An introduction to the Maximum Entropy approach and its application to inference problems in biology

SUPPORTING MATERIAL

Andrea De Martino^{1, 2, *} and Daniele De Martino³

¹Soft & Living Matter Lab, Institute of Nanotechnology (NANOTEC), Consiglio Nazionale delle Ricerche, Rome (Italy) ² Italian Institute for Genomic Medicine (IIGM), Turin (Italy) ³Institute of Science and Technology Austria, Klosterneuburg (Austria)

S1. DERIVATION OF H

To evaluate Ω one can apply Stirling's approximation for the factorial, i.e. $m! \simeq m^m e^{-m}$ (valid for sufficiently large m), to each of the terms that appear in

$$
\Omega = \frac{N!}{n_1! n_2! \cdots n_K!} \quad . \tag{S1}
$$

This yields

$$
\Omega \simeq \frac{N^N e^{-N}}{n_1^{n_1} \cdots n_K^{n_K} e^{-(n_1 + \cdots + n_K)}} = \frac{N^N}{n_1^{n_1} \cdots n_K^{n_K}} = e^{\ln(N^N) - \ln(n_1^{n_1} \cdots n_K^{n_K})}
$$

= $e^{N \ln N - \sum_{i=1}^K n_i \ln n_i} = e^{N \left[-\sum_{i=1}^K \frac{n_i}{N} (\ln n_i - \ln N) \right]} = e^{NH} ,$ (S2)

where H is the entropy defined in Eq. (3) in the Main Text, i.e.

$$
H = -\sum_{i=1}^{K} \frac{n_i}{N} \ln \frac{n_i}{N} \quad , \tag{S3}
$$

and we used (twice) the fact that $n_1 + \cdots + n_K = N$.

S2. $H \geq 0$

Because $\sum_{i=1}^{K} n_i = N$, the numbers $\{n_i\}$ on which the entropy H (Eq. [\(S3\)](#page-0-1)) depends are such that $0 \leq n_i \leq N$ (or, equivalently, $0 \leq (n_i/N) \leq 1$) for each i. Therefore, $\ln(n_i/N) \leq 0$ for each i, with the equality holding only when $n_i = N$. In turn, $(n_i/N) \ln(n_i/N) \leq 0$ for each i, with the equality holding only when $n_i = N$ or $n_i = 0$. Hence $H = -\sum_{i=1}^{K} (n_i/N) \ln(n_i/N) \ge 0$, with $H = 0$ only for the arrangements with $n_i = N$ for some i and $n_j = 0$ for each $j \neq i$.

S3. THE MAXENT DISTRIBUTION ON $\{1, \ldots, K\}$ UNDER A NORMALIZATION CONSTRAINT IS UNIFORM

To find the distribution $\{p_i\}$ that maximizes the entropy as given in Eq. (4) in the Main Text, i.e.

$$
H \equiv H[\{p_i\}] = -\sum_{i=1}^{K} p_i \ln p_i \quad , \tag{S4}
$$

[∗] Corresponding author; email: andrea.demartino@roma1.infn.it

subject to the constraint

$$
\sum_{i=1}^{K} p_i = 1\tag{S5}
$$

one can resort to the method of Lagrange multipliers [\[1\]](#page-3-0), which for our purposes amounts to computing the variation (derivative) of the function

$$
F = H + \alpha \sum_{i=1}^{K} p_i
$$
 (S6)

over p_i , setting it to zero and isolating p_i from the resulting expression. The first term in $(S6)$ represents the function to be optimized, while the second represents the quantity whose value is constrained (as we are considering a case with the only constrained quantity given in [\(S5\)](#page-1-1), a single extra term needs to be added to H). The constant α is called a 'Lagrange multiplier', and its value has to be computed self-consistently from the constraint. With some foresight, we write α as $1 - \ln Z$ with Z a constant. Differentiation of F over p_i yields

$$
\delta F = \delta \left[-\sum_{i=1}^{N} p_i \ln p_i + (1 - \ln Z) \sum_{i=1}^{K} p_i \right] = \left[-\ln p_i - \ln Z \right] \delta p_i \quad . \tag{S7}
$$

The above expression vanishes for $p_i = p_i^* \equiv 1/Z$, which is the MaxEnt distribution we sought for. It remains to evaluate Z. This is done from the condition $\sum_{i=1}^{K} p_i^* = 1$, which takes the form $K/Z = 1$. Hence we find $Z = K$, and the MaxEnt distribution is finally given $\overline{by} p_i^* = 1/K$ for each $i = 1, ..., K$, i.e. by the uniform distribution on $\{1, \ldots, K\}.$

