different experimental 90 

conditions and methods dramatically affect the quality of the results [28–31]. In contrast, in 91 
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silico benchmarking approaches provide an agnostic view on the efficiency of the 92 

computational pipelines, independently of experimental variation and technical biases.  93 

 94 

Therefore, in this work we have leveraged a set of simulated 16S rRNA gene sequences 95 

representative of genera commonly found in the human gut, ocean and soil environments, to 96 

evaluate the accuracy of MAPseq, mothur, QIIME and QIIME 2 with different reference 97 

databases, and according to some of the most commonly targeted sub-regions of the 16S 98 

rRNA gene. We show that, regardless of the database used, QIIME 2 outperformed all other 99 

tools in terms of overall recall at both genus and family levels, as well as in distance 100 

estimations between the observed and predicted samples. Considerable performance 101 

differences were observed between using distinct 16S rRNA gene sub-regions, while limited 102 

software-dependent variation was seen between different reference databases. We believe this 103 

work will help inform microbial ecologists about important decisions to take when designing 104 

new 16S rRNA-based community studies. 105 

 106 

Composition of the simulated datasets 107 

The microbiota colonizing the human gut, ocean and soil environments are some of the most 108 

frequently studied microbial communities. Hence, to provide data with direct practical 109 

applications, we focused on simulating datasets containing a diverse set of genera commonly 110 

found in these three ecosystems (Additional file: Fig. S1). Representative genera were 111 

selected after identifying the 80 most abundant genera across publicly available metagenomes 112 

from human gut, ocean and soil [7]. Then, for each biome, four different communities were 113 

generated with two levels of diversity: samples A100 and B100 with a random set of 100 114 

species belonging to these genera; and A500 and B500 with 500 species. Final datasets 115 

comprised a total of 66, 66 and 76 different genera from the human gut, oceanic and soil 116 
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environments, respectively. For the purpose of this benchmarking, we simulated the datasets 117 

with a similar relative abundance per genus to avoid introducing any taxon-specific biases 118 

(Additional file: Fig. S1). 119 

 120 

To simulate a realistic scenario, where variation can arbitrarily occur and sequences may not 121 

have an exact representative in public databases, we randomly mutated 2% of the positions of 122 

each 16S rRNA sequence retrieved. Using an in silico PCR, we then extracted each sub-123 

region using commonly used primer sequences (Additional file: Table S1). Notably, the 124 

percentage of bacterial sequences from the Greengenes and SILVA databases matching the 125 

primers selected for V1-V2 was dramatically lower (37.6%) than that of V3-V4 (99.2%), V4 126 

(99.1%) and V4-V5 (99.4%) (Additional file: Fig. S2). The 16S rRNA V1 sub-region had 127 

been previously found to be truncated in a substantial number of reference sequences [23]. 128 

Our results confirm this observation and again raise caution at the use of the 16S V1-V2 129 

rRNA primer sequences for complex and diverse samples, due to the reduced number of 130 

reference sequences available. 131 

 132 

Taxonomic assignment 133 

Microbiome studies frequently strive to associate microbial diversity signatures with a 134 

phenotype of interest. However, focusing solely on high-level taxonomic ranks can severely 135 

underestimate the degree of variation observed between sample groups. To circumvent this, 136 

highly discriminative approaches are needed to be able to pinpoint the most significant taxa 137 

warranting further validation. For assessing the performance of MAPseq, mothur, QIIME and 138 

QIIME 2 with different reference databases (Additional file: Fig. S3), we limited our analyses 139 

to classification at the lineage level instead of operational taxonomic units (OTUs), as it 140 

allows a more consistent and easier interpretation of the results. Species assignment of every 141 
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queried sequence would be the desired outcome, but the limited resolution of the 16S rRNA 142 

locus precludes an accurate classification at this level. In fact, databases such as RDP do not 143 

report taxon names below genus. In this work, we calculated the degree of recall and 144 

precision at the genus and family ranks, as in our opinion they provide the best compromise 145 

between classification accuracy and resolution.  146 

 147 

By comparing the level of recall across all software tools, we found that QIIME 2 recovered 148 

the largest proportion of sequences from the expected genera (Table 1 and Fig. 1). Combined 149 

with the SILVA database, this resulted in the highest recall (sensitivity) for human gut 150 

