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This section describes the random-effects method used in our meta-analyses,
discusses commonly used methods and an alternative method, and comments on
the use of the statistics Q and I? to assess heterogeneity of the effects from individual
trials.

Meta-analysis of Odds Ratios Based on Binomial Likelihood

For a particular ADE the basic data are the number of patients and the number who
experienced the ADE in each arm of the trial. For triali (i=1,...,k ) the numbers of

patients in the treated and control arms are n_ and n,_, respectively, and the
corresponding numbers of patients who experienced the ADE are x_ and x.. Asis
customary, we assume that x_ and x . are observations from binomial distributions

in which the probabilities of experiencing the ADE are p_ and p,.:
x. ~binomial(n_,p..)
x,. ~binomial(n_,p. ).

If p is the probability of an event, then the odds of an event are p/(l— p),and the
log-odds are log, [p/(l— p)]. (This logarithmic transformation is known as the logit:

logit(p)=log, [p/(l—p)] .) For the treatment versus the control the odds ratio is

p,/(1-p,)
p,/(1-p.)

Analyses of odds ratios customarily use the logarithmic scale. Our random-effects
meta-analysis used the following model:

logit(p,)=g,
logit(p,)=g9,+u+u,
u, ~Normal(0,7%);

g, is the log-odds for experiencing the ADE in the control arm of trial /, and
g,+ H+u, is the log-odds for experiencing the ADE in the treatment arm. Thus,

p+u, is the log of the odds ratio, in trial i, for experiencing the ADE in the treatment
arm, relative to the control arm. That s, u is the overall average log-odds-ratio,

which the meta-analysis seeks to estimate, and the random effect u, is the departure



of the log-odds-ratio in trial i from the overall average. The u, attempt to account

for heterogeneity of the log-odds-ratios among the k trials, summarized by 7°, the
variance of the distribution of random effects. In this mixed-effects logistic
regression model, introduced as a multilevel model by Turner et al. (2000), the data

n., x.,n.and x  enter through the binomial likelihood. Chang and Hoaglin

iT’
(2017) compare this model with other approaches in the context of an example.

The effect of treatment, relative to control, is random, but each trial has its own log-
odds for the control arm, g,. The g, are “nuisance parameters”; they are fixed

effects, rather than random effects. Some models put a second hierarchical model
on the g, and others put a bivariate normal model on the g, and the u ; but Dias et

al. (2013) point out that, unless that model is correct, the estimated relative
treatment effects will be biased.

Commonly Used Methods of Meta-analysis

For meta-analysis of odds ratios, the common methods use either a fixed-effect
method or a random-effects method. Fixed-effect methods assume that a single
overall odds ratio underlies all of the trials and that the observed trial-level odds
ratios differ from that true odds ratio only because of sampling variation within
each trial. This assumption may be appropriate when the studies have essentially
the same design, treatments, patient population, and outcome measures. Usually,
however, designs, patients’ characteristics, and details of the treatments vary among
studies; and it is more realistic to account for variation in the true odds ratios by
regarding them as coming from a distribution of study-level odds ratios. Thus,
random-effects methods focus on estimating the mean of that distribution and also
the distribution’s variance (as a summary of the heterogeneity of the study-level
effects).

The common fixed-effect and random-effects methods use the logarithm of each
trial’s sample odds ratio, along with an estimate of its variance. In the notation of
the preceding section, the logarithm of the sample odds ratio in trial i is

y =log(x,)—log(n, —x.)—log(x, )+log(n,. —x. ),

and the usual estimate of its variance is

Two limitations are seldom mentioned. First, the sample log-odds, for example,



log(x,,)—log(n, —x_)
is a biased estimate of the population log-odds
log(p,,)-log(1-p,),

especially in small samples. Modifications are available that reduce the bias, but
they are not routinely used. Second, technically, the formula for siz cannot be

correct: whenever any of X, N.—X.,

being 0, the true variance of log(OR) is not finite. The formula corresponds to the
variance of the normal distribution that the distribution of log(OR) approaches as

x,.,or n.—x,  hasa positive probability of

n_ and n. become large. Adding a positive constant to each of the four counts

avoids non-finite variance, but hardly any empirical evidence is available on how
closely the distribution of the modified log(OR) resembles a normal distribution.

The conventional fixed-effect estimate of the overall log-odds-ratio is a weighted
mean with inverse-variance weights, w = 1/ Siz :

= _Zwiyi
Yw= wo

1

Itis customary to estimate the variance of y by 1/ 2w, but this approach relies

heavily on the assumption that Si2 = Giz, the true within-trial variance of y. or on the

assumption that the number of patients in each arm is large.

In the conventional random-effects model the observed trial-level effects have two

sources of variation: within study (0'1_2 ) and between studies (7° ). That s,

var(y,)= 0'1_2 +7°. The conventional random-effects estimate of the overall log-odds-

ratio is another weighted mean, now with weights that reflect both sources of
o s O 2, A2y,
variation, w, —1/(Si +7°):

__Iwy,

Y ZW?