S4. THE MAXENT DISTRIBUTION UNDER DIFFERENT CONSTRAINTS

Constrained mean. If, besides the normalization [\(S5\)](#page-1-1), one is interested in constraining the mean of a certain variable x that takes values x_i in the K states (with $i = 1, ..., K$), one should impose an additional constraint on the quantity

$$
\sum_{i=1}^{K} x_i p_i = \overline{x} \quad . \tag{S8}
$$

Proceeding as above, the function F now reads

$$
F = H + (1 - \ln Z) \sum_{i=1}^{K} p_i + \beta \sum_{i=1}^{K} x_i p_i , \qquad (S9)
$$

with β the Lagrange multiplier associated to [\(S8\)](#page-1-2). Differentiation now gives

$$
\delta F = \left[-\ln p_i - \ln Z + \beta x_i \right] \delta p_i \quad , \tag{S10}
$$

whence the MaxEnt distribution

$$
p_i^* = \frac{1}{Z} e^{\beta x_i} \tag{S11}
$$

follows. In this case, p_i^* is exponential. As before, the Lagrange multiplies Z is fixed by the condition $\sum_{i=1}^K p_i^* = 1$ to $Z = \sum_{i=1}^{K} e^{\beta x_i}$. β , on the other hand, should be determined from the requirement that

$$
\sum_{i=1}^{K} x_i p_i^* = \overline{x} \quad . \tag{S12}
$$

Constrained mean and second moment. In order to impose, together with [\(S5\)](#page-1-1) and [\(S8\)](#page-1-2), an additional constraint on the second moment of x , i.e. on

$$
\sum_{i=1}^{K} x_i^2 p_i = \overline{x^2} \quad , \tag{S13}
$$

one should differentiate the function

$$
F = H + (1 - \ln Z) \sum_{i=1}^{K} p_i + \beta \sum_{i=1}^{K} x_i p_i + \gamma \sum_{i=1}^{K} x_i^2 p_i
$$
 (S14)

It turns out that the MaxEnt distribution has a Gaussian form, namely

$$
p_i^* = \frac{1}{Z} e^{\beta x_i + \gamma x_i^2} \quad , \tag{S15}
$$

where the three Lagrange multipliers Z , β and γ have to be determined from the three conditions

$$
\sum_{i=1}^{K} p_i^* = 1 \qquad , \qquad \sum_{i=1}^{K} x_i p_i^* = \overline{x} \qquad , \qquad \sum_{i=1}^{K} x_i^2 p_i^* = \overline{x^2} \quad . \tag{S16}
$$

Constrained mean of the logarithm. Finally, we impose [\(S5\)](#page-1-1) together with a constraint on the mean value of the logarithm of x , namely

$$
\sum_{i=1}^{K} p_i \ln x_i = \overline{\ln x} \quad . \tag{S17}
$$

Differentiating

$$
F = H + (1 - \ln Z) \sum_{i=1}^{K} p_i + \gamma \sum_{i=1}^{K} p_i \ln x_i , \qquad (S18)
$$

one finds

$$
p_i^* = \frac{x_i^{\gamma}}{Z} \tag{S19}
$$

In other terms, the MaxEnt distribution is in this case a power law. Again, the Lagrange multipliers Z and γ have to be determined from the constraints

$$
\sum_{i=1}^{K} p_i^* = 1 \qquad , \qquad \sum_{i=1}^{K} p_i^* \ln x_i = \overline{\ln x} \quad . \tag{S20}
$$

S5. MAXIMUM ENTROPY INFERENCE IN A COMPLEX SETTING: PAIRWISE MAXENT DISTRIBUTIONS

Based on the examples discussed in the previous section, the least biased distribution $p(x)$ compatible with the empirical constraints is found by differentiating the function

$$
F = H + (1 - \ln Z) \sum_{\mathbf{x}} p(\mathbf{x}) + \sum_{i=1}^{R} \beta_i \sum_{\mathbf{x}} x_i p(\mathbf{x}) + \sum_{i \le j} \gamma_{ij} \sum_{\mathbf{x}} x_i x_j p(\mathbf{x})
$$
(S21)

with respect to $p(x)$, where H is the entropy defined in Eq. (6) in the Main Text, namely

$$
H = -\sum_{\mathbf{x}} p(\mathbf{x}) \ln p(\mathbf{x}) \quad . \tag{S22}
$$

Note that we have introduced one Lagrange multiplier for the constraints enforcing normalization (i.e. $\sum_{\mathbf{x}} p(\mathbf{x}) = 1$; this requires one multiplier denoted by Z), mean (i.e. $\sum_{\mathbf{x}} x_i p(\mathbf{x}) = \overline{x_i}$ for all *i*; this requires one multiplier for each *i*, hence R in total, denoted by β_i with $i = 1, ..., R$ and correlations (i.e. $\sum_{\mathbf{x}} x_i x_j p(\mathbf{x}) = \overline{x_i x_j}$ for all *i* and *j*; this requires one multiplier for each pair (i, j) with $i \leq j$, hence $R(R + 1)/2$ in total denoted by γ_{ij}). This results in the MaxEnt distribution

$$
p^{\star}(\mathbf{x}) = \frac{1}{Z} e^{\sum_{i=1}^{R} \beta_i x_i + \sum_{i \le j} \gamma_{ij} x_i x_j} .
$$
 (S23)