(67.1%) and soil samples (67.7%), while the Greengenes database outperformed in the case 151 

of the oceanic microbiome (79.8%). In fact, all tools except QIIME saw a decrease in recall 152 

when using SILVA specifically for the classification of the oceanic dataset. Globally, 153 

however, SILVA most frequently provided a better genus recall than Greengenes (five out of 154 

nine comparisons across MAPseq, QIIME and QIIME 2, Fig. 1). In terms of correctly 155 

identified taxa, MAPseq in conjunction with SILVA detected the greatest number of expected 156 

genera in all three biomes (Fig. 1). At the family level, all tools presented a substantially 157 

higher recall (Table 1), with QIIME 2 reaching 93.9% in the human gut sample, 95.8% with 158 

the ocean set and 91.3% with the soil sample. 159 

 160 

Although the level of recall is a crucial metric in choosing the most appropriate taxonomic 161 

classification pipeline, it is equally important to ensure a low frequency of false-positive 162 

assignments. We evaluated the degree of precision (specificity) by the percentage of 163 

sequences assigned to the wrong taxon out of all the detected taxa. Accuracy was high for all 164 

the tools, with precision estimates of at least 85% across all analysis pipelines (Fig. 2A). In 165 

terms of total number of sequences, this translated to less than 9% of the reads misassigned at 166 
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the genus level (Additional files: Tables S2, S3, S4 and Fig. S4). MAPseq with the SILVA 167 

database consistently outperformed all other tools, with a precision above 96% for the three 168 

tested biomes (Fig. 2A), equating to less than 2% of miscalled sequences (Additional file: 169 

Fig. S4). 170 

 171 

To combine both recall and precision into a single metric, we calculated the F-score for all 172 

taxonomic assignments (Fig. 2A and Additional file: Fig. S5). At both genus and family 173 

levels, we found that QIIME 2 had the highest score across the samples representative of the 174 

three different biomes, with the SILVA database coming out on top for the human gut 175 

(genus: 78.9%, family: 96.6%) and soil (genus: 78%, family: 94.1%) environments in 176 

particular, but the Greengenes database performing better with the oceanic dataset (genus: 177 

87.6%, family: 97.2%). After fractioning the data according to different sub-regions of the 178 

16S rRNA gene, we then repeated the same analysis (Fig. 2B). This revealed that the 179 

performance of each tool varied up to 35% depending on the 16S rRNA sub-region targeted. 180 

Notably, the V1-V2 or V3-V4 sub-regions performed the best across most of the pipelines 181 

(Fig. 2B). In our study, each synthetic species had a genetically close full-length 16S rRNA 182 

sequence represented in the databases, so our tests were probably not significantly affected 183 

by the reduced number of V1-V2 reference sequences available. 184 

 185 

The ongoing surge in genome sequencing is producing thousands of novel sequences each 186 

year. Therefore, efficient tools that can scale up to provide analysis of tens of thousands of 187 

samples is increasingly important. With this in mind, we compared the computational 188 

performance of MAPseq, mothur, QIIME and QIIME 2 throughout the whole classification 189 

pipeline of our simulated datasets. We analysed average memory usage and CPU time across 190 

the three biomes for the processing and assignment of 3 million quality-filtered sequences 191 
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against the SILVA 128 database (Fig. 3). MAPseq was the most memory-efficient tool, with 192 

mothur, QIIME and QIIME 2 requiring over 72, 6 and 27 times more memory resources, 193 

respectively (Fig. 3A). CPU time of QIIME 2 was the highest, close to twice that of MAPseq, 194 

and over 200 times longer than QIIME, which was the fastest (Fig. 3B). Of note is that each 195 

pipeline has its own processing procedure; both the mothur and QIIME 2 pipelines included a 196 

de-replication step of the query sequences prior to taxonomic assignment, which substantially 197 

reduces the number of sequences used for classification. 198 

 199 

Relative quantification and beta diversity 200 

One of the main aspects of any microbiome-based analysis is the assessment of the 201 

differential abundance and beta diversity across a set of sample groups. In this respect, 202 

accurate estimation of the relative abundance of each taxon is essential to find statistically 203 

significant patterns. To assess how accurately each tool was able to predict taxa relative 204 

abundances in each sample, we calculated dissimilarity scores (DS) for each genus present in 205 

the simulated dataset (Fig. 4). Interestingly, QIIME 2 showed the most accurate prediction in 206 

relation to the true genera composition, with an average DS of 0.32 when used in conjunction 207 

with the SILVA database (Table 1). In terms of the reference database used, analyses carried 208 

out with SILVA consistently yielded more accurate predictions than with the Greengenes 209 

database. Substantial differences in accuracy were observed across different genera, with 210 

sequences from the Paraprevotella genus — frequently present in human gut samples — 211 

more accurately predicted, in contrast to those from Hyphomicrobium, Thalassobacter and 212 

Verrucomicrobium — commonly found in oceanic biomes — which had the worst results 213 

