Catalyst-Controlled Stereodivergent Synthesis of Atropisomeric Multi-Axis Systems

Dominik Lotter, Alessandro Castrogiovanni, Markus Neuburger, Christof Sparr* Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland

Table of Contents

General Information	page S2	
General Procedures	page S2	
Catalyst-controlled Stereodivergent Synthesis		
With a Bromine End-Group	page S3 –	page S9
With a Triaryl Amine End-Group	page S10 –	page S13
NMR Analysis of the Structures in Solution	page S14	
Evaluation of Catalysts and Conditions	page S15 –	page S22
HPLC Data	page S23 –	page S24
X-ray Crystallographic Analysis (Dr. Markus Neuburger)	page S25 –	page S26
NMR Data	page S27 –	page S45
References	page S46	

General Information

All chemicals were reagent grade and used as supplied unless stated otherwise. 2-Iodoxybenzoic acid (IBX) was prepared according to a literature procedure.^[1] (Z)-4-(2-bromophenyl)but-3-en-1-ol was prepared as previously reported.^[2] *n*-Dibutylmagnesium solution in heptane was purchased from *Acros* (No. 37777-1000), n-butyllithium solution in hexane from Acros (No. 18127-1000), citrate buffer solution (pH 5) from J.T. Baker (No. 10646631), DMF (peptide synthesis grade) from Acros (No. 35483-0010) and chloroform (EtOH-free) from Sigma Aldrich (No. C2432). All reactions were carried out in oven dried glassware and under an argon atmosphere. All other solvents used were ACS grade. Extracts were dried over technical grade Na₂SO₄. Analytical and preparative thin layer chromatography (TLC) was performed on pre-coated Merck silica gel 60 F₂₅₄ plates (0.25 mm) and visualized by UV (254 nm). Column chromatography was carried out on Silicycle SiliaFlash P60 (230 - 400 mesh). Concentration in vacuo was perfomed by rotary evaporation to ~10 mbar at 40 °C. Final products were dried at ~10⁻² mbar and RT. ¹H NMR and ¹³C NMR spectra were recorded on a BrukerAdvance III (500 MHz) and BrukerAvance (400 MHz) at 298 K in CDCl₃ or C₆D₆ supplied by Cambridge *Isotope Laboratories.* Chemical shifts (δ) are reported in ppm relative to CDCl₃ (7.26 ppm/77.16 ppm) or C₆D₆ (7.16 ppm/128.06 ppm). The multiplicities are reported in Hz as: s = singlet, d = doublet and m = multiplet. Melting points (m.p.) were measured on a Büchi B-545 melting point apparatus and are uncorrected. Infrared (IR) spectra were measured on an ATR Varian Scimitar 800 FT-IR spectrometer and are reported in cm⁻¹. Optical rotations were obtained at RT on a JASCO P-2000 polarimeter using a 1.00 mL cell with a length of 100 mm; the concentrations are reported in g/100mL. High-resolution ESI mass spectrometry (HR-ESI) was performed by Dr. Heinz Nadig and Dr. Michael Pfeffer of the University of Basel on a Bruker maXis 4G QTOF ESI mass spectrometer. High-resolution MALDI mass spectrometry (MALDI-FTICR) was performed by Dr. B. Gerrits, L. Bertschi and O. L. Greter of the ETH Zurich on a Bruker solariX mass spectrometer.

General Procedures

Preparation of the diol precursors, general procedure A^[2]

(*Z*)-4-(2-Bromophenyl)but-3-en-1-ol (1, 1.50 eq.) in dry THF was cooled to 0 °C and *n*-Bu₂Mg (in heptane, 0.78 eq.) was added over 5 min. The solution was stirred at 0 °C for 30 min before *n*-BuLi (in hexanes, 1.56 eq.) was added over 5 min. The mixture was stirred for 1 h at 0 °C, before it was added over 5 min to a solution of a naphthaldehyde (1.00 eq.) in THF (70 mmolL⁻¹ unless stated otherwise). The mixture was stirred for 25 min at RT and H₂O (10 mL/mmol) followed by aq. sat. NH₄Cl (50 mL/mmol) was added. The layers were separated and the aqueous layer was extracted with EtOAc (2x 30 mL/mmol). The combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude products were purified by column chromatography.

