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Abstract: Background: Taxonomic profiling of ribosomal RNA (rRNA) sequences has been the
accepted norm for inferring the composition of complex microbial ecosystems. QIIME
and mothur have been the most widely used taxonomic analysis tools for this purpose,
with MAPseq and QIIME 2 being two recently released alternatives. However, no
independent and direct comparison between these four main tools has been
performed. Here, we compared the default classifiers of MAPseq, mothur, QIIME, and
QIIME 2 using synthetic simulated datasets comprised of some of the most abundant
genera found in the human gut, ocean and soil environments. We evaluate their
accuracy when paired with both different reference databases and variable sub-regions
of the 16S rRNA gene.

Findings: We show that QIIME 2 provided the best recall and F-scores at genus and
family levels, together with the lowest distance estimates between the observed and
simulated samples. However, MAPseq showed the highest precision, with miscall rates
consistently below 2%. Notably, QIIME 2 was the most computationally expensive tool,
with CPU time and memory usage almost two and 30 times higher than MAPseq,
respectively. Using the SILVA database generally yielded a higher recall than using
Greengenes, while assignment results of different 16S rRNA variable sub-regions
varied up to 40% between samples analysed with the same pipeline.

Conclusions: Our results support the use of either QIIME 2 or MAPseq for optimal 16S
rRNA gene profiling, and we suggest that the choice between the two should be based
on the level of recall, precision and/or computational performance required.
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Independent benchmarks like this are important for guiding methods choices for
researchers. I enjoyed reading this study and feel that it will be valuable to readers. I
have a few questions and suggestions below.

R: We appreciate the positive feedback from the reviewer and have addressed all his
comments and suggestions below and in the revised manuscript.

ln 20 - QIIME, mothur, and QIIME2 all utilize multiple different taxonomic classifiers. So
multiple choices exist within each platform, there is no standard "mothur" or "QIIME"
method (their defaults are essentially RDP classifier and a uclust-based classifier). It
would be helpful to clarify this information in the text if not the abstract, e.g., the mothur
classifier should be called RDP.

R: Based on both reviewers’ comments, we have clarified this in the “Abstract” (lines
23-26), “Background” (lines 100-102) and “Discussion” sections (lines 262-264).

ln 29 - QIIME2 also appears to have higher F-measure scores, perhaps this should be
mentioned here.

R: We have now included this information in the “Abstract” (lines 29-31).

ln 77-79 - what about the QIIME2 pre-print cited below? it does not cover Mapseq but
is a benchmark of a number of different commonly used classifiers and marker-gene
regions (albeit not an independent comparison).

R: We have now referenced this paper in the revised manuscript (lines 79-80).

ln 91-93 - what about the strengths of mock communities/weaknesses of simulation?
this section seems to imply that mock communities are necessarily inferior, and
simulations are not prone to their own limitations.

R: We agree with the reviewer and have now highlighted the importance of using both
mock communities and in silico approaches in the “Background” section (lines 91-98).

ln 121 - variation is realistic, but not entirely random variation. Why not mutate
simulated sequences after extracting the variable regions? It seems that much of the
variation may otherwise fall outside of the variable regions and not impact this
simulation.

R: We agree with the reviewer and have re-generated our simulated reads by mutating
the sequences after extracting the variable regions instead. The new results are
depicted in the revised version of the manuscript but show no significant differences to
the original results presented. We have also replaced the original FASTQ files with this
new set in the GigaDB FTP site.

ln 141-143 - why not at least show species-level results in the supplement if not main
text? It is important to demonstrate why researchers should be cautious about species-
level classifications.

R: We decided not to present the species-level assignment due to two main reasons: i)
it has already been previously described (Golob, et al. 2017, PMID: 28558684) that
16S rRNA gene classification with amplicon-based sequences is severely limited at the
species level, with only ~ 12% of correctly assigned sequences, and miscall rates of ~
20%; ii) there is significant inconsistency in species nomenclature between the
databases we tested (e.g. many species are just labelled “[Genus] sp.”, whereas the
RDP database does not even output species assignments), which would make an
assessment of recall/precision challenging and possibly misleading, especially given
the low number of assigned sequences. We have now made this clearer in the revised
manuscript as well (lines 149-155).

ln 242 - parameter selection will greatly impact precision/recall scores, and e.g.
increasing confidence thresholds for QIIME2 or mothur classifiers will improve
precision at the expense of recall. Mapseq may have similar performance tradeoffs —
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but overall I wonder if altering confidence thresholds for these other methods can
approach the miscall rate of mapseq. At the very least, this should be mentioned in the
discussion. The QIIME2 classifier pre-print cited by this work covers parameter
permutations that maximize recall/precision (the default maximizes F-measure).

R: In this paper the aim was to assess the recommended and most widely-used
parameters for each tool, as these will be what most users will likely be using in their
analyses. We agree that tweaking individual settings might provide improvements to
recall/precision estimates for each pipeline, but this was beyond the scope of this work
and would have increased the number of comparisons performed exponentially.
Therefore, as per the reviewer’s suggestion we have now discussed this topic in the
“Discussion” section of the revised manuscript (lines 262-264).

Reviewer #2
========

# Overview

In this paper the authors have sought to evaluate the performance of the 4 main
packages and their default classifiers/settings used in the taxonomic profiling of rRNA
sequences. They did this using synthetic simulated read sets representative of 3
commonly studied microbiome environments and investigated the role of locus and
reference database selection on classification metrics.

This is well done research that will form a useful benchmark for researchers engaged
in rRNA taxonomic profiling to help design and conduct their own studies.