(Fig. 4). These genera might either be underrepresented in the reference databases, or have a 214 

high degree of conservation with other closely related taxa, making accurate taxonomic 215 

assignments more challenging. 216 
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For a global assessment of the beta diversity across samples, we performed a principal 217 

coordinates analysis (PCoA) and calculated both Bray-Curtis and Jaccard distances between 218 

the observed and expected results. Both distance methods represent complementary 219 

approaches, as the Bray-Curtis metric corresponds to a quantitative evaluation of the 220 

dissimilarity across samples, whereas the Jaccard index is a qualitative measure of 221 

community similarity. We found that samples analysed with QIIME 2 were the closest (i.e. 222 

had the lowest distance estimate) to the true simulated datasets, with minor differences 223 

between the use of SILVA or Greengenes with both the Bray-Curtis and Jaccard methods 224 

(Table 1; Fig. 5). 225 

 226 

Discussion 227 

With the number of tools, databases and options available for taxonomic classification of 228 

marker sequences, it can be a daunting task to decide the optimal approach for analysis of a 229 

specific dataset. In this work, we have strived to help guide this decision-making process by 230 

independently assessing the performance of the most commonly used taxonomic assignment 231 

strategies with simulated samples comprised of genera found in frequently sampled 232 

environments.  233 

 234 

Overall, we show that all tools we tested performed moderately well, with high precision and 235 

modest-to-high recall rates at the genus level. QIIME 2 presents significant improvements 236 

over the other tools, particularly over the preceding version of QIIME, in regard to detection 237 

sensitivity at both family and genus level. The superiority of QIIME 2 also held true for the 238 

prediction of sample composition, as beta diversity estimates between the analysed and 239 

simulated communities were the closest using this method. Therefore, these data support the 240 

use of QIIME 2 to obtain the largest proportion of classified sequences at the most accurate 241 
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relative abundances. Nevertheless, the results did show MAPseq to be a more conservative 242 

but specific approach, meaning that fewer genera were misassigned. This tool also showed 243 

considerably better computational performance than QIIME 2, requiring approximately 30 244 

times less memory and almost half the CPU time to process the same dataset (even though 245 

QIIME 2 classifies substantially fewer query sequences due to a prior de-replication step). 246 

These results show that MAPseq provides a credible option if precision and computational 247 

performance or scale are a priority. It should be noted that selecting a single best software 248 

package is not a straightforward affair, and we expect that differences in performance will be 249 

observed with different real-world datasets. Furthermore, aside from the software packages 250 

we tested, other web-based tools such as BioMaS [22] are also available. But, they are 251 

usually restricted to the use of specific reference databases, making individual customizations 252 

and accurate comparisons more challenging. 253 

 254 

In addition to choosing the right tool, combining that with the appropriate reference database 255 

is equally important to ensure the best classification performance. Greengenes and SILVA 256 

have been the most widely-used and readily supported databases. Generally, the SILVA 128 257 

database performed better than Greengenes 13_8 in terms of recall at both family and genus 258 

levels, as well as in predicting the true taxa composition of the simulated communities. 259 

Conversely, there was an almost universal decrease in its performance in the detection of 260 

ocean-specific taxa, so special care should be taken in the analysis of datasets sampled from 261 

this particular environment. Nonetheless, there are additional advantages to the use of 262 

SILVA: it is more frequently updated (Greengenes was last updated in May 2013); it includes 263 

rRNA sequences of eukaryotic organisms in addition to archaea and bacterial species; and 264 

has been shown to be more easily comparable and mapped to other taxonomies such as the 265 

NCBI [32]. In the case of MAPseq and mothur, the NCBI and RDP databases also performed 266 
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well, with higher recall but slightly lower precision scores compared to SILVA. Therefore, 267 

the SILVA, RDP or NCBI databases are all appropriate choices for a comprehensive and 268 

accurate taxonomic analyses. 269 

 270 

The choice of primer sequences for taxonomic profiling of the 16S rRNA gene has been a 271 

matter of frequent debate. In common with previously reported observations [27], we show 272 

that targeting different sub-regions can considerably influence the taxonomic assignment 273 

performance (by up to 35% in our analyses). Overall, the V1-V2 and V3-V4 sub-regions 274 

performed the best across most of the tools. However, the V1-V2 primers did not match more 275 

than 60% of the reference sequences across SILVA and Greengenes, so we discourage its use 276 

for classification of complex community samples. As our simulated datasets were generated 277 

from close representatives containing full-length 16S rRNA genes, it is reasonable to assume 278 

that our analysis of the V1-V2 sub-region was not significantly hampered by this reduced 279 

