An introduction to the Maximum Entropy approach and its application to inference problems
in biology
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S1. DERIVATION OF H

To evaluate ) one can apply Stirling’s approximation for the factorial, i.e. m! ~ m™e™™

m), to each of the terms that appear in

(valid for sufficiently large

Q= — . (S1)
This yields
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where H is the entropy defined in Eq. (3) in the Main Text, i.e.
Ko o
H=- —ln— S3
izzl N n N ’ ( )
and we used (twice) the fact that n; +--- +nxg = N.
S2. H>0

Because Zf; n; = N, the numbers {n;} on which the entropy H (Eq. (S3)) depends are such that 0 < n; < N
(or, equivalently, 0 < (n;/N) < 1) for each ¢. Therefore, In(n;/N) < 0 for each i, with the equality holding only when
n; = N. In turn, (n;/N)In(n;/N) < 0 for each 4, with the equality holding only when n; = N or n, = 0. Hence
H=- Zfil(n,/N) In(n;/N) > 0, with H = 0 only for the arrangements with n; = N for some ¢ and n; = 0 for each
J#i.

S3. THE MAXENT DISTRIBUTION ON {1,...,K} UNDER A NORMALIZATION CONSTRAINT IS
UNIFORM

To find the distribution {p;} that maximizes the entropy as given in Eq. (4) in the Main Text, i.e.

K
H=H[{p:}] = —sz‘ Inp; , (54)
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subject to the constraint

sz' =1 (S5)

one can resort to the method of Lagrange multipliers [1], which for our purposes amounts to computing the variation
(derivative) of the function

K
F=H+a2pi (56)

=1

over p;, setting it to zero and isolating p; from the resulting expression. The first term in (S6) represents the function
to be optimized, while the second represents the quantity whose value is constrained (as we are considering a case
with the only constrained quantity given in (S5), a single extra term needs to be added to H). The constant « is
called a ‘Lagrange multiplier’, and its value has to be computed self-consistently from the constraint. With some
foresight, we write o as 1 — In Z with Z a constant. Differentiation of F' over p; yields

N K
OF =0 —Zpilnpi—l—(l—an)Zpi =[-Inp; —InZ]ép; . (S7)
i=1 i=1

The above expression vanishes for p; = pf = 1/Z, which is the MaxEnt distribution we sought for. It remains to

evaluate Z. This is done from the condition Zszl pry = 1, which takes the form K/Z = 1. Hence we find Z = K,
and the MaxEnt distribution is finally given by p} = 1/K for each i = 1,..., K, i.e. by the uniform distribution on
{1,...,K}.

S4. THE MAXENT DISTRIBUTION UNDER DIFFERENT CONSTRAINTS

Constrained mean. If, besides the normalization (S5), one is interested in constraining the mean of a certain
variable x that takes values z; in the K states (with i = 1,..., K), one should impose an additional constraint on the
quantity

K
i=1

Proceeding as above, the function F' now reads

K K
F:HJr(l*an)ZpiJr,BZIipi s (89)

=1 =1

with 8 the Lagrange multiplier associated to (S8). Differentiation now gives

0F = [—Inp;, —InZ + Bx;) dpi (S10)
whence the MaxEnt distribution
1
o= e (s11)

follows. In this case, p} is exponential. As before, the Lagrange multiplies Z is fixed by the condition Zfil py=1to
Z = Zf; eB%i. 3, on the other hand, should be determined from the requirement that

S apl =T . (S12)

Constrained mean and second moment. In order to impose, together with (S5) and (S8), an additional
constraint on the second moment of x, i.e. on

Z xip; = a? | (S13)



one should differentiate the function
K K K
F=H+(1—1nz)2pi+52$¢pi+72$5pi : (S14)
i=1 i=1 i=1
It turns out that the MaxEnt distribution has a Gaussian form, namely
l 6ﬁ$i+’ﬂ?