R: We thank the reviewer’s positive remarks and have addressed all his comments
below and in the revised manuscript.

## General Comments

It should be emphasised throughout the manuscript that as of January 1st 2018,
QIIME1 is deprecated and no longer supported by the developers
(https://qiime.wordpress.com/2018/01/03/qiime-2-has-succeeded-qiime-1/). Therefore,
QIIME1 is no longer recommended to be used at all.

R: We have now mentioned this in the “Background” (lines 69-71) and “Discussion”
sections (lines 246-248).

Secondly, it is probably worth emhpasising that QIIME1, QIIME2 and mothur are very
large toolsets with many parts and functions capable of more than just taxonomic
assignment.  Even for taxonomic assignment specifically, it could do with being
clarified that mothur (RDP port, k-nearest neighbours, wang k-mer method) and QIIME
(UCLUST, RDP, rtax, sortmerna, mothur's methods etc) implement a variety of optional
alternative taxonomic classifiers. Comparing the performance of the default classifiers
with default settings is very useful as that is what most users will end up using but it
should be made clear in the manuscript that this work doesn't investigate these
package options beyond database selection.

R: We have now included this information in the “Background” (lines 60-64) and
“Discussion” sections (lines 262-264).

## Minor Comments

Line 59: Possibly should be emhpasised that mothur, QIIME, and QIIME2 are large
packages with lots of functions and uses beyond taxonomic assignment.

R: We have now added this information to the revised manuscript (lines 60-62).

Line 68: Although the RDP classifier can also be used optionally within QIIME fairly
easily (although as the authors have stated is not default).
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R: We have now mentioned the possibility of using different classifiers in the
“Discussion” section (lines 262-264).

Line 69: Mothur doesn't wrap RDP but totally reimplements RDP in C++
(http://blog.mothur.org/2016/01/12/mothur-and-qiime/)

R: We have now clarified this as per the reviewer’s suggestion (lines 67-69).

Line 70: Worth highlighting that QIIME2 is intended to totally replace QIIME.

R: As mentioned above, we have now included this information in both the
“Background” (lines 69-71) and “Discussion” sections (lines 246-248).

Line 124: Please add a citation for these primers if possible.

R: References for each primer set have now been added to the text (lines 129 and
329) and the accompanying supplementary table (Table S1).

Line 125: Can you clarify why RDP and MAPseq NCBI databases weren't used in this
primer analysis?

R: We initially decided to focus on SILVA and Greengenes since they are most
frequently used databases. However, we have now included the results for RDP and
NCBI as well in the revised manuscript (lines 129-139 and Fig. S2).

Line 143: Has anyone done an analysis supporting the too limited resolution of this
locus for species level classification?

R: In another benchmarking paper (Golob, et al. 2017, PMID: 28558684) it was shown
that QIIME and mothur can only assign ~ 12% of 16S rRNA amplicon sequences to the
correct species, while additionally presenting a miscall rate of ~ 21%. We have now
cited this reference in the revised manuscript (line 150).

Line 151: Can you add the microbiome environment specific performance metrics for
each tool as a (possibly supplemental) table instead of just the averaged metrics as
report in Table 1? Acknowledging this involves some degree of overlap/redundancy to
Figure 2.

R: We have now provided this information in three new supplementary tables (Tables
S2, S3 and S4).

Line 208: As with the previous comment, despite the more detailed heatmap
breakdown in Figure 4. It would be nice to see the overall dissimilarity metrics
presented unaggregated by method and biome in a supplemental table.

R: This information has now also been added to the above-mentioned tables (Tables
S2, S3 and S4).

Line 238: It might be good to further emphasis that is support the developer's decision
to no longer support QIIME v1, especially with the tendency of outdated bioinformatics
to linger and be widely used!

R: As stated above, we have now mentioned this in the “Background” (lines 69-71) and
“Discussion” sections (lines 246-248).

Line 246: Do you believe this is likely to be due to overhead from QIIME2's zipping and
unzipping of input files?

R: From our experience, QIIME 2’s computational demand appears to be more
significantly affected by the size of the database. It is possible that this is influenced by
the uncompressing and compressing of the QZA files (the proprietary format used by
QIIME 2), but we prefer not to speculate on this matter.

Line 251: Could add emphasis that these unevaluated alternatives includes other
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classifiers and settings within the software packages that were tested in this paper.

R: We have now mentioned this in the “Discussion” (lines 262-264).

Line 312: Using this script's default maximum primer mismatch of 3?
Line 315: What platform error profile was used when simulating reads with ART?
MSv3?

R: Yes, we used the default primer mismatch of 3 and the MiSeq v3 error profile with
ART. We have added this information to the “Methods” section (lines 326-335).

Line 337: Why was 99% clustered SILVA used for QIIME2 but 97% for QIIME1?

R: QIIME by default makes use of the Greengenes database clustered at 97%. To
make a fair comparison across QIIME, we decided to cluster the SILVA database at
the same level. On the other hand, the tutorials and standard operating procedures
(SOP) of QIIME 2 advise and provide pre-trained databases of Greengenes and SILVA
only at 99%. We hypothesize that these differences in the preferred clustering
threshold might be related to the distinct assignment pipelines and default methods
between the tools (UCLUST in QIIME vs. the Naïve Bayes classifier in QIIME 2).

Line 361: Presumably on a system under no other load? Was this run once or rerun a
few times to determine variance of memory/cpu usage?