number of reference sequences. Kozich et al. [24] have argued in favour of standardizing the 280 

use of the V4 sub-region for Illumina MiSeq sequencing, as it allows complete overlap of 281 

paired-end sequences, mitigating sequence errors introduced during PCR amplification or 282 

sequencing. Phylogenetic studies have also showed that the V4 sub-region is the closest 283 

representative of the phylogenetic signal of the whole 16S rRNA locus [23]. Here, we 284 

analysed the performance of some of the most commonly used sub-regions under a purely 285 

computational perspective, and conclude that amplification of the V3-V4 sub-region is most 286 

frequently the best option for a reliable taxonomic inference. 287 

 288 

In summary, we have identified the major benefits and drawbacks of the most recent and 289 

popular taxonomic classification methods. Importantly, we show that the choice of software, 290 

database and sub-region significantly affects the quality of the classification results. Given 291 
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the impact of each of these variables, it is imperative to strive for consistency in the analysis 292 

of samples not only within individual studies, but across different projects as well. Services 293 

like the EBI metagenomics [7] and MG-RAST [33] help provide a basis for standardization, 294 

but additional factors relating to the experimental design are up to individual users to decide. 295 

Hence, in this fast-evolving field, we believe the work presented here will help the 296 

microbiome research community make more informed decisions about the most appropriate 297 

methodological approach to take in their own analysis pipeline.  298 

 299 

Methods 300 

Generating simulated datasets 301 

Twelve sets of synthetic communities were generated for evaluating the accuracy of the 302 

taxonomic assignment pipelines: four each for human gut, ocean and soil environments. First, 303 

the 80 most abundant genera across publicly deposited samples from these biomes were 304 

retrieved using the EBI metagenomics API (https://www.ebi.ac.uk/metagenomics/api/) [7]. 305 

This list was then used to randomly select either 100 (datasets A100 and B100) or 500 306 

species (datasets A500 and B500) belonging to these genera, allowing a maximum of 20 and 307 

50 species per genus, respectively. 16S rRNA gene sequences were extracted from the 308 

European Nucleotide Archive (ENA) and 2% of the positions were randomly mutated to 309 

create nucleotide diversity, using a custom python script (https://github.com/Finn-Lab/Tax-310 

Benchmarking). From these mutated sequences, an in silico PCR was carried out with an 311 

additional python script (https://github.com/simonrharris/in_silico_pcr), targeting commonly 312 

used regions for 16S rRNA profiling (Additional file: Table S1): V1-V2, V3-V4, V4 and V4-313 

V5. Sequencing reads were simulated from these amplicon sequences in duplicate with ART 314 

[34], generating ~ 10 000 and ~ 200 000 paired-end reads of 250 bp per region to have 315 

samples representing both low and high levels of sequencing depth. 316 
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Sequence classification 317 

Initial pre-processing and quality control was performed following the mothur standard 318 

operating procedure (SOP) [24], accessed on November 2017. Briefly, the make.contigs 319 

command was used to align, filter and merge the paired-end reads into contigs. Subsequently, 320 

we used the screen.seqs command to filter out any sequences with ambiguous base calls. This 321 

final set of quality controlled sequences was then assigned into taxonomic lineages with 322 

MAPseq v1.2.2 [17], mothur v1.39.5 [9], QIIME 1.9.1 [10], and QIIME 2 v2017.11 323 

(https://qiime2.org/). For each software, we evaluated the settings and databases most 324 

frequently used and recommended for optimal taxonomic classification (Additional file: Fig. 325 

S3). With MAPseq, we tested the default NCBI database (mapref 2.2), as well as Greengenes 326 

13_8 and the SILVA 128 database re-mapped to an eight-level taxonomy (available in 327 

ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/mapseq_silva128). Each set of reference 328 

sequences was analysed following the internal clustering by MAPseq. Options -tophits 80 329 

and -topotus 40 were used in combination with the -outfmt simple option. For QIIME 1.9.1, 330 

the pick_closed_reference_otus.py script was used with both the default Greengenes database 331 

(13_8) and with SILVA 128 clustered at 97% identity. Taxonomic assignment with mothur 332 

was carried out according to the MiSeq SOP [24], excluding the chimera detection and 333 

removal steps, using the available pre-formatted SILVA 128 database for alignment and 334 

either the RDP version 16 or SILVA 128 for sequence classification. Lastly, for QIIME 2 we 335 

first dereplicated the query sequences using the vsearch dereplicate-sequences function and 336 

then assigned them to the Greengenes (13_8) or SILVA 128 (99% identity clusters) databases 337 

using the feature-classifier classify-sklearn function [18]. 338 

 339 

 340 
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Analysis and visualization 342 