In situ double oxidation, general procedure B

IBX was added to a suspension of a diol-precursor (1.00 eq.) in MeCN (20 mM) and the suspension was vigorously stirred at 60 °C. The mixture was cooled to RT, filtered and concentrated *in vacuo*. CHCl₃ (20 mmolL⁻¹) was added to the residue and the mixture was filtered to yield a solution of the keto-aldehyde, which was directly used in the next step.

Catalyst-controlled Stereodivergent Synthesis, Bromine End-Group

1-Bromo-2-naphthaldehyde (2)

Co(OAc)₂•4 H₂O (9.96 g, 40.0 mmol, 20.0 mol%) and 2-butanone (5.37 mL, 60.0 mmol, 30.0 mol%) were added to 1-bromo-2-methylnaphthalene (90%, 34.6 mL, 200 mmol, 1.00 eq.) in acetic acid (400 mL). The solution was heated to 95 °C for 21 h. The mixture was poured on ice (1.5 L), conc. HCl (400 mL) was added and the mixture was extracted with EtOAc (1x 800 mL, 2x 400 mL). The combined organic layers were extracted with aq. NaOH (2.0 molL⁻¹, 5x 400 mL). The aqueous extracts were cooled to 0 °C, carefully acidified with conc. HCl (450 mL) and extracted with EtOAc (3x 500 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo* to yield the crude product which was used without further purification.^[3]

Crude 1-bromo-2-naphthoic acid (3) was dissolved in THF (400 mL), cooled to 0 °C and borane dimethylsulfide in THF (2.0 molL⁻¹, 117 mL, 234 mmol, 1.17 eq.) was added over 10 min. The mixture was heated to reflux for 2 h, cooled back to 0 °C and H₂O (150 mL) was carefully added (gas evolution!). Aq. HCl (1.0 molL⁻¹, 50 mL) was added and the mixture was extracted with EtOAc (2x 350 mL). The combined organic layers were washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was used without further purification.

The crude (1-bromonaphthalene-2-yl)methanol was dissolved in CH₂Cl₂ (1.5 L) and MnO₂ (174 g, 2.00 mol, 10.0 eq.) was added. The mixture was stirred for 19 h at RT and filtered over Celite[®]. The Celite[®] pad was rinsed with CH₂Cl₂ (2x 150 mL), the combined filtrates were concentrated *in vacuo* and the residue was recrystallized from MeOH (1.2 L, 64 °C to 0 °C) to yield product **2** as a yellowish solid (35.3 g, 150 mmol, 75% over three steps): m.p. 109.0–110.0 °C; $R_f 0.32$ (*n*-pentane:Et₂O 50:1); v_{max} (neat): 3354w, 3059w, 2923w, 2866m, 2742w, 1666s, 1592m, 1554m, 1496w, 1453m, 1308m, 1252s, 1212s, 1209w, 969m, 886m, 808s, 751s, 665m; ¹H NMR (400 MHz, CDCl₃): $\delta = 10.68$ (1H, d, ⁴*J* 4.4, CHO), 8.53–8.47 (1H, m), 7.94 (1H, d, ³*J* 8.5), 7.90–7.83 (2H, m), 7.71–7.66 (2H, m); ¹³C NMR (101 MHz, CDCl₃): $\delta = 193.0$ (CHO), 137.4, 132.3, 131.5, 131.3, 129.9, 128.6, 128.4, 128.4, 128.3, 124.2; in agreement with literature data.^[4] No unexpected or unusually high safety hazards were encountered.

(Z)-4-(2-((1-bromonaphthalen-2-yl)(hydroxy)methyl)phenyl)but-3-en-1-ol (3, diol A)