R: To assess the computational cost we calculated the average CPU time and memory
usage across three different data points (one for each biome) after running each
analysis in our cluster here at the EBI (which allocates the resources required for each
job). We have now added error bars with the standard deviation to Fig. 3, showing the
high consistency of these measurements.

References: Inconsistent capitalisation of titles, inclusion of editors and publisher
information (mainly Nature Publishing Group) but others from the same publisher don't
e.g. ref 4.

R: We have now corrected these formatting issues.

Figure 3 Legend: Is the SILVA database referenced here at different 97-99% clustering
levels mentioned?

R: In the original manuscript we used the 97% clustered SILVA database for QIIME
and the 99% one for QIIME 2. We realized that for assessing the computational cost
this might be misleading, so we have now modified the analyses to use the same
SILVA database across all comparisons (at a 99% clustering threshold). We have now
also clarified this in the text (lines 380-382).

Figure S3: Explain and/or cite not using greengenes due to the alignment issue? It
does seem not recommended. The methods section may benefit from inclusion of this
database information.

R: We have now included this information in the revised manuscript (lines 355-356)
and in the Fig. S3 legend (lines 457-458), with a citation to the mothur SOP.

Figure S4: Would be nice to include a key as per Figure 1 instead of needing to cross-
reference to the tables.

R: Although we agree with the reviewer, given that the miscalled taxa correspond to
over 100 different genera, it would be very challenging to have a figure key with
discernible colours for each genus (especially given how small some of the stacked
bars are). We realize it is not an ideal solution, but we have decided to leave that
information as separate supplementary tables (now Tables S5, S6 and S7).

Additional Information:

Question Response
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Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract 21 

Background: Taxonomic profiling of ribosomal RNA (rRNA) sequences has been the 22 

accepted norm for inferring the composition of complex microbial ecosystems. QIIME and 23 

mothur have been the most widely used taxonomic analysis tools for this purpose, with 24 

MAPseq and QIIME 2 being two recently released alternatives. However, no independent 25 

and direct comparison between these four main tools has been performed. Here, we compared 26 

the default classifiers of MAPseq, mothur, QIIME, and QIIME 2 using synthetic simulated 27 

datasets comprised of some of the most abundant genera found in the human gut, ocean and 28 

soil environments. We evaluate their accuracy when paired with both different reference 29 

databases and variable sub-regions of the 16S rRNA gene.  30 

 31 

Findings: We show that QIIME 2 provided the best recall and F-scores at genus and family 32 

levels, together with the lowest distance estimates between the observed and simulated 33 

samples. However, MAPseq showed the highest precision, with miscall rates consistently 34 

below 2%. Notably, QIIME 2 was the most computationally expensive tool, with CPU time 35 

and memory usage almost two and 30 times higher than MAPseq, respectively. Using the 36 

SILVA database generally yielded a higher recall than using Greengenes, while assignment 37 

results of different 16S rRNA variable sub-regions varied up to 40% between samples 38 

analysed with the same pipeline.  39 

 40 

Conclusions: Our results support the use of either QIIME 2 or MAPseq for optimal 16S 41 

rRNA gene profiling, and we suggest that the choice between the two should be based on the 42 

level of recall, precision and/or computational performance required.  43 

 44 
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Findings 46 

Background 47 

Genome sequencing has provided an unprecedented view of the microbial diversity of 48 

ecosystems from wide-ranging environments. For example, the commensal flora of the 49 

human gut has been extensively explored for potential associations with the onset of many 50 

human diseases [1–3]. Similarly, the rich microbial diversity of environments such as soil and 51 

oceans have been studied in depth, yielding important ecological inferences [4–6]. There are 52 

now a substantial number of such microbial community datasets deposited in sequence 53 

archives (for example, the European Nucleotide Archive currently holds over 600 000 54 

environmental samples [7]) and the rate of deposition is increasing. Drawing relevant 55 

biological correlations from this vast amount of data requires accurate and reliable tools and 56 

methods.  57 

 58 

One of the crucial steps in almost all microbiome-based analyses is inference of community 59 

composition through taxonomic classification. For a few decades now [8], the common 60 

approach for taxonomic assignment of microbial species has been the classification of 61 

ribosomal RNA (rRNA) sequences. Currently, the most widely used tools for this purpose are 62 

the mothur [9] and “Quantitative Insights Into Microbial Ecology” (QIIME) software 63 

packages [10]. These correspond to large toolsets that are able to process, classify and 64 

perform downstream analyses on individual genetic markers (e.g. the 16S rRNA gene, 65 

conserved across the prokaryotic domains). For taxonomic classification, each tool compares 66 

a set of queried sequences against a defined reference database, such as Greengenes [11], 67 

NCBI [12], RDP [13] or SILVA [14], assigning the most likely taxonomic lineages. 68 

Ultimately, the success of these analyses is not only dependent on the breadth and diversity 69 

of annotated sequences available in public repositories, but also on the accuracy of the 70 
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classification algorithms used by each of the tools. By default, QIIME makes use of the 71 

UCLUST clustering method [15] to assign biological sequences to a reference database, 72 

while mothur reimplements the naïve Bayesian RDP classifier, developed by Wang, et al. 73 

[16]. Two other tools — MAPseq [17] and QIIME 2 (https://qiime2.org/) — have recently 74 

been released, the latter of which has officially replaced QIIME as of January, 2018. QIIME 75 