TSV and BIOM files were generated from the MAPseq and QIIME 2 outputs and combined 343 

with the output BIOM files created by QIIME and mothur (make.biom command). 344 

Taxonomy names obtained from each individual reference database were normalized so that 345 

each genus and family would be assigned to the same lineage. Results were visualized and 346 

analysed with the phyloseq [35] and vegan R packages. The recall rate (sensitivity) for each 347 

tool and database was estimated as the percentage of sequences assigned to the expected taxa 348 

for each biome, while precision (specificity) was calculated as the fraction of sequences from 349 

these predicted taxa out of all those from the taxa observed. Finally, the F-score was 350 

calculated as follows: 351 

F– score = 2 ×  
precision ×   recall

precision + recall
  352 

 353 

Distance estimates were calculated with either the Bray-Curtis or Jaccard dissimilarity 354 

indices after grouping the taxonomic lineages at the genus level. Principal coordinate analysis 355 

(PCoA) were performed with the Bray-Curtis distance method. Dissimilarity scores (DS) on 356 

the relative abundance (rel.ab) of each expected genus were calculated as: 357 

 358 

DS =
|rel. ab. (Observed) −  rel. ab. (Expected)|

rel. ab. (Expected)
 359 

 360 

Memory usage and CPU time was estimated as the total amount required for the processing 361 

and assignment of all combined sequences against the SILVA 128 database, following the 362 

protocols described above. 363 

 364 

 365 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Availability of supporting source code and requirements 366 

Project name: Taxonomy benchmarking 367 

Project home page: https://github.com/Finn-Lab/Tax-Benchmarking 368 

Operating system: Platform independent 369 

Programming languages: Python 2.7, R 3.4.1 370 

Other requirements: BioPython module, R libraries (ggplot2, phyloseq, vegan, scales, grid, 371 

ape, RColorBrewer, data.table) 372 

License: MIT 373 

 374 

Availability of supporting data 375 

The datasets supporting the conclusions of this article are available in the GigaDB repository 376 

[36]. 377 
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Figure legends 407 

Figure 1. Level of recall at the genus level, represented as taxa relative abundances, obtained 408 

with each analysis pipeline for the three different biomes (human gut, ocean and soil). The 409 

number of genera correctly identified by each pipeline is indicated above the graph. 410 

 411 

Figure 2. (A) Recall, precision and F-score estimates at the genus level for each tool and 412 

database tested. (B) F-scores calculated for some of the most commonly tested sub-regions of 413 

the 16S rRNA gene: V1-V2, V3-V4, V4 and V4-V5. 414 

 415 

Figure 3. Computational cost of each taxonomy assignment tool, estimated as the total 416 

memory usage (A) and CPU time (B) required for the processing and classification of ~ 3 417 

million sequences against the SILVA 128 database. 418 

 419 

Figure 4. Dissimilarity scores (DS) calculated for each genus included in the simulated 420 

datasets. Lower (brighter) values indicate a closer prediction to the true composition of the 421 

original sample. The black outline indicates the overall best scoring analysis pipeline for each 422 

environment. 423 

 424 

Figure 5. Principal coordinates analysis (PCoA) between all samples analysed in relation to 425 

the true, expected dataset, using the Bray-Curtis distance method. 426 

 427 

Figure S1. Composition of the synthetic communities per selected environment. Samples 428 

A100 and B100 are randomly generated sets of 100 species, while A500 and B500 were 429 

simulated from 500 different species. 430 
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Figure S2. Percentage of bacterial sequences retrieved from the Greengenes and SILVA 431 

databases with an in silico PCR targeting different 16S rRNA gene sub-regions. 432 

 433 

Figure S3. Tools and databases benchmarked in our study. We tested at least two databases 434 

per software tool. The reference databases used were either readily supported by the specific 435 

tool and/or recommended by their developers. SILVA was compared across all tools; 436 

MAPseq was specifically assessed with the NCBI database, its default reference; mothur was 437 

not paired with Greengenes due to its poor-quality alignment and was analysed with RDP 438 

instead. 439 

 440 

Figure S4. Number of genera misassigned in each analysis pipeline and their overall relative 441 

abundance. Names and abundance values of each misclassified taxon are included as 442 

additional files (Additional files: Tables S2, S3 and S4). 443 

 444 

Figure S5. Recall, precision and F-score estimates at the family level for each tool and 445 

database tested.  446 
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Table 1. Global metrics averaged across the analyses of simulated samples from human gut, ocean and soil. 

