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S1. DERIVATION OF H

To evaluate Ω one can apply Stirling’s approximation for the factorial, i.e. m! ' mme−m (valid for sufficiently large
m), to each of the terms that appear in

Ω =
N !

n1!n2! · · ·nK !
. (S1)

This yields
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= eN lnN−
∑K

i=1 ni lnni = eN[−
∑K

i=1
ni
N (lnni−lnN)] = eNH , (S2)

where H is the entropy defined in Eq. (3) in the Main Text, i.e.

H = −
K∑
i=1

ni
N

ln
ni
N

, (S3)

and we used (twice) the fact that n1 + · · ·+ nK = N .

S2. H ≥ 0

Because
∑K
i=1 ni = N , the numbers {ni} on which the entropy H (Eq. (S3)) depends are such that 0 ≤ ni ≤ N

(or, equivalently, 0 ≤ (ni/N) ≤ 1) for each i. Therefore, ln(ni/N) ≤ 0 for each i, with the equality holding only when
ni = N . In turn, (ni/N) ln(ni/N) ≤ 0 for each i, with the equality holding only when ni = N or ni = 0. Hence

H = −
∑K
i=1(ni/N) ln(ni/N) ≥ 0, with H = 0 only for the arrangements with ni = N for some i and nj = 0 for each

j 6= i.

S3. THE MAXENT DISTRIBUTION ON {1, . . . ,K} UNDER A NORMALIZATION CONSTRAINT IS
UNIFORM

To find the distribution {pi} that maximizes the entropy as given in Eq. (4) in the Main Text, i.e.

H ≡ H[{pi}] = −
K∑
i=1

pi ln pi , (S4)
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subject to the constraint

K∑
i=1

pi = 1 (S5)

one can resort to the method of Lagrange multipliers [1], which for our purposes amounts to computing the variation
(derivative) of the function

F = H + α

K∑
i=1

pi (S6)

over pi, setting it to zero and isolating pi from the resulting expression. The first term in (S6) represents the function
to be optimized, while the second represents the quantity whose value is constrained (as we are considering a case
with the only constrained quantity given in (S5), a single extra term needs to be added to H). The constant α is
called a ‘Lagrange multiplier’, and its value has to be computed self-consistently from the constraint. With some
foresight, we write α as 1− lnZ with Z a constant. Differentiation of F over pi yields

δF = δ

[
−

N∑
i=1

pi ln pi + (1− lnZ)

K∑
i=1

pi

]
= [− ln pi − lnZ] δpi . (S7)

The above expression vanishes for pi = p?i ≡ 1/Z, which is the MaxEnt distribution we sought for. It remains to

evaluate Z. This is done from the condition
∑K
i=1 p

?
i = 1, which takes the form K/Z = 1. Hence we find Z = K,

and the MaxEnt distribution is finally given by p?i = 1/K for each i = 1, . . . ,K, i.e. by the uniform distribution on
{1, . . . ,K}.

S4. THE MAXENT DISTRIBUTION UNDER DIFFERENT CONSTRAINTS

Constrained mean. If, besides the normalization (S5), one is interested in constraining the mean of a certain
variable x that takes values xi in the K states (with i = 1, . . . ,K), one should impose an additional constraint on the
quantity

K∑
i=1

xipi = x . (S8)

Proceeding as above, the function F now reads

F = H + (1− lnZ)

K∑
i=1

pi + β

K∑
i=1

xipi , (S9)

with β the Lagrange multiplier associated to (S8). Differentiation now gives

δF = [− ln pi − lnZ + βxi] δpi , (S10)

whence the MaxEnt distribution

p?i =
1

Z
eβxi (S11)

follows. In this case, p?i is exponential. As before, the Lagrange multiplies Z is fixed by the condition
∑K
i=1 p

?
i = 1 to

Z =
∑K
i=1 e

βxi . β, on the other hand, should be determined from the requirement that

K∑
i=1

xip
?
i = x . (S12)

Constrained mean and second moment. In order to impose, together with (S5) and (S8), an additional
constraint on the second moment of x, i.e. on

K∑
i=1

x2i pi = x2 , (S13)
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one should differentiate the function

F = H + (1− lnZ)

K∑
i=1

pi + β

K∑
i=1

xipi + γ

K∑
i=1

x2i pi . (S14)

It turns out that the MaxEnt distribution has a Gaussian form, namely

p?i =
1

Z
eβxi+γx

2
i , (S15)

where the three Lagrange multipliers Z, β and γ have to be determined from the three conditions

K∑
i=1

p?i = 1 ,

K∑
i=1

xip
?
i = x ,

K∑
i=1

x2i p
?
i = x2 . (S16)

Constrained mean of the logarithm. Finally, we impose (S5) together with a constraint on the mean value of
the logarithm of x, namely

K∑
i=1

pi lnxi = lnx . (S17)

Differentiating

F = H + (1− lnZ)