(±)-3

Prepared according to the general procedure A using 1-bromo-2-naphthaldehyde (2, 14.1 g, 60.0 mmol, 1.00 eq.), (Z)-4-(2-bromophenyl)but-3-en-1-ol (1, 60 mmolL⁻¹, 20.4 g, 90.0 mmol, 1.50 eq.), n-Bu₂Mg (0.59 molL⁻¹, 80.0 mL, 46.8 mmol, 0.78 eq.) and n-BuLi (1.71 molL⁻¹, 54.7 mL, 93.6 mmol, 1.56 eq.) to yield a colorless solid (15.1 g, 39.4 mmol, 66%): m.p. 112.5–114.3 °C; Rf 0.19 (n-pentane:Et₂O 1:1); v_{max} (neat): 3307m, 2922w, 1484w, 1420w, 1328w, 1257w, 1177w, 1035s, 1965m, 897w, 760s, 654m; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.29$ (1H, d, ³J 8.6, C19H), 7.85 (1H, d, ³J 8.6, C14H), 7.83 (1H, d, ³J 8.1, C16H), 7.77 (1H, d, ³J 8.6, C13H), 7.58 (1H, ddd, ³J 8.3, 6.8, ⁴J 1.4, C18H), 7.52 (1H, ddd, ³*J* 8.1, 6.9, ⁴*J* 1.3, C17*H*), 7.25 (1H, ddd, ³*J* 7.5, 7.3, ⁴*J* 1.4, C7*H*), 7.20–7.16 (2H, m, C8H, C6H), 7.10 (1H, dd, ³J 8.5, ⁴J 1.8, C9H), 6.93 (1H, d, ³J 11.3, C4H), 6.52 (1H, s, C11*H*), 5.82 (1H, ddd, ³*J* 11.3, 9.1, 5.9, C3*H*), 3.67–3.57 (2H, m, C1*H*₂), 2.51–2.41 (1H, m, C2*H*), 2.36 (2H, s, O*H*), 2.25–2.17 (1H, m, C2*H*); ¹³C NMR (126 MHz, CDCl₃): δ = 140.9 (C10), 140.2 (C12), 136.8 (C5), 134.2 (C15), 132.4 (C20), 130.9 (C4), 130.8 (C3), 129.8 (C9), 128.3 (C16), 127.8 (C14), 127.6 (C7), 127.6 (C8), 127.6 (C18), 127.4 (C19), 127.0 (C6), 126.7 (C17), 125.7 (C13), 123.1 (C21), 72.9 (C11), 62.2 (C1), 31.5 (C2); ESI-MS: m/z calcd. for $C_{21}H_{19}OBrNaO_2^+$ 405.0461 found 405.0442 [M+Na⁺]. No unexpected or unusually high safety hazards were encountered.

(Z,R,S_a)-4-(1'-Bromo-([1:2']-binaphthalen-2-yl(hydroxy)methyl)phenyl)but-3-en-1-ol (6, diol B)