2 also makes use of a naïve Bayes classifier [18], and MAPseq is a k-mer search approach 76 

that outputs confidence estimates at different taxonomic ranks.  77 

 78 

A community-driven initiative known as the “Critical Assessment of Metagenome 79 

Interpretation” (CAMI) benchmarked a range of software tools for the analysis of shotgun 80 

metagenomic datasets [19]. In regard to amplicon-based approaches, previous studies have 81 

mainly evaluated the classification methods of QIIME and mothur, highlighting some of their 82 

advantages and pitfalls [20–22]. The recent publication of QIIME 2 also included the 83 

assessment of a number of different commonly used classifiers and marker gene regions [18]. 84 

However, until now, no independent study has compared the accuracy of MAPseq, mothur, 85 

QIIME and QIIME 2 whilst also taking into account potential differences arising from the 86 

use of distinct reference databases. Furthermore, for genotyping the 16S rRNA gene there is 87 

also much debate within the scientific community on the most informative variable sub-88 

region to target [23]. Strong arguments have been made towards sequencing specific or 89 

combined sub-regions, such as the V4 [24] and V3-V4 [25], while difficulty in amplifying 90 

bacterial species, such as those from the Actinobacteria group, has prompted the 91 

development of more specialized primers [26,27]. The impact of variable region choice on 92 

the taxonomic classification performance of different tools or databases is therefore also 93 

important to assess. 94 

 95 
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The use of mock communities in microbiome studies has revealed that different experimental 96 

conditions and methods dramatically affect the quality of the results [28–31]. In contrast, in 97 

silico benchmarking approaches provide an agnostic view on the efficiency of the 98 

computational pipelines — independently of experimental variation and technical biases — 99 

but may require further validation in real-world datasets. Hence, for a holistic assessment of 100 

the validity of different methodological strategies, using both mock communities and in silico 101 

simulations is essential to understand the biases and limitations present at each stage of 102 

analysis. 103 

 104 

In this work we have leveraged a set of simulated 16S rRNA gene sequences representative 105 

of genera commonly found in the human gut, ocean and soil environments, to evaluate the 106 

accuracy of the default taxonomic classifiers of MAPseq, mothur, QIIME and QIIME 2. We 107 

tested these methods with different reference databases, and according to some of the most 108 

commonly targeted sub-regions of the 16S rRNA gene. Our results showed that, regardless of 109 

the database used, QIIME 2 outperformed all other tools in terms of overall recall at both 110 

genus and family levels, as well as in distance estimations between the observed and 111 

predicted samples. Considerable performance differences were observed between using 112 

distinct 16S rRNA gene sub-regions, while limited software-dependent variation was seen 113 

between different reference databases. We believe this work will help inform microbial 114 

ecologists about important decisions to take when designing new 16S rRNA-based 115 

community studies. 116 

 117 

Composition of the simulated datasets 118 

The microbiota colonizing the human gut, ocean and soil environments are some of the most 119 

frequently studied microbial communities. Hence, to provide data with direct practical 120 
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applications, we focused on simulating datasets containing a diverse set of genera commonly 121 

found in these three ecosystems (Additional file: Fig. S1). Representative genera were 122 

selected after identifying the 80 most abundant genera across publicly available metagenomes 123 

from human gut, ocean and soil [7]. Then, for each biome, four different communities were 124 

generated with two levels of diversity: samples A100 and B100 with a random set of 100 125 

species belonging to these genera; and A500 and B500 with 500 species. Final datasets 126 

comprised a total of 66, 66 and 76 different genera from the human gut, oceanic and soil 127 

environments, respectively. For the purpose of this benchmarking, we simulated the datasets 128 

with a similar relative abundance per genus to avoid introducing any taxon-specific biases 129 

(Additional file: Fig. S1). 130 

 131 

To simulate a realistic scenario, where variation can arbitrarily occur and sequences may not 132 

have an exact representative in public databases, we randomly mutated 2% of the positions of 133 

each 16S rRNA sequence retrieved after extracting each sub-region using commonly used 134 

primer sequences [25,26,32–34] (Additional file: Table S1). Notably, the percentage of 135 

sequences retrieved from the Greengenes, NCBI, RDP and SILVA databases matching the 136 

primers selected for V1-V2 was dramatically lower (30.3%) than that of V3-V4 (90%), V4 137 

(90.9%) and V4-V5 (87.8%) (Additional file: Fig. S2). The 16S rRNA V1 sub-region had 138 

been previously found to be truncated in a substantial number of reference sequences [23]. 139 

Our results confirm this observation and again raise caution at the use of the 16S V1-V2 140 

rRNA primer sequences for complex and diverse samples, due to the reduced number of 141 

reference sequences available. Interestingly, the relative number of sequences retrieved from 142 

RDP was lower than that of the remaining databases (Additional file: Fig. S2), likely 143 

suggesting an overrepresentation of more divergent taxa that did not meet the mismatch 144 

threshold used in our in silico PCR. 145 
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 146 

Taxonomic assignment 147 

Microbiome studies frequently strive to associate microbial diversity signatures with a 148 

phenotype of interest. However, focusing solely on high-level taxonomic ranks can severely 149 

underestimate the degree of variation observed between sample groups. To circumvent this, 150 

highly discriminative approaches are needed to be able to pinpoint the most significant taxa 151 

warranting further validation. For assessing the performance of MAPseq, mothur, QIIME and 152 

QIIME 2 with different reference databases (Additional file: Fig. S3), we limited our analyses 153 

to classification at the lineage level instead of operational taxonomic units (OTUs), as it 154 

allows a more consistent and easier interpretation of the results. Species assignment of every 155 

queried sequence would be the desired outcome, but as was previously shown [20], the 156 

limited resolution of the 16S rRNA locus precludes an accurate classification at this level. 157 