    Family Genus 

Software Database Recall Miscalled Recall Miscalled Sub-region1 Mean DS Bray-Curtis Jaccard 

MAPseq Greengenes 87.8 2.4 58.6 2.5 V3-V4 0.435 0.284 0.441 

MAPseq NCBI 81.4 1.3 51.2 1.9 V3-V4 0.523 0.333 0.499 

MAPseq SILVA 66.9 0.7 46.2 0.9 V3-V4 0.484 0.375 0.543 

mothur RDP 84.8 3.2 49.2 4.8 V4-V5 0.430 0.364 0.532 

mothur SILVA 82.2 2.2 40.1 4.5 V4-V5 0.493 0.449 0.617 

QIIME 2 Greengenes 92.5 1.8 69.1 3.4 V3-V4 0.372 0.211 0.344 

QIIME 2 SILVA 93.3 1.9 69.2 4.4 V3-V4 0.323 0.209 0.345 

QIIME Greengenes 55.6 1.3 42.3 1.9 V4 0.619 0.420 0.592 

QIIME SILVA 61.8 2.1 53.3 6.4 V3-V4 0.473 0.343 0.508 

Values in bold denote the best score. 

      1Sub-region with the highest F-score, excluding V1-V2. 
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Acidaminococcus
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Anaerococcus
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Bifidobacterium
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Coprobacter
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Parasutterella
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Porphyromonas

Prevotella
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Roseburia

Ruminiclostridium

Ruminococcus

Sporobacter

Stomatobaculum

Streptococcus

Sutterella

Turicibacter

Tyzzerella

Veillonella

Genus

Alcanivorax

Alteromonas

Arcobacter

Bacillus

Brevibacillus

Brumimicrobium

Burkholderia

Citromicrobium

Colwellia

Delftia

Desulfococcus

Erythrobacter

Flavobacterium

Fluviicola

Formosa

Geobacter

Glaciecola

Halomonas

Hyphomicrobium

Lewinella

Loktanella

Maribacter

Marinimicrobium

Marinobacter

Marinomonas

Moritella

Mycobacterium

Nitrospina

Novosphingobium

Oceanicaulis

Octadecabacter

Oleispira

Olleya

Paracoccus

Parvibaculum

Phaeobacter

Photobacterium

Planctomyces

Polaribacter

Prochlorococcus

Pseudoalteromonas

Pseudomonas

Pseudoruegeria

Psychroflexus

Psychromonas
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Shewanella

Sphingomonas

Spirulina

Staphylococcus

Sulfurimonas

Synechococcus

Tenacibaculum

Tepidibacter

Thalassobacter

Thalassomonas

Thalassospira

Thiobacillus

Ulvibacter

Verrucomicrobium

Vibrio

Winogradskyella

Yonghaparkia

Genus

Acinetobacter

Actinomyces

Actinoplanes
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Caulobacter
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Chryseobacterium

Clostridium

Cryocola

Desulfococcus
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Devosia

Edaphobacter

Flavisolibacter

Flavobacterium
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Gemmata

Geobacter

Geodermatophilus

Geothrix

Halothiobacillus

Herbiconiux

Hyphomicrobium

Janthinobacterium
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Limnohabitans

Lysinibacillus
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Microbacterium

Modestobacter

Mycobacterium

Mycoplana

Nitrospira

Nocardioides
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Ochrobactrum

Paenibacillus

Pedobacter

Pedomicrobium
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Phenylobacterium

Pilimelia

Pirellula

Planctomyces

Pseudomonas

Pseudonocardia

Ramlibacter

Rhizobium

Rhodococcus

Rhodoferax

Rhodoplanes

Robiginitalea

Salinibacterium

Shewanella

Sphingobium

Sphingomonas

Sphingopyxis

Sporosarcina

Streptomyces

Syntrophus

Treponema

Variovorax

66 49 53 66 58 59 52 64 50 63Genera 66 61 55 63 58 59 60 58 59 61Genera 76 71 64 71 66 62 70 67 65 67Genera

0

25

50

75

100

E
x
p

e
c
te

d

M
A

P
s
e

q
 (G

G
)

M
A

P
s
e

q
 (N

C
B

I)

M
A

P
s
e

q
 (S

ILV
A

)

m
o

th
u

r (R
D

P
)

m
o

th
u

r (S
ILV

A
)

Q
IIM

E
 2

 (G
G

)

Q
IIM

E
 2

 (S
ILV

A
)

Q
IIM

E
 (G

G
)

Q
IIM

E
 (S

ILV
A

)

R
e

la
tiv

e
 a

b
u

n
d

a
n

c
e

 (
%

)

0

25

50

75

100

E
x
p

e
c
te

d

M
A

P
s
e

q
 (G

G
)

M
A

P
s
e

q
 (N

C
B

I)