The in situ double-oxidation was performed according to the general procedure **B** using **3** (10.2 g, 26.6 mmol, 1.00 eq.) and IBX (22.3 g, 79.8 mmol, 3.00 eq.) with 4 h reaction time. To the keto-aldehyde solution (S)-(-)-5-(2-pyrrolidinyl)-1H-tetrazole (925 mg, 6.65 mmol, 25.0 mol%) in DMF (650 mL) and H₂O (650 mL) was added and the mixture was vigorously stirred at RT for 17 h. The layers were separated and the aq. layer was extracted with CH₂Cl₂. The combined organic layers were concentrated at 55 °C. To remove remaining DMF, toluene (1.0 L) was added and the solution was concentrated again. The crude aldol addition product was dissolved in CHCl₃ (1.3 L) and Amberlite[®] IRA-96 (50.0 g, washed with 2x MeOH and 2x CH₂Cl₂) was added. The mixture was stirred for 2 h at RT, filtered, dried over Na₂SO₄, filtered again and concentrated to give crude (S_a) -1'bromo-[1:2']-binaphthalene-2-carbaldehyde, (S_a) -5. According to the general procedure A crude (S_a) -5, was treated with building block 1, which was prepared from (Z)-4-(2bromophenyl)but-3-en-1-ol (1, 60 mmolL⁻¹, 9.06 g, 39.9 mmol, 1.50 eq.), n-Bu₂Mg (0.54 M, 38.4 mL, 20.7 mmol, 0.78 eq.) and n-BuLi (1.61 M, 25.8 mL, 41.5 mmol, 1.56 eq.) to give after column chromatography (*n*-pentane: Et_2O 1:1) unreacted aldehyde (S_a) -5 (1.54 g, 4.27 mmol, 16%) and the desired diol 6 as a colorless solid (7.49 g, 14.7 mmol, 55% over four steps): m.p. 83.1–84.9 °C; $R_f 0.19$ (*n*-pentane:Et₂O 1:1); $[\alpha]_D$ +34.6 (c 1.0 in CHCl₃); v_{max} (neat): 3354m, 3058w, 2924w, 1496w, 1391w, 1321w, 1254w, 1213w, 1045s, 953m, 865w, 818s, 748s; ¹H NMR (500 MHz, CDCl₃): δ = 8.41 (1H, dd, ³J 8.5, ⁴J 1.1, C29H), 8.00 (1H, d, ³J 8.7, C14H), 7.92 (1H, d, ³J 7.9, C16H), 7.91–7.86 (2H, m, C13*H*, C26*H*), 7.68 (1H, ddd, ³*J* 8.2, 7.0, ⁴*J* 1.4, C28*H*), 7.67 (1H, d, ³*J* 8.7, C24*H*), 7.61 (1H, ddd, ³J 8.1, 6.9, ⁴J 1.2, C27H), 7.47 (1H, ddd, ³J 8.1, 6.9, ⁴J 1.2, C17H), 7.33-7.28 (2H, m, C9H, C18H), 7.20-7.16 (2H, m, C7H, C8H), 7.14 (1H, dd, ³J 8.6, ⁴J 1.1, C19H), 6.95–6.92 (1H, m, C6H), 6.87 (1H, d, ³J 8.3, C23H), 5.86 (1H, s, C11H), 5.79 (1H, d, ³J 11.3, C4H), 5.41 (1H, ddd, ³J 11.3, 8.8, 6.2, C3H) 3.43–3.34 (2H, m, C1H), 2.20–2.10 (1H, m, C2H), 2.02 (2H, s br, OH), 1.91–1.84 (1H, m, C2H); ¹³C NMR (126 MHz, CDCl₃): $\delta = 141.4$ (C10), 138.3 (C12), 137.5 (C22), 137.3 (C21), 136.3 (C5), 134.0 (C25), 133.1 (C15), 132.5 (C30), 132.0 (C20), 130.5 (C4), 130.0 (C3), 129.4 (C6), 129.3 (C23), 128.5 (C14), 128.4 (C26), 128.2 (C16), 127.9 (C28), 127.8 (C29), 127.7 (C9), 127.4 (C24), 127.3 (C7/8), 127.3 (C7/8), 127.1 (C27), 126.5 (C18), 126.1 (C17), 125.9 (C19), 124.7 (C13), 124.5 (C31), 70.8 (C11), 62.0 (C1), 31.3 (C2); ESI-MS: m/z calcd. for C₃₁H₂₅BrNaO₂⁺ 531.0930 found 531.0930 [M+Na⁺]; The e.r. (>99:1) of (S_a) -(1'-bromo-[1,2'-binaphthalen]-2-yl)methanol (obtained by reduction of (S_a) -5 with NaBH₄, MeOH, RT, 30 min) was determined by HPLC using a Chiralcel OD-H column (1.0 mLmin⁻¹, i-PrOH:n-heptane 10:90): (S_a) $t_R = 10.7$ min and (R_a) $t_R = 18.5$ min; racemic reference material was obtained with rac-5-(2-pyrroidinyl)-1H-tetrazole as catalyst; This hydroxyl-derivative of (S_a) -5 decomposed before racemization was observed upon heating in DMF or neat to 170 °C. No unexpected or unusually high safety hazards were encountered.

(R_a, S_a) -1"-Bromo-[1:2']-ternaphthalene-2-carbaldehyde, (R_a, S_a) -7

The in situ double-oxidation was performed according to the general procedure **B** using **6** (50.8 mg, 99.7 µmol, 1.00 eq.) and IBX (83.8 mg, 299 µmol, 3.00 eq.) with 4 h reaction time. To the keto-aldehyde solution at RT was added *N*-benzylcinchonidinium chloride (420 µg, 997 nmol, 1.00 mol%), followed by aq. KOH (1.0 molL⁻¹, 2.0 mL). The mixture was stirred for 16 h at RT, aq. sat. NH₄Cl (5.0 mL) and H₂O (5.0 mL) were added, the layers were separated and the aq. layer was extracted with CH₂Cl₂ (2x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification by column chromatography (*n*-pentane:CH₂Cl₂ 4:1 to 1:4) gave the aldol condensation product as colorless solid (33.5 mg, 68.8 µmol, 69% over two steps, d.r. = 94:6): m.p. 240.2 °C (decomp.); R_f 0.55 (toluene); [α]_D +498 (*c* 0.5 in CDCl₃); v_{max} (neat): 3054w, 2851w, 2361w, 1676s, 1498m, 1385m, 1316m, 1223m, 1145w, 1025w,