Furthermore, there is significant inconsistency in species nomenclature across all reference 158 

databases (e.g. RDP does not report taxon names below genus). In this work, we calculated 159 

the degree of recall and precision at the genus and family ranks, as in our opinion they 160 

provide the best compromise between classification accuracy and resolution.  161 

 162 

By comparing the level of recall across all software tools, we found that QIIME 2 recovered 163 

the largest proportion of sequences from the expected genera (Table 1, Fig. 1 and Additional 164 

files: Tables S2, S3 and S4). Combined with the SILVA database, this resulted in the highest 165 

recall (sensitivity) for human gut (67.0%) and soil samples (68.3%), while the Greengenes 166 

database outperformed in the case of the oceanic microbiome (79.5%). In fact, all tools 167 

except QIIME saw a decrease in recall when using SILVA specifically for the classification 168 

of the oceanic dataset. Globally, however, SILVA most frequently provided a better genus 169 

recall than Greengenes (five out of nine comparisons across MAPseq, QIIME and QIIME 2, 170 
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Fig. 1). In terms of correctly identified taxa, MAPseq in conjunction with SILVA detected 171 

the greatest number of expected genera in all three biomes (Fig. 1). At the family level, all 172 

tools presented a substantially higher recall (Table 1), with QIIME 2 reaching 94.3% in the 173 

human gut sample, 96.2% with the ocean set and 91.7% with the soil sample (Additional 174 

files: Tables S2, S3 and S4). 175 

 176 

Although the level of recall is a crucial metric in choosing the most appropriate taxonomic 177 

classification pipeline, it is equally important to ensure a low frequency of false-positive 178 

assignments. We evaluated the degree of precision (specificity) by the percentage of 179 

sequences assigned to the wrong taxon (Additional files: Tables S5, S6, S7) out of all the 180 

detected taxa. Accuracy was high for all the tools, with precision estimates of at least 84% 181 

across all analysis pipelines (Fig. 2A). In terms of total number of sequences, this translated 182 

to less than 10% of the reads misassigned at the genus level (Additional files: Tables S2, S3, 183 

S4 and Fig. S4). MAPseq with the SILVA database consistently outperformed all other tools, 184 

with a precision above 96% for the three tested biomes (Fig. 2A), equating to less than 2% of 185 

miscalled sequences. 186 

 187 

To combine both recall and precision into a single metric, we calculated the F-score for all 188 

taxonomic assignments (Fig. 2A and and Fig. S5). At both genus and family levels, we found 189 

that QIIME 2 had the highest score across the samples representative of the three different 190 

biomes, with the SILVA database coming out on top for the human gut (genus: 78.9%, 191 

family: 96.8%, Additional file: Table S2) and soil (genus: 78.5%, family: 94.3%, Additional 192 

file: Table S4) environments in particular, but the Greengenes database performing better 193 

with the oceanic dataset (genus: 87.4%, family: 97.4%, Additional file: Table S3). After 194 

fractioning the data according to different sub-regions of the 16S rRNA gene, we then 195 
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repeated the same analysis (Fig. 2B). This revealed that the performance of each tool varied 196 

up to 40% depending on the 16S rRNA sub-region targeted. Notably, the V1-V2 or V3-V4 197 

sub-regions performed the best across most of the pipelines (Fig. 2B). In our study, each 198 

synthetic species had a genetically close full-length 16S rRNA sequence represented in the 199 

databases, so our tests were probably not significantly affected by the reduced number of V1-200 

V2 reference sequences available. 201 

 202 

The ongoing surge in genome sequencing is producing thousands of novel sequences each 203 

year. Therefore, efficient tools that can scale up to provide analysis of tens of thousands of 204 

samples is increasingly important. With this in mind, we compared the computational 205 

performance of MAPseq, mothur, QIIME and QIIME 2 throughout the whole classification 206 

pipeline of our simulated datasets. We analysed average memory usage and CPU time across 207 

the three biomes for the processing and assignment of 3 million quality-filtered sequences 208 

against the SILVA 128 database (Fig. 3). MAPseq was the most memory-efficient tool, with 209 

mothur, QIIME and QIIME 2 requiring over 72, 15 and 27 times more memory resources, 210 

respectively (Fig. 3A). CPU time of QIIME 2 was the highest, close to twice that of MAPseq, 211 

and almost 100 times longer than QIIME, which was the fastest (Fig. 3B). Of note is that 212 

each pipeline has its own processing procedure; both the mothur and QIIME 2 pipelines 213 

included a de-replication step of the query sequences prior to taxonomic assignment, which 214 

substantially reduced the number of sequences used for classification. 215 

 216 

Relative quantification and beta diversity 217 

One of the main aspects of any microbiome-based analysis is the assessment of the 218 

differential abundance and beta diversity across a set of sample groups. In this respect, 219 

accurate estimation of the relative abundance of each taxon is essential to find statistically 220 
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significant patterns. To assess how accurately each tool was able to predict taxa relative 221 

abundances in each sample, we calculated dissimilarity scores (DS) for each genus present in 222 

the simulated dataset (Fig. 4). Interestingly, QIIME 2 showed the most accurate prediction in 223 

relation to the true genera composition, with an average DS of 0.33 when used in conjunction 224 

with the SILVA database (Table 1). In terms of the reference database used, analyses carried 225 

out with SILVA yielded more accurate predictions than with the Greengenes database 226 