Again, the total number of parameters to be determined matches that of constraints, and the values of the $1 + R +$ $R(R+1)/2$ Lagrange multipliers are to be determined from the $1 + R + R(R+1)/2$ conditions

$$
\sum_{\mathbf{x}} p^{\star}(\mathbf{x}) = 1 \quad , \quad \sum_{\mathbf{x}} x_i p^{\star}(\mathbf{x}) = \overline{x_i} \quad , \quad \sum_{\mathbf{x}} x_i x_j p^{\star}(\mathbf{x}) = \overline{x_i x_j} \quad . \tag{S24}
$$

When the x_i ?s are continuous variables ranging from $-\infty$ to $+\infty$ one can directly relate Lagrange multipliers to the inverse of the correlation matrix, as shown e.g. in [\[2\]](#page-3-1). In this so-called 'mean-field' case, Eq. [\(S23\)](#page-2-0) is a multivariate Gaussian. In general, though, when R is large and data are taken from experiments, this problem can only be solved in silico. As this can prove to be a daunting task, several methods have been developed to achieve an efficient numerical solution (see e.g. [\[3\]](#page-3-2) for a recent comprehensive review).

S6. ENTROPY MAXIMIZATION IN METABOLIC NETWORKS SUBJECT TO CONSTRAINED MEAN GROWTH RATE

The MaxEnt distribution of flux patterns constrained by the empirical mean growth rate $\overline{\lambda}$ is found by differentiating the function

$$
F = H + (1 - \ln Z) \sum_{\mathbf{v}} p(\mathbf{v}) + \beta \sum_{\mathbf{v}} \lambda(\mathbf{v}) p(\mathbf{v}) , \qquad (S25)
$$

where

$$
H = -\sum_{\mathbf{v}} p(\mathbf{v}) \ln p(\mathbf{v}) \tag{S26}
$$

is the entropy, in full analogy with [\(S9\)](#page-1-3). One gets

$$
p^{\star}(\mathbf{v}) = \frac{1}{Z} e^{\beta \lambda(\mathbf{v})} \quad . \tag{S27}
$$

The restriction to the polytope of solutions can be applied straightforwardly by imposing that configurations \bf{v} satisfy the mass balance conditions $Sv = 0$ (viz. Eq. (21) in the Main Text) with the prescribed bounds of variability on each flux, i.e.

$$
p^{\star}(\mathbf{v}) = \begin{cases} \frac{1}{Z} e^{\beta \lambda(\mathbf{v})} & \text{if } \mathbf{S} \mathbf{v} = \mathbf{0} \\ 0 & \text{otherwise} \end{cases},
$$
 (S28)

The values of Z and β have to be determined from the conditions

$$
\sum_{\mathbf{v}} p^{\star}(\mathbf{v}) = 1 \quad , \tag{S29}
$$

$$
\sum_{\mathbf{v}} p^{\star}(\mathbf{v}) \lambda(\mathbf{v}) = \overline{\lambda} \quad . \tag{S30}
$$

Alternatively, one can add an extra constraint in [\(S25\)](#page-3-3) enforcing that, for each v, $Sv = 0$. The value of Z is automatically set by [\(S29\)](#page-3-4) to $Z = \sum_{\mathbf{v}} e^{\beta \lambda(\mathbf{v})}$ (where the sum is over flux vectors such that $Sv = 0$), so that [\(S28\)](#page-3-5) ultimately depends on a single parameter, i.e. β .

^[1] Bertsekas, D.P., 2014. Constrained optimization and Lagrange multiplier methods (Academic Press).

^[2] Stein, R.R., Marks, D.S. and Sander, C., 2015. Inferring pairwise interactions from biological data using maximum-entropy probability models. PLoS Comp Biol, 11(7), e1004182. [doi:10.1371/journal.pcbi.1004182](http://dx.doi.org/10.1371/journal.pcbi.1004182)

^[3] Nguyen, H.C., Zecchina, R. and Berg, J., 2017. Inverse statistical problems: from the inverse Ising problem to data science. Adv Phys, 66(3), 197-261. [doi:10.1080/00018732.2017.1341604](http://dx.doi.org/10.1080/00018732.2017.1341604)