950m, 870w, 816s, 754s; ¹H NMR (500 MHz, CDCl₃): $\delta = 10.26$ (1H, d, ⁴J 0.9, C1H), 8.25 (1H, dd, ³*J* 8.7, ⁴*J* 0.9, C29*H*), 8.12 (1H, d, ³*J* 8.3, C14*H*), 8.08 (1H, d, ³*J* 8.3, C16*H*), 7.86 (1H, d, ³J 8.7, C3H), 7.79 (1H, d, ³J 8.6, C6H), 7.70 (1H, d, ³J 8.6, C4H), 7.65 (1H, d, ³J 8.4, C9H), 7.63–7.55 (4H, m, C7H, C13H, C17H, C26H), 7.53 (1H, ddd, ³J 8.3, 7.0, ⁴J 1.3, C28*H*), 7.49–7.41 (3H, m, C8*H*, C18*H*, C27*H*), 7.38 (1H, dd, ³J 8.5, ⁴J 1.0, C19*H*), 7.29 (1H, d, ³J 8.3, C24H), 7.02 (1H, d, ³J 8.4, C23H); ¹³C NMR (126 MHz, CDCl₃): $\delta = 192.7$ (C1), 145.6 (C11), 140.0 (C21), 136.7 (C22), 135.9 (C5), 133.6 (C25), 133.3 (C15), 133.0 (C10), 132.5 (C12), 132.1 (C30), 132.0 (C20), 131.5 (C2), 128.7 (C7, C13), 128.5 (C16), 128.4 (C4), 128.4 (C6), 128.3 (C23), 128.2 (C14), 128.0 (C9, C26), 127.8 (C29), 127.7 (C28), 127.3 (C18), 126.9 (C24), 126.9 (C27), 126.8 (C17), 126.7 (C19), 126.7 (C8), 124.8 (C31), 122.1 (C3); ${}^{1}H{}^{-1}H$ NOESY (500 MHz, CDCl₃) = C9H-C23H, C19H-C23H; MALDI-FTICR: m/z calcd. for C₃₁H₁₉BrO^{+•} 486.0614 found 486.0614 $[M^{+*}]$; Crystals suitable for X-ray crystallographic analysis were obtained by diffusion of *n*-pentane into a solution of (R_a, S_a) -7 in toluene. Examination of catalysts and conditions can be found on page S16-S18. No unexpected or unusually high safety hazards were encountered.