The estimate of 7%, denoted by 77, is derived from the y, and the siz . The customary
estimate of the variance of )_/W is 1/ ZWIZ* . As in the fixed-effect method, it substitutes
siz for the unknown 0'1_2. Another potential source of complications is its use of 7° as

if it were the true value, 7° (i.e., without making allowance for the variability of 7*).

The random-effects approach summarized above is the basis for the procedure
described by DerSimonian and Laird (1986). They obtain an estimate of 7° by using
the method of moments: setting Q=2w (y, -y ¥ equal to an expression for its

expected value and solving to produce

2 =max{0,[Q— (k- 1)]/[Zw, - (Zw?/Zw )]}

(the max operation avoids negative estimates of between-study variance, but 7°=0
is still possible; then w'=w. and ¥y =y ). Unfortunately, the derivation of the
1 1 w w

expected value of Q assumes that Si2 = Giz . A number of studies, using extensive
simulations, have found that the resulting 1/ Zw, tends to underestimate the

variance of y° and leads to confidence intervals (based on a normal distribution)
that have lower than nominal coverage (e.g., at the 95% level) of the overall effect.
Also, some studies have found substantial biasin y . Despite these shortcomings,

the DerSimonian-Laird procedure (DL) is the default method in many meta-analysis
software programs.

For the log-odds-ratio in particular, bias is a potential problem for both y and y~

because the Y and the siz are correlated: both are functions of Xy Ny X, and n..

Through its use of the data in a binomial likelihood, the mixed-effects logistic
regression model avoids the assumptions and approximations involved in the
common methods.

Meta-analysis of Rate Ratios Based on a Poisson Model

An alternative approach compares treatments on their rates of an ADE per 1000
person-years. Cooper et al. (2006) illustrate this approach in a Bayesian network
meta-analysis, using a random-effects Poisson regression model. The data for

treatmentj in trial i are the number of events, X, and the number of patient-years

of follow-up, tij . The model considers X, to be an observation from the Poisson



distribution with mean fLij, and it relates log(lij) to log(tij /1000) and parameters

for the log of the rate of an event on the base treatment in trial i and the trial-specific
log-rate-ratio of treatment j relative to the base treatment.

As Cooper et al. point out, the analysis of rates has the advantage of incorporating
the duration of the trials, and it also handles data that count multiple events per
patient. One can use this approach, however, only when the various trials report the
necessary data. For example, Granger et al. (2011) report the number of patients
with an event and the event rate (%/yr), from which one could estimate the number
of patient-years of follow-up (assuming that a patient’s contribution ends when the
patient has an event or is lost to follow-up or at the cutoff date for the analysis or at
end of the trial). Some trials, however, do not report the number of patient-years of
follow-up (or equivalent information). Interestingly, in a later paper Cooper et al.
(2009) use the odds ratio as the measure of effect.

Heterogeneity

Most published meta-analyses assess the heterogeneity of the trial-level estimates
Y, by using two statistics, Cochran’s Q and the related measure denoted by I2. As

defined earlier,

The customary test for heterogeneity refers Q to the chi-squared distribution on
k—1 degrees of freedom, making the assumption that Q follows that distribution
under the null hypothesis of no heterogeneity. Actually, however, the null
distribution of Q only approaches that chi-squared distribution as the sample sizes
of the trials become large (and criteria for “large” are not well established). If those
sample sizes are not large, the null distribution of Q is not well approximated by the
chi-squared distribution on k—1 degrees of freedom. Indeed, the null distribution
of Q differs substantially among measures of effect (so far, results are available for
only two measures besides log-odds-ratio). Hoaglin (2016) reviews results on the
behavior of Q. An important complication is that the null distributions involve
parameters that must be estimated from the data in each meta-analysis.

The difficulties of Q carry over to the heterogeneity measure I? (Higgins and
Thompson 2002), which is usually calculated from

I*= 100xmax{0,$}



and interpreted as the percentage of total variation in the estimates of treatment
effect that is due to heterogeneity among studies. That appealing interpretation,
however, overlooks the fact that, even if the null distribution of Q were chi-squared
on k-1 degrees of freedom, the probability of values exceeding the mean (k-1)
would not be small. For example, when k = 4, that probability is .392; and it
increases to .465 when k=30, to.481 when k=100, and to .5 in the limit (from the
normal approximation). That is, values of I? that would be interpreted as evidence
of heterogeneity are quite likely under the assumed chi-squared null distribution,
which corresponds to absence of heterogeneity (Hoaglin 2016).

Instead of using the mean as the threshold for positive values of I?, it might be
possible to choose a suitable quantile, substantially above the median; but adapting
I? to the correct null distribution of Q would still require a different expression for
each measure of effect, and the values of those expressions would have to be
calculated anew for each meta-analysis.
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