p; = : (S15)

where the three Lagrange multipliers Z, 8 and v have to be determined from the three conditions

K K K o
Zp;‘ =1 Za:ipf =z Zatfp;‘ =2z? . (516)
i=1 i=1 i=1

Constrained mean of the logarithm. Finally, we impose (S5) together with a constraint on the mean value of
the logarithm of x, namely

K
Zpi Inz; =Inz . (S17)
i=1
Differentiating
K K
F=H+(1-Z)Y pi+7Y pilnz; , (S18)
i=1 i=1
one finds
.
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In other terms, the MaxEnt distribution is in this case a power law. Again, the Lagrange multipliers Z and v have to
be determined from the constraints

K K
Zp?zl , Zpi*ln:vi:m . (S20)
i=1 i=1

S5. MAXIMUM ENTROPY INFERENCE IN A COMPLEX SETTING: PAIRWISE MAXENT
DISTRIBUTIONS

Based on the examples discussed in the previous section, the least biased distribution p(x) compatible with the
empirical constraints is found by differentiating the function

R
F=H+(1-InZ) ZP(X) + Z Bi Z zip(x) + Z%‘j Z z;x;p(X) (S21)
X i=1 x i<j X
with respect to p(x), where H is the entropy defined in Eq. (6) in the Main Text, namely

H=-> px)npx) . (S22)

Note that we have introduced one Lagrange multiplier for the constraints enforcing normalization (i.e. > p(x) = 1;
this requires one multiplier denoted by Z), mean (i.e. > x;p(x) = Z; for all 4; this requires one multiplier for each
i, hence R in total, denoted by §; with ¢ = 1,..., R) and correlations (i.e. > x;x;p(x) = Z;z; for all i and j; this
requires one multiplier for each pair (7,7) with ¢ < j, hence R(R + 1)/2 in total denoted by ~;;). This results in the
MaxEnt distribution

1
Pr(x) = 7 eict Bimit i< vigwins (S23)



Again, the total number of parameters to be determined matches that of constraints, and the values of the 1 + R +
R(R + 1)/2 Lagrange multipliers are to be determined from the 1 + R+ R(R + 1)/2 conditions

Zp*(x) =1 Zzip*(x) =7 insz*(x) =7T,T; . (S24)

When the z;7s are continuous variables ranging from —oo to 400 one can directly relate Lagrange multipliers to the
inverse of the correlation matrix, as shown e.g. in [2]. In this so-called ‘mean-field’ case, Eq. (S23) is a multivariate
Gaussian. In general, though, when R is large and data are taken from experiments, this problem can only be solved in
silico. As this can prove to be a daunting task, several methods have been developed to achieve an efficient numerical
solution (see e.g. [3] for a recent comprehensive review).

S6. ENTROPY MAXIMIZATION IN METABOLIC NETWORKS SUBJECT TO CONSTRAINED
MEAN GROWTH RATE

The MaxEnt distribution of flux patterns constrained by the empirical mean growth rate \ is found by differentiating
the function

F=H+(1-12)) p(v)+B8> Av)p(v) , (S25)
where

H=—3 p(v)Inp(v) (826)
is the entropy, in full analogy with (S9). One gets

* 1 v
p(v) = 7 PV (S27)

The restriction to the polytope of solutions can be applied straightforwardly by imposing that configurations v satisfy
the mass balance conditions Sv = 0 (viz. Eq. (21) in the Main Text) with the prescribed bounds of variability on
each flux, i.e.

L eBAV) if -
P (v) = {Ze Sv=0, (S28)

0 otherwise .

The values of Z and g have to be determined from the conditions
dorv)=1, (529)
Zp*(v))\(v) =\ . (S30)

Alternatively, one can add an extra constraint in (S25) enforcing that, for each v, Sv =0. The value of Z is
automatically set by (S29) to Z = 3" e V) (where the sum is over flux vectors such that Sv = 0), so that (S28)
ultimately depends on a single parameter, i.e. (.
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