(S_a,S_a)-1''-Bromo-[1:2']-ternaphthalene-2-carbaldehyde, (S_a,S_a)-8

The in situ double-oxidation was performed according to the general procedure B using 6 (2.04 g, 4.00 mmol, 1.00 eq.) and IBX (3.36 g, 12.0 mmol, 3.00 eq.) with 4 h reaction time. To the keto-aldehyde solution at RT was added (S)-(-)-5-(2-pyrrolidinyl)-1*H*-tetrazole (223 mg, 1.6 mmol, 40.0 mol%) in DMF (133 mL) and citrate buffer (pH 5, 133 mL). The mixture was vigorously stirred at RT for 48 h. The layers were separated and the aq. layer was extracted with CH₂Cl₂ (2x 200 mL). The combined organic layers were concentrated in vacuo at 55 °C. The residue was dissolved in toluene (300 mL), dried over Na₂SO₄, filtered and concentrated in vacuo to remove remaining DMF. The crude aldol condensation product was purified by column chromatography (*n*-pentane: CH_2Cl_2 4:1 to 1:4) to yield a colorless solid (1.41 g, 2.90 mmol, 72% over two steps, d.r. = 97:3): m.p. 206.8 °C (decomp.); $R_f 0.61$ (toluene); $[\alpha]_D +230$ (c 0.5 in CDCl₃); v_{max} (neat): 3056w, 3844w, 2733w, 2361w, 1675s, 1593w, 1499w, 1326m, 1233m, 1147w, 1027w, 950m, 869w, 815s, 749s, 660m; ¹H NMR (500 MHz, CDCl₃): $\delta = 10.09$ (1H, d, ⁴J 0.8, CHO), 8.11–8.05 (3H, m) 7.98 (1H, d, ³J 8.5), 7.88 (1H, d, ³J 8.5), 7.73–7.68 (3H, m), 7.64–7.59 (3H, m), 7.51–7.41 (4H, m), 7.40–7.34 (2H, m), 7.20 (1H, d, ³*J* 8.4); ¹³C NMR (126 MHz, CDCl₃): $\delta = 192.5$ (CHO), 145.7, 140.0, 136.7, 136.0, 133.5, 133.4, 132.5, 132.3, 132.1, 132.0, 131.4, 129.6, 129.0, 128.9, 128.8, 128.5, 128.4, 128.2, 128.1, 127.9, 127.7, 127.6, 127.4, 127.3, 126.9, 126.8, 126.8, 126.3, 125.2, 121.7; MALDI-FTICR: m/z calcd. for C₃₁H₁₉BrO^{+•} 486.0614 found 486.0614 [M^{+•}]. Examination of catalysts and conditions can be found on page S16-S18. No unexpected or unusually high safety hazards were encountered.

(*Z*,*R*,*S*_a,*S*_a)-4-(1''-Bromo-([1:2']-ternaphthalen-2-yl(hydroxy)methyl)phenyl)but-3-en-1-ol (diol C)

Prepared according to the general procedure **A** using (S_a, S_a) -**8** (1.40 g, 2.87 mmol, 1.00 eq.), (*Z*)-4-(2-bromophenyl)but-3-en-1-ol (**1**, 60 mmolL⁻¹, 978 mg, 4.31 mmol, 1.50 eq.), *n*-Bu₂Mg (0.55 molL⁻¹, 4.07 mL, 2.24 mmol, 0.78 eq.) and *n*-BuLi (1.49 molL⁻¹, 3.00 mL, 4.48 mmol, 1.56 eq.) to yield after purification by column chromatography (CH₂Cl₂:Et₂O 100:1 to 10:1) a colorless solid (1.37 g, 2.15 mmol, 75%): m.p. 188.8 °C (decomp.); R_f 0.13 (CH₂Cl₂:Et₂O 50:1); [α]_D +83.8 (*c* 1.0 in CDCl₃); ν _{max} (neat): 3281w, 3056w, 2900w, 1498w, 1391w, 1315w, 1214w, 1030m, 864w, 820m, 744s, 663w; ¹H NMR (500 MHz, CDCl₃): δ = 8.10 (1H, d, ³*J* 8.4), 7.98 (1H, d, ³*J* 8.4), 7.93 (1H, d, ³*J* 8.7), 7.77–7.71 (3H, m), 7.64 (1H, d, ³*J* 7.8), 7.57–7.53 (2H, m), 7.50 (1H, d, ³*J* 8.4), 7.40 (1H, ddd, ³*J* 8.3, 7.0, ⁴*J* 1.4), 7.31–7.25 (3H, m), 7.25–7.18 (4H, m), 7.14 (1H, ddd, ³*J* 8.7, 7.1,