K∑
i=1

pi + γ

K∑
i=1

pi lnxi , (S18)

one finds

p?i =
xγi
Z

. (S19)

In other terms, the MaxEnt distribution is in this case a power law. Again, the Lagrange multipliers Z and γ have to
be determined from the constraints

K∑
i=1

p?i = 1 ,

K∑
i=1

p?i lnxi = lnx . (S20)

S5. MAXIMUM ENTROPY INFERENCE IN A COMPLEX SETTING: PAIRWISE MAXENT
DISTRIBUTIONS

Based on the examples discussed in the previous section, the least biased distribution p(x) compatible with the
empirical constraints is found by differentiating the function

F = H + (1− lnZ)
∑
x

p(x) +

R∑
i=1

βi
∑
x

xip(x) +
∑
i≤j

γij
∑
x

xixjp(x) (S21)

with respect to p(x), where H is the entropy defined in Eq. (6) in the Main Text, namely

H = −
∑
x

p(x) ln p(x) . (S22)

Note that we have introduced one Lagrange multiplier for the constraints enforcing normalization (i.e.
∑

x p(x) = 1;
this requires one multiplier denoted by Z), mean (i.e.

∑
x xip(x) = xi for all i; this requires one multiplier for each

i, hence R in total, denoted by βi with i = 1, . . . , R) and correlations (i.e.
∑

x xixjp(x) = xixj for all i and j; this
requires one multiplier for each pair (i, j) with i ≤ j, hence R(R + 1)/2 in total denoted by γij). This results in the
MaxEnt distribution

p?(x) =
1

Z
e
∑R

i=1 βixi+
∑

i≤j γijxixj . (S23)
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Again, the total number of parameters to be determined matches that of constraints, and the values of the 1 + R +
R(R+ 1)/2 Lagrange multipliers are to be determined from the 1 +R+R(R+ 1)/2 conditions∑

x

p?(x) = 1 ,
∑
x

xip
?(x) = xi ,

∑
x

xixjp
?(x) = xixj . (S24)

When the xi?s are continuous variables ranging from −∞ to +∞ one can directly relate Lagrange multipliers to the
inverse of the correlation matrix, as shown e.g. in [2]. In this so-called ‘mean-field’ case, Eq. (S23) is a multivariate
Gaussian. In general, though, when R is large and data are taken from experiments, this problem can only be solved in
silico. As this can prove to be a daunting task, several methods have been developed to achieve an efficient numerical
solution (see e.g. [3] for a recent comprehensive review).

S6. ENTROPY MAXIMIZATION IN METABOLIC NETWORKS SUBJECT TO CONSTRAINED
MEAN GROWTH RATE

The MaxEnt distribution of flux patterns constrained by the empirical mean growth rate λ is found by differentiating
the function

F = H + (1− lnZ)
∑
v

p(v) + β
∑
v

λ(v)p(v) , (S25)

where

H = −
∑
v

p(v) ln p(v) (S26)

is the entropy, in full analogy with (S9). One gets

p?(v) =
1

Z
eβλ(v) . (S27)

The restriction to the polytope of solutions can be applied straightforwardly by imposing that configurations v satisfy
the mass balance conditions Sv = 0 (viz. Eq. (21) in the Main Text) with the prescribed bounds of variability on
each flux, i.e.

p?(v) =

{
1
Z e

βλ(v) if Sv = 0 ,

0 otherwise .
(S28)

The values of Z and β have to be determined from the conditions∑
v

p?(v) = 1 , (S29)∑
v

p?(v)λ(v) = λ . (S30)

Alternatively, one can add an extra constraint in (S25) enforcing that, for each v, Sv = 0. The value of Z is
automatically set by (S29) to Z =

∑
v e

βλ(v) (where the sum is over flux vectors such that Sv = 0), so that (S28)
ultimately depends on a single parameter, i.e. β.

[1] Bertsekas, D.P., 2014. Constrained optimization and Lagrange multiplier methods (Academic Press).
[2] Stein, R.R., Marks, D.S. and Sander, C., 2015. Inferring pairwise interactions from biological data using maximum-entropy

probability models. PLoS Comp Biol, 11(7), e1004182. doi:10.1371/journal.pcbi.1004182
[3] Nguyen, H.C., Zecchina, R. and Berg, J., 2017. Inverse statistical problems: from the inverse Ising problem to data science.

Adv Phys, 66(3), 197-261. doi:10.1080/00018732.2017.1341604

http://dx.doi.org/10.1371/journal.pcbi.1004182
http://dx.doi.org/10.1080/00018732.2017.1341604

	An introduction to the Maximum Entropy approach and its application to inference problems in biology SUPPORTING MATERIAL
	Derivation of H
	H0
	The MaxEnt distribution on {1,…,K} under a normalization constraint is uniform
	The MaxEnt distribution under different constraints
	Maximum entropy inference in a complex setting: pairwise MaxEnt distributions
	Entropy maximization in metabolic networks subject to constrained mean growth rate
	References