(Additional files: Tables S2, S3 and S4). Substantial differences in accuracy were observed 227 

across different genera, with sequences from the Paraprevotella genus — frequently present 228 

in human gut samples — more accurately predicted, in contrast to those from Coprobacter, 229 

Hyphomicrobium and Thalassobacter, which had the worst results (Fig. 4). These genera 230 

might either be underrepresented in the reference databases or have a high degree of 231 

conservation with other closely related taxa, making accurate taxonomic assignments more 232 

challenging. 233 

 234 

For a global assessment of the beta diversity across samples, we performed a principal 235 

coordinates analysis (PCoA) and calculated both Bray-Curtis and Jaccard distances between 236 

the observed and expected results. Both distance methods represent complementary 237 

approaches, as the Bray-Curtis metric corresponds to a quantitative evaluation of the 238 

dissimilarity across samples, whereas the Jaccard index is a qualitative measure of 239 

community similarity. We found that samples analysed with QIIME 2 were the closest (i.e. 240 

had the lowest distance estimate) to the true simulated datasets, with minor differences 241 

between the use of SILVA or Greengenes with both the Bray-Curtis and Jaccard methods 242 

(Table 1; Fig. 5). 243 

 244 

Discussion 245 
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With the number of tools, databases and options available for taxonomic classification of 246 

marker sequences, it can be a daunting task to decide the optimal approach for analysis of a 247 

specific dataset. In this work, we have strived to help guide this decision-making process by 248 

independently assessing the performance of the most commonly used taxonomic assignment 249 

strategies with simulated samples comprised of genera found in frequently sampled 250 

environments.  251 

Overall, we show that all tools we tested performed moderately well, with high precision and 252 

modest-to-high recall rates at the genus level. QIIME 2 presents significant improvements 253 

over the other tools, particularly over the preceding version of QIIME, in regard to detection 254 

sensitivity at both family and genus level. It should be emphasized that as of January, 2018 255 

QIIME has been replaced by QIIME 2 and the former tool is no longer supported by the 256 

developers. The superiority of QIIME 2 also held true for the prediction of sample 257 

composition, as beta diversity estimates between the analysed and simulated communities 258 

were the closest using this method. Therefore, these data support the use of QIIME 2 to 259 

obtain the largest proportion of classified sequences at the most accurate relative abundances. 260 

Nevertheless, the results also showed MAPseq to be a more conservative and precise 261 

approach, meaning that fewer genera were misassigned. In addition, this tool showed 262 

considerably better computational performance than QIIME 2, requiring approximately 30 263 

times less memory and almost half the CPU time to process the same dataset (even though 264 

QIIME 2 classifies substantially fewer query sequences due to a prior de-replication step). 265 

These results show that MAPseq provides a credible option if precision and computational 266 

performance or scale are a priority.  267 

 268 

Selecting a single best software package is not a straightforward affair, and we expect that 269 

further differences in performance will be observed with different real-world datasets. 270 
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Additionally, mothur and QIIME 2 also provide the option of using multiple taxonomic 271 

classifiers, so improvements in overall recall and/or precision metrics might be possible with 272 

the other available methods, combined with further parameter optimization. We should also 273 

stress that, aside from the software packages we tested, other web-based tools such as 274 

BioMaS [22] are also available. However, they are usually restricted to the use of specific 275 

reference databases, making individual customizations and accurate comparisons more 276 

challenging. 277 

In addition to choosing the right tool, combining that with the appropriate reference database 278 

is equally important to ensure the best classification performance. Greengenes and SILVA 279 

have been the most widely-used and readily supported databases. Generally, the SILVA 128 280 

database performed better than Greengenes 13_8 in terms of recall at both genus and family 281 

levels, as well as in predicting the true taxa composition of the simulated communities. 282 

Conversely, there was an almost universal decrease in its performance in the detection of 283 

ocean-specific taxa, so special care should be taken in the analysis of datasets sampled from 284 

this particular environment. Nonetheless, there are additional advantages to the use of 285 

SILVA: it is more frequently updated (Greengenes was last updated in May 2013); it includes 286 

rRNA sequences of eukaryotic organisms in addition to archaea and bacterial species; and 287 

has been shown to be more easily comparable and mapped to other taxonomies such as the 288 

NCBI [35]. In the case of MAPseq and mothur, the NCBI and RDP databases also performed 289 

well, with higher recall but slightly lower precision scores compared to SILVA. Therefore, 290 

the SILVA, RDP or NCBI databases are all appropriate choices for a comprehensive and 291 

accurate taxonomic analysis. 292 

 293 

The choice of primer sequences for taxonomic profiling of the 16S rRNA gene has been a 294 

matter of frequent debate. In common with previously reported observations [27], we show 295 
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that targeting different sub-regions can considerably influence the taxonomic assignment 296 

performance (by up to 40% in our analyses). Overall, the V1-V2 and V3-V4 sub-regions 297 

performed the best across most of the tools. However, the V1-V2 primers did not match 298 

almost 70% of the sequences across the four reference databases, so we discourage its use for 299 

classification of complex community samples. As our simulated datasets were generated 300 

from close representatives containing full-length 16S rRNA genes, it is reasonable to assume 301 

that our analysis of the V1-V2 sub-region was not significantly hampered by this reduced 302 

number of reference sequences. Kozich et al. [24] have argued in favour of standardizing the 303 

use of the V4 sub-region for Illumina MiSeq sequencing, as it allows complete overlap of 304 

paired-end sequences, mitigating sequence errors introduced during PCR amplification or 305 

sequencing. Phylogenetic studies have also showed that the V4 sub-region is the closest 306 

representative of the phylogenetic signal of the whole 16S rRNA locus [23]. Here, we 307 

analysed the performance of some of the most commonly used sub-regions under a purely 308 

computational perspective, and conclude that amplification of the V3-V4 sub-region is most 309 

frequently the best option for a reliable taxonomic inference. 310 

 311 

In summary, we have identified the major benefits and drawbacks of the most recent and 312 

popular taxonomic classification methods. Importantly, we show that the choice of software, 313 

database and sub-region significantly affects the quality of the classification results. Given 314 

the impact of each of these variables, it is imperative to strive for consistency in the analysis 315 

of samples not only within individual studies, but across different projects as well. Services 316 

like the EBI Metagenomics [7] and MG-RAST [36] help provide a basis for standardization, 317 

but additional factors relating to the experimental design are up to individual users to decide. 318 

