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A Derivatives of eigenvectors

The differentiation of the matrix diagonalization DTAD = Λ is implemented in several

libraries as an elementary operation. In the following derivations, we provide a broad outline

of the methods and their limitations in differentiating matrix diagonalization for forward and

backward modes. For further detail, we refer to Refs.1–4

In the case of backward mode, the adjoint of eigenvectors A can be obtained by implicitly
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differentiating the eigenvalue problem, resulting in the following expression

A =
(
D−1

)T (
Λ + F ◦DTD

)
DT , (1)

where F is zero along the diagonal and Fij = (λj − λi)−1 for i 6= j. Note that Fij diverges

for repeated eigenvalues. Therefore, we cannot use backward differentiation for systems with

degenerate molecular orbitals.

In the case of forward mode, one method to compute the derivatives Ḋ is by finding the

appropriate matrix C, such that,

Ḋ = DC. (2)

For non-degenerate eigenvalues, C can be obtained by

cij =
DT

i ȦDj

2(λi − λj)
i 6= j and cii = −1.0

Dii

n∑
m

Dimcmi . (3)

It is possible to extend this approach to the degenerate case though this requires calculations

of higher order derivatives

cij =
DT

i A
′′Dj

2(λ̇ii − ˙λjj)
. (4)

In cases in which derivatives of eigenvectors are repeated, there is a similar expression that

again requires computing derivatives of the next order. This procedure needs to be repeated

up to the point in which all diagonal terms on the nth order derivatives of eigenvalues

are distinct. As a result, such implementation will require computations of higher-order

derivatives as well as a case-by-case analysis depending on the problem at hand.

An alternative algorithm was proposed by Walter et al.2 which has been implemented

in the the Python library Algopy .5 This library utilizes the univariate Taylor polynomial

arithmetic6,7 to compute higher-order derivatives and applies a general algorithm for the

eigenvalue problem. This formalism offers a scheme to compute higher order derivatives of
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explicit and implicit functions. For each dependent and independent variable, there is a Tay-

lor polynomial whose coefficients correspond to the value of the variable and its derivatives.

With these, we can construct a system of equations that contains different differentiation

order to compute the coefficients of the polynomial corresponding to the dependent variable.

The set of equations is solved by using the the Newton-Hensel lifting method, also called

Newton’s method.6 In our specific case, to cover the degenerate case, these set of equations

are computed systematically by blocks of D and Λ of the same eigenvalue or derivative.

B Univariate Taylor Arithmetic

Forward differentiation can be formulated with the Taylor ring arithmetic.6 This arithmetic

allows us to implicitly differentiate a function and compute higher order derivatives. In the

following, consider a function y(t) = F (x(t)) where F : Rn 7−→ Rm, for a given smooth curve

x(t) =
D−1∑
d=0

xdt
d (5)

with t ∈ (−ε, ε). Using Taylor’s theorem we obtain

y(t) =
D−1∑
d=0

ydt
d +O(tD) (6)

where

yd :=
1

d

∂d

∂td
x(t)|t=0 (7)

In this form the coefficients RD×n included in x(t) are mapped to the coefficients RD×m

yielding a approximate expression for y(t). Note that these sets of polynomials defined by

Pd =

{
x(t) =

d−1∑
j=0

xjt
j

∣∣∣∣∣xj ∈ R

}
(8)
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form a commutative ring for every order d > 0. This allows us to obtain Taylor polyno-

mials from the binary operations of addition, multiplications and subtraction operations.

Furthermore, we can apply the rules of multivariate calculus to any continuous and d-time

differentiable function F . These functions and their derivatives can be mapped to their

corresponding Taylor coefficients with the extension function ED(F ), ED(F ) : Pn
D 7−→ Pm

D ,

defined by,

[y]D = ED(F )([x])D =
D−1∑
d=0

ydt
d

=
D−1∑
d=0

1

d!

∂d

∂dt d
F

(
D−1∑
d=0

xdt
d

)∣∣∣∣∣
t=0

T d (9)

with [x]D ≡ [x0, x1, ..., xD−1] and [x]d:D ≡ [xd, x1, ..., xD−1]. Furthermore, this extended

function follows the rules of composite functions, F (x) = (H ◦G)(x) such that,

ED(F ) = ED(H) ◦ ED(G).

This relation sets the foundation for forward differentiation that allows us to use the chain

rule with a set of elementary operations. Furthermore, we can extend this formalism to

implicit equations 0 = F (x, y) ∈ RM . For a given Taylor polynomial [x]D, we can find the

polynomial [y]D which is defined by a system of equations, up to order D

0
D

== ED(F )([x]D, [y]D), (10)

where [x]
D

== [y] if xd = yd for d = 0, ..., D − 1. Once we know the coefficients [y]D, we can

solve the next E orders where 1 ≤ E ≤ D, using the Newton-Hensel lifting method.6 The

method solves the next set of equations based on the previous orders, such that

0
D+E
== ED+E(F )([x]D+E, [y]D+E). (11)
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If the function F is differentiable and Fy(x0, y0) is invertible, then the new coefficients are

calculated by [∆y]E = [∆y]D+E − [∆y]E, which can be computed by the expression

[∆y]E = [Fy]
−1
E [∆F ]E. (12)

where ED+E(F )([x]D+E, [y]D+E)
D+E
== [∆F ]−1E TD and [Fy]E = EE

(
∂F
∂y

)
([x]E, [y]E). These

equations allow us to employ the Newton-Hensel method to compute the Taylor coefficients

of f[y]. This method solves iteratively the system of equations eq. (11), by either doubling

the number of coefficients following Newton’s method, or solving the coefficient once at a

time, using sequentially the lifting Newton-Hensel algorithm.
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