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Supporting Information 

  



S.I. 1 Optical setup 

 

Sketches of the optical setups for the white light and fluorescence images:  

 
Fig S.I. 1.1 Sketches of the optical setups for the white light and fluorescence images. The components 

are: 

- Laser Ti:Sa; Coherent-Mira 900f  

- Objectives: 60× Olympus LUCPLAN FLN; n.a.0.7 and 60× water  immersion Olympus 

LUMPLFLN-W; n.a.=1 

- White Led: MWWHL3 from Thorlabs  

- Cube beam splitter non pol. 50/50 -- Zess fluorescence cube n°9  

- Short pass filter: SPF650 from Thorlabs 

- Camera CCD, Hamamatsu Orca R2 

  



S.I. 2 Trapping of objects during the rapid expansion of the bubble 

It is well known that colloidal particles and bacterial strains are inclined to be trapped at air-water 

interface.
1,2

 Interfacial accumulation of colloidal particles results from surface tension effects. In fact, 

as far as two liquids or fluids are immiscible, it is thermodynamically favorable for a particle to adsorb 

to the interface, no matter whether the particle is hydrophobic or hydrophilic (although hydrophobic 

interactions promote the accumulation).
1,2

 Once a particle has been located at an infinitely large 

interface, the energy gain is: 

ΔE � �πr��γ
��cos θ � 1�� 

Where r� is the radius of particle, γ
� the interfacial energy of water-air interface, θ is the wetting 

angle of the particle. In the particular case of a micrometer sized expanding bubble, there are three 

forces at play, namely the component of surface tension force along the radius of the bubble, Fs, 

Laplace pressure force from inside the bubble, Fp, and drag force Fd.  

 

Figure S.I. 2.1: Sketch of the particle located at the bubble interface between air and water. Where r� is 

the radius of particle, Fs is the component of surface tension force along the radius of the bubble, Fp 

represent the  Laplace pressure force from inside the bubble and Fd the drag force. 



At the equilibrium we have the condition Fs+Fp+Fd=0. From Laplace pressure, it can be shown 
3,4

 that 

F� � �	����
�� �r� sin α��, while  

F � 2	πγ
�r� sin α sin�|α � θ|� 

with R$ bubble radius and α the half angle between the particle’s center and particle-liquid-gas line of 

contact. The drag force Fd due to rapid bubble expansion can be calculated from Stokes' law F% �
6πηr�v where η is the viscosity of water, and v is the relative velocity between the particle and the 

fluid. Considering values r� ≈ 2 ∙ 10,-m, v ≈ 100μm/s and R$ ≈ 10,1m from our experiments, it 

results that F% ≈ 4 ∙ 10,34N, significantly smaller than the Laplace pressure force F� ≈ 1.8 ∙ 10,8N 

and surface tension force F .Therefore the equilibrium is given by the condition: 

9:
9; � ��

�
 <=�|>,?|�

 <=>  = 1 

The Laplace pressure force Fp pushes the particle out of the bubble and the surface tension force Fs acts 

as a restoring force directed toward the center of the bubble bringing the particle back in equilibrium. 

For a very large bubble radius R$, when also the Laplace pressure can be neglected (F� � 0), the radial 

component of surface force F � 0 and α � θ.  

As explained above, the drag force F% cannot contribute to the detachment of particles, while it actually 

contributes to the accumulation. In fact in the case of a static interface, accumulation of particles is 

mainly a diffusion-limited process, depending on the particle arrival rate at interface. In the presence of 

a moving interface, as the case of a rapidly expanding bubble investigated in this manuscript, the 

particle arrival rate is strongly increased. The effectiveness in trapping particles increases with the 

bubble expansion velocity v@ and particle radius r�.  



 

Figure S.I. 3.2: Sketch of the bubble expanding at constant velocity v@ with radius R�t� and a particle at 

position r respect to the centre of the bubble. 

Let’s now consider a bubble expanding at constant velocity v@ with radius R�t� � v@t and a particle at 

position r respect to the centre of the bubble (figure S.I. 3.2), from the mass conservation law, the 

velocity field around the bubble decays as r,� and has the general form u�r, t� � D��E�F G� v@	. If we 

assume that the particle is subject only to Stokes forces FH � 6πηr��u�r, t� � rI� with η dynamic 

viscosity, r�	and	rI particle radius and velocity, the equation of motion of the particle can be written as: 

m	rJ � 6πηr� KLR�t�r M� v@ � rIN 

To evaluate the dynamics of particles in the proximity of expanding bubble, we can assume r ≈ R�t�, 
and the equation simplifies to 	OJ � P�QR �	OI� where a � T�UF;

V . The solution is: 

r�t� ≈ 	 v@t � v@a + r�0� 

where r�0� is the particle position at t=0. 



For the rapidly expanding bubble to reach and trap the particle R�t� � v@t > r�t�, that leads to the 

simple relation r�0� < Z[
� � �Z[\F;]

8U � rEF��. Particles below	rEF��are reached and trapped, while above 

rEF�� they are accelerated to v@.  

 

S.I. 3 Analytical simulation details  

To simulate numerically the collapse of a gas bubble in liquid water and the fluid flows in vicinity of 

a micrometer sized structure, we use the classical equations of fluid dynamics coupled to the “level set 

method” for the dynamics of interface implemented in the “OpenFoam free CFD Software”. We 

perform two dimensional simulations assuming the liquid to be an incompressible Newtonian fluid and 

take into account instead of the compressibility of the gas in the bubble by regulating the bubble 

pressure in agreement to the ideal gas law, once fixed initial external pressure P_`E, bubble pressure Pa 

and volume Va.  

The initial bubble radius is	ra � 3μm, the antenna and deflecting wall are both 4μm high. We 

initially set the system at equilibrium with Pa � d
Fe + P_`E satisfying Laplace equation. The bubble 

collapse is obtained by increasing the external pressure P_`E through a step function. The equilibrium 

radius r�t�	is then obtained from relation Pa Fe]
F�E�] � d

F�E� + P_`E.  
The water-air surface tension is taken as σ � 0.073N/m and the wetting angle of the fluid on the 

nanostructure is fixed to θ � π/3.  

To solve the model equations, the global computational domain has been meshed by 12000 elements 

approximately. 



 

Figure S.I. 3.1: From left to right time laps of the bubble collapse as reconstruct by the 2D analytical 

simulation. The complete sequence can be seen in the video: SI_video4_AVI. 
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