Some attempts have been made to find recommended best practices for 16S microbiome 319 

studies among the myriad of options and issues that can arise at each analysis stage [37]. We 320 
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believe our work presented here further complements these efforts by helping the 321 

microbiome research community make more informed decisions about the most appropriate 322 

methodological approach to take in their own analysis pipeline.  323 

 324 

 325 

 326 

 327 

Methods 328 

Generating simulated datasets 329 

Twelve sets of synthetic communities were generated for evaluating the accuracy of the 330 

taxonomic assignment pipelines: four each for human gut, ocean and soil environments. First, 331 

the 80 most abundant genera across publicly deposited samples from these biomes were 332 

retrieved using the EBI Metagenomics API (https://www.ebi.ac.uk/metagenomics/api/) [7]. 333 

This list was then used to randomly select either 100 (datasets A100 and B100) or 500 334 

species (datasets A500 and B500) belonging to these genera, allowing a maximum of 20 and 335 

50 species per genus, respectively. 16S rRNA gene sequences were obtained from the 336 

European Nucleotide Archive (ENA), and an in silico PCR was carried out with a python 337 

script (https://github.com/simonrharris/in_silico_pcr) to extract commonly used regions for 338 

16S rRNA profiling [25,26,32–34] (Additional file: Table S1), allowing a maximum of three 339 

mismatches per primer sequence. Subsequently, 2% of the positions in each variable region 340 

were randomly mutated to create nucleotide diversity, using a custom python script 341 

(https://github.com/Finn-Lab/Tax-Benchmarking). Sequencing reads were simulated from 342 

these amplicon sequences in duplicate using the MiSeq v3 error profile with ART (ART, 343 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.ebi.ac.uk/metagenomics/api/
https://github.com/simonrharris/in_silico_pcr
https://github.com/Finn-Lab/Tax-Benchmarking


RRID:SCR_006538) [38], generating ~ 10 000 and ~ 200 000 paired-end reads of 250 bp per 344 

region to have samples representing both low and high levels of sequencing depth. 345 

 346 

Sequence classification 347 

Initial pre-processing and quality control was performed following the mothur standard 348 

operating procedure (SOP) [24], accessed on November 2017. Briefly, the make.contigs 349 

command was used to align, filter and merge the paired-end reads into contigs. Subsequently, 350 

we used the screen.seqs command to filter out any sequences with ambiguous base calls. This 351 

final set of quality controlled sequences was then assigned into taxonomic lineages with 352 

MAPseq v1.2.2 [17], mothur v1.39.5 (mothur , RRID:SCR_011947)[9], QIIME 1.9.1 353 

(QIIME, RRID:SCR_008249)[10], and QIIME 2 v2017.11 (https://qiime2.org/). For each 354 

software, we evaluated the settings and databases most frequently used and recommended for 355 

optimal taxonomic classification (Additional file: Fig. S3). With MAPseq, we tested the 356 

default NCBI database (mapref 2.2), as well as Greengenes 13_8 and the SILVA 128 357 

database re-mapped to an eight-level taxonomy (available in 358 

ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/mapseq_silva128). Each set of reference 359 

sequences was analysed following the internal clustering by MAPseq. Options -tophits 80 360 

and -topotus 40 were used in combination with the -outfmt simple option. For QIIME 1.9.1, 361 

the pick_closed_reference_otus.py script was used with the default Greengenes database 362 

(13_8) and with SILVA 128, both clustered at 97% identity. Taxonomic assignment with 363 

mothur was carried out according to the MiSeq SOP [24], excluding the chimera detection 364 

and removal steps, using the available pre-formatted SILVA 128 database for alignment and 365 

either the RDP version 16 or SILVA 128 for sequence classification. We did not use the 366 

Greengenes alignment database as per the mothur SOP [39]. Lastly, for QIIME 2 we first 367 

dereplicated the query sequences using the vsearch dereplicate-sequences function and then 368 
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assigned them to the Greengenes (13_8) or SILVA 128 (99% identity clusters) databases 369 

using the feature-classifier classify-sklearn function [18]. 370 

 371 

Analysis and visualization 372 

TSV and BIOM files were generated from the MAPseq and QIIME 2 outputs and combined 373 

with the output BIOM files created by QIIME and mothur (make.biom command). Taxonomy 374 

names obtained from each individual reference database were normalized so that each genus 375 

and family would be assigned to the same lineage. Results were visualized and analysed with 376 

the phyloseq (phyloseq, RRID:SCR_013080)[40] and vegan R packages (vegan, 377 

RRID:SCR_011950). The recall rate (sensitivity) for each tool and database was estimated as 378 

the percentage of sequences assigned to the expected taxa for each biome, while precision 379 