M
A

P
s
e

q
 (S

ILV
A

)

m
o

th
u

r (R
D

P
)

m
o

th
u

r (S
ILV

A
)

Q
IIM

E
 2

 (G
G

)

Q
IIM

E
 2

 (S
ILV

A
)

Q
IIM

E
 (G

G
)

Q
IIM

E
 (S

ILV
A

)
R

e
la

tiv
e

 a
b
u

n
d

a
n

c
e

 (
%

)

0

25

50

75

100

E
x
p

e
c
te

d

M
A

P
s
e

q
 (G

G
)

M
A

P
s
e

q
 (N

C
B

I)

M
A

P
s
e

q
 (S

ILV
A

)

m
o

th
u

r (R
D

P
)

m
o

th
u

r (S
ILV

A
)

Q
IIM

E
 2

 (G
G

)

Q
IIM

E
 2

 (S
ILV

A
)

Q
IIM

E
 (G

G
)

Q
IIM

E
 (S

ILV
A

)

R
e

la
tiv

e
 a

b
u

n
d

a
n

c
e

 (
%

)

Figure 1 Click here to download Figure Figure_1.pdf 

http://www.editorialmanager.com/giga/download.aspx?id=32566&guid=af6e177d-b9b9-4dab-b95a-3010bfbd3a0f&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=32566&guid=af6e177d-b9b9-4dab-b95a-3010bfbd3a0f&scheme=1


Recall Precision F-score

A

B Human gut Ocean Soil

Human gut Ocean Soil

0

25

50

75

100

M
A

P
s
e

q
 (G

G
)

M
A

P
s
e

q
 (N

C
B

I)

M
A

P
s
e

q
 (S

ILV
A

)

m
o

th
u

r (R
D

P
)

m
o

th
u

r (S
ILV

A
)

Q
IIM

E
 2

 (G
G

)

Q
IIM

E
 2

 (S
ILV

A
)

Q
IIM

E
 (G

G
)

Q
IIM

E
 (S

ILV
A

)

%

M
A

P
s
e

q
 (G

G
)

M
A

P
s
e

q
 (N

C
B

I)

M
A

P
s
e

q
 (S

ILV
A

)

m
o

th
u

r (R
D

P
)

m
o

th
u

r (S
ILV

A
)

Q
IIM

E
 2

 (G
G

)

Q
IIM

E
 2

 (S
ILV

A
)

Q
IIM

E
 (G

G
)

Q
IIM

E
 (S

ILV
A

)

M
A

P
s
e

q
 (G

G
)

M
A

P
s
e

q
 (N

C
B

I)

M
A

P
s
e

q
 (S

ILV
A

)

m
o

th
u

r (R
D

P
)

m
o

th
u

r (S
ILV

A
)

Q
IIM

E
 2

 (G
G

)

Q
IIM

E
 2

 (S
ILV

A
)

Q
IIM

E
 (G

G
)

Q
IIM

E
 (S

ILV
A

)

0

25

50

75

100

M
A

P
se

q
 (G

G
)

M
A

P
se

q
 (N

C
B

I)

M
A

P
se

q
 (S

ILV
A

)

m
o

th
u

r (R
D

P
)

m
o

th
u

r (S
ILV

A
)

Q
IIM

E
 2

 (G
G

)

Q
IIM

E
 2

 (S
ILV

A
)

Q
IIM

E
 (G

G
)

Q
IIM

E
 (S

ILV
A

)

F
−

sc
o

re
 (

%
)

M
A

P
se

q
 (G

G
)

M
A

P
se

q
 (N

C
B

I)

M
A

P
se

q
 (S

ILV
A

)

m
o

th
u

r (R
D

P
)

m
o

th
u

r (S
ILV

A
)

Q
IIM

E
 2

 (G
G

)

Q
IIM

E
 2

 (S
ILV

A
)

Q
IIM

E
 (G

G
)

Q
IIM

E
 (S

ILV
A

)

M
A

P
se

q
 (G

G
)

M
A

P
se

q
 (N

C
B

I)

M
A

P
se

q
 (S

ILV
A

)

m
o

th
u

r (R
D

P
)

m
o

th
u

r (S
ILV

A
)

Q
IIM

E
 2

 (G
G

)

Q
IIM

E
 2

 (S
ILV

A
)

Q
IIM

E
 (G

G
)

Q
IIM

E
 (S

ILV
A

)

V1-V2 V3-V4 V4 V4-V5

Figure 2 Click here to download Figure Figure_2.pdf 

http://www.editorialmanager.com/giga/download.aspx?id=32567&guid=404528ec-0d50-4d24-a15d-99d916108fc7&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=32567&guid=404528ec-0d50-4d24-a15d-99d916108fc7&scheme=1


A

B

QIIME 2

QIIME

mothur

MAPseq

0.0 2.5 5.0 7.5 10.0 12.5

CPU time (h)

QIIME 2

QIIME

mothur

MAPseq

0 50 100 150 200

Memory usage (GB)

Figure 3 Click here to download Figure Figure_3.pdf 

http://www.editorialmanager.com/giga/download.aspx?id=32568&guid=4f6b48cb-e398-4479-a92f-d5b71a979d22&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=32568&guid=4f6b48cb-e398-4479-a92f-d5b71a979d22&scheme=1


H
um

an gut
O

cean
S

oil

Figure 4 Click here to download Figure Figure_4.pdf 

http://www.editorialmanager.com/giga/download.aspx?id=32580&guid=d5246c4d-171a-4263-93a8-7404fe66ff4a&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=32580&guid=d5246c4d-171a-4263-93a8-7404fe66ff4a&scheme=1


H
um

an gut
O

cean
S

oil
Tool Database

A100 A500 B100 B500

−0.3 −0.2 −0.1 0.0 0.1 0.2−0.3 −0.2 −0.1 0.0 0.1 0.2−0.3 −0.2 −0.1 0.0 0.1 0.2−0.3 −0.2 −0.1 0.0 0.1 0.2

−0.3

−0.2

−0.1

0.0

0.1

Axis.1 [24%]

A
x
is

.2
 

[2
0

.8
%

]
Greengenes NCBI RDP SILVAExpected QIIME

A100 A500 B100 B500

−0.2 0.0 0.2 −0.2 0.0 0.2 −0.2 0.0 0.2 −0.2 0.0 0.2

−0.2

−0.1

0.0

0.1

0.2

Axis.1 [27.4%]

A
x
is

.2
 

[2
1

.6
%

]

A100 A500 B100 B500

−0.2 0.0 0.2 −0.2 0.0 0.2 −0.2 0.0 0.2 −0.2 0.0 0.2

−0.3

−0.2

−0.1

0.0

0.1

0.2

Axis.1 [30.7%]

A
x
is

.2
 

[2
5

.1
%

]
QIIME 2MAPseq mothur

Figure 5 Click here to download Figure Figure_5.pdf 

http://www.editorialmanager.com/giga/download.aspx?id=32570&guid=dd9f38b9-a397-4e37-b46b-949ba5ef1c4e&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=32570&guid=dd9f38b9-a397-4e37-b46b-949ba5ef1c4e&scheme=1


  

Additional file: Table S1

Click here to access/download
Supplementary Material

Table_S1.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=32576&guid=daf51332-3237-4eac-8dac-fd2f2e219d15&scheme=1


  

Additional file: Table S2

Click here to access/download
Supplementary Material

Table_S2.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=32581&guid=4a985856-394e-421c-abab-e9816301258c&scheme=1


  

Additional file: Table S3

Click here to access/download
Supplementary Material

Table_S3.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=32582&guid=35e17de6-40aa-48f1-9707-d36878fe170e&scheme=1


  

Additional file: Table S4

Click here to access/download
Supplementary Material

Table_S4.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=32583&guid=5c8a6877-9e20-4e1d-b261-54372ac43404&scheme=1


  

Additional file: Figure S1

Click here to access/download
Supplementary Material

Figure_S1.pdf

http://www.editorialmanager.com/giga/download.aspx?id=32571&guid=a7aa32a7-b703-475c-8f92-7a0e2a5a15ac&scheme=1


  

Additional file: Figure S2

Click here to access/download
Supplementary Material

Figure_S2.pdf

http://www.editorialmanager.com/giga/download.aspx?id=32572&guid=07c09d0d-cc89-4812-857c-4f19bf8aed8b&scheme=1


  

Additional file: Figure S3

Click here to access/download
Supplementary Material

Figure_S3.pdf

http://www.editorialmanager.com/giga/download.aspx?id=32573&guid=f8cfe1bf-4198-4b4a-83df-a3b2aa902be6&scheme=1


  

Additional file: Figure S4

Click here to access/download
Supplementary Material

Figure_S4.pdf

http://www.editorialmanager.com/giga/download.aspx?id=32574&guid=184c647a-246e-414d-80e5-bc2e8c1fa577&scheme=1


  

Additional file: Figure S5

Click here to access/download
Supplementary Material

Figure_S5.pdf

http://www.editorialmanager.com/giga/download.aspx?id=32575&guid=7b98a87d-499c-42a2-95f0-664af3ab5b04&scheme=1