(specificity) was calculated as the fraction of sequences from these predicted taxa out of all 380 

those from the taxa observed. Finally, the F-score was calculated as follows: 381 

 382 

F– score = 2 ×  
precision ×   recall

precision + recall
  383 

 384 

Distance estimates were calculated with either the Bray-Curtis or Jaccard dissimilarity 385 

indices after grouping the taxonomic lineages at the genus level. Principal coordinate analysis 386 

(PCoA) were performed with the Bray-Curtis distance method. Dissimilarity scores (DS) on 387 

the relative abundance (rel.ab) of each expected genus were calculated as: 388 

 389 

DS =
|rel. ab. (Observed) −  rel. ab. (Expected)|

rel. ab. (Expected)
 390 

 391 
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Memory usage and CPU time was estimated as the total amount required for the processing 392 

and assignment of all combined sequences against the SILVA 128 database (clustered at 393 

99%), following the protocols described above. 394 

 395 

Availability of supporting source code and requirements 396 

Project name: Taxonomy benchmarking 397 

Project home page: https://github.com/Finn-Lab/Tax-Benchmarking 398 

Operating system: Platform independent 399 

Programming languages: Python 2.7, R 3.4.1 400 

Other requirements: BioPython module, R libraries (ggplot2, phyloseq, vegan, scales, grid, 401 

ape, RColorBrewer, data.table) 402 

License: MIT 403 

 404 

Availability of supporting data 405 

The datasets supporting the conclusions of this article are available in the GigaDB repository 406 
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PCoA: Principal coordinates analysis 416 

RDP: Ribosomal Database Project 417 
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Figure legends 441 

Figure 1. Level of recall at the genus level, represented as taxa relative abundances, obtained 442 

with each analysis pipeline for the three different biomes (human gut, ocean and soil). The 443 

number of genera correctly identified by each pipeline is indicated above the graph. 444 

 445 

Figure 2. (A) Recall, precision and F-score estimates at the genus level for each tool and 446 

database tested. (B) F-scores calculated for some of the most commonly tested sub-regions of 447 

the 16S rRNA gene: V1-V2, V3-V4, V4 and V4-V5. 448 

 449 

Figure 3. Computational cost of each taxonomy assignment tool, estimated as the total 450 

memory usage (A) and CPU time (B) required for the processing and classification of ~ 3 451 

million sequences against the SILVA 128 database. Error bars denote standard deviation 452 

across the three biomes tested (human gut, ocean and soil). 453 

 454 

Figure 4. Dissimilarity scores (DS) calculated for each genus included in the simulated 455 

datasets. Lower (brighter) values indicate a closer prediction to the true composition of the 456 

original sample. The black outline indicates the overall best scoring analysis pipeline for each 457 

environment. Taxa are ordered by decreasing abundance from left to right, based on their 458 

composition in the simulated sample. 459 

 460 

Figure 5. Principal coordinates analysis (PCoA) between all samples analysed in relation to 461 

the true, expected dataset, using the Bray-Curtis distance method. 462 
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Figure S1. Composition of the synthetic communities per selected environment. Samples 464 

A100 and B100 are randomly generated sets of 100 species, while A500 and B500 were 465 

simulated from 500 different species. 466 

 467 

Figure S2. Percentage of sequences retrieved from the Greengenes, NCBI, RDP and SILVA 468 

databases with an in silico PCR targeting different 16S rRNA gene sub-regions. 469 

 470 

Figure S3. Tools and databases benchmarked in our study. We tested at least two databases 471 

per software tool. The reference databases used were either readily supported by the specific 472 

tool and/or recommended by their developers. SILVA was compared across all tools; 473 

MAPseq was specifically assessed with the NCBI database, its default reference; mothur was 474 

not paired with Greengenes due to its poor-quality alignment [39] and was analysed with 475 

RDP instead. 476 

 477 

Figure S4. Number of genera misassigned in each analysis pipeline and their overall relative 478 

abundance. Names and abundance values of each misclassified taxon are included as 479 

additional files (Additional files: Tables S5, S6 and S7). 480 

 481 

Figure S5. Recall, precision and F-score estimates at the family level for each tool and 482 

database tested.  483 
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Table 1. Global metrics averaged across the analyses of simulated samples from human gut, ocean and soil. 

    Family Genus 

Software Database Recall Miscalled Recall Miscalled Sub-region1 Mean DS Bray-Curtis Jaccard 

MAPseq Greengenes 88.3 2.4 58.9 2.4 V3-V4 0.434 0.282 0.440 

MAPseq NCBI 81.7 1.3 51.7 2.0 V3-V4 0.522 0.330 0.495 

MAPseq SILVA 67.2 0.7 46.5 1.0 V3-V4 0.482 0.373 0.540 

mothur RDP 85.4 3.2 50.5 5.0 V3-V4 0.419 0.356 0.523 

mothur SILVA 82.9 2.4 40.8 5.2 V3-V4 0.492 0.446 0.613 

QIIME 2 Greengenes 93.2 1.6 69.2 3.4 V3-V4 0.367 0.210 0.342 

QIIME 2 SILVA 93.6 1.9 69.0 4.3 V3-V4 0.331 0.211 0.348 

QIIME Greengenes 59.4 1.6 45.1 2.5 V4 0.585 0.394 0.564 

QIIME SILVA 66.4 2.1 57.5 6.5 V4 0.432 0.309 0.470 

Values in bold denote the best score. 

       1Sub-region with the highest F-score, excluding V1-V2. 
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Figure 1 Click here to download Figure Figure_1.pdf 
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