⁴*J* 1.1), 7.06 (1H, dd, ³*J* 7.7, ⁴*J* 1.1), 7.01 (1H, d, ³*J* 7.4), 6.74 (1H, d, ³*J* 8.4), 6.18 (1H, s, C11H), 5.73 (1H, d, ³J 11.6, C4H), 5.46–5.39 (1H, m, C3H), 3.57–3.50 (1H, m, C1H), 3.47 (2H, OH), 3.27-3.20 (1H, m, C1H), 2.34-2.22 (1H, m, C2H), 1.91-1.82 (1H, m, C2H); ¹³C NMR (126 MHz, CDCl₃): $\delta = 141.8$, 138.0, 137.8, 137.2, 137.0, 136.1, 135.2, 133.4, 132.9, 132.6, 132.2, 132.2, 132.1, 131.5, 130.5, 129.6, 129.2, 128.5, 128.4, 128.4, 128.2, 128.0, 127.8, 127.6, 127.6, 127.5 (3C, HMQC), 127.4, 127.2, 126.9, 126.8, 126.5, 126.2, 125.7, 125.4, 125.1, 124.3, 70.7, 61.3, 30.9; since diol C slowly decomposes in chloroform, additional NMR in C₆D₆ were recorded: ¹H NMR (500 MHz, C₆D₆): $\delta = 8.26$ (1H, d, ³J 8.9, C13*H*), 8.16 (1H, dd, ³*J* 8.6, ⁴*J* 0.7, C39*H*), 8.03 (1H, dd, ³*J* 8.4, ⁴*J* 0.6, C19*H*), 7.92 (1H, d, ³J 8.5, C33H), 7.70 (1H, d, ³J 8.2, C26H), 7.59 (1H, d, ³J 8.6, C14H), 7.48–7.44 (2H, m, C24H, C34H), 7.42-7.36 (3H, m, C9H, C16H, C29H), 7.26 (1H, ddd, ³J 8.0, 6.9, ⁴J 0.9, C27H), 7.18 (1H, ddd, ³J 8.4, 7.0, ⁴J 1.4, C18H), 7.12–6.97 (6H, m, C6H, C7H, C8H, C17H, C28H, C38H), 6.85–6.80 (3H, m, C23H, C36H, C37H), 6.52 (1H, s, C11H), 5.83 (1H, d, ³*J* 11.6, C4*H*), 5.22–5.16 (1H, m, C3*H*), 3.19–3.13 (1H, m, C1*H*), 2.92–2.85 (1H, m, C1H), 2.27–2.16 (1H, m, C2H), 1.53–1.45 (1H, m, C2H); ¹³C NMR (126 MHz, C₆D₆): $\delta = 143.0$ (C10), 138.8 (C12), 138.4 (C31), 137.8 (C5), 137.5 (C32), 136.7 (C21), 135.8 (C22), 133.8 (C35), 133.3 (C25), 133.0 (C10), 132.8 (C30), 132.7 (C20), 132.5 (C40), 132.2 (C3), 130.6 (C4), 129.9 (C6), 129.4 (C23), 129.0 (C9), 128.9 (C33), 128.7 (C19), 128.4 (C26), 127.8 (C8), 127.7 (C39), 127.5 (C7), 127.4 (C38), 127.3 (C29), 127.2 (C28), 126.6 (C37), 126.3 (C27), 126.0 (C17), 125.8 (C18), 125.5 (C41), 124.8 (C13), 71.0 (C11), 61.0 (C1), 61.1 (C2); ESI-MS: m/z calcd. for $C_{41}H_{31}OBrNaO_2^+$ 657.1400 found 657.1409 [M+Na⁺]. No unexpected or unusually high safety hazards were encountered.

(R_a, S_a, S_a) -1"'-Bromo-[1:2']-quaternaphthalene-2-carbaldehyde, (R_a, S_a, S_a) -13

diol C (48.3 mg, 75.9 µmol, 1.00 eq.), IBX (106 mg, 380 µmol, 5.00 eq.) and 4.5 h reaction time. To the keto-aldehyde solution aq. KOH (1.0 molL⁻¹, 2.0 mL) was added. The mixture was stirred for 16 h at RT, aq. sat. NH₄Cl (5.0 mL) and H₂O (5.0 mL) were added, the layers were separated and the aq. layer was extracted with CH_2Cl_2 (2x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. Purification by column chromatography (n-pentane:CH₂Cl₂ 4:1 to 1:4) yielded the aldol condensation product as colorless solid (25.7 mg, 41.9 µmol, 55% over two steps, d.r. = 87:13): m.p. 240.4 °C (decomp.); $R_f 0.34$ (*n*-pentane:CH₂Cl₂ 1:1); $[\alpha]_D -264$ (*c* 1.0 in CDCl₃); v_{max} (neat): 3056w, 2855w, 1685m, 1500w, 1316w, 1228m, 1032w, 951w, 870w, 818s, 745s, 670m; ¹H NMR (500 MHz, CDCl₃): δ = 8.59 (1H, d, ⁴J 0.9, C1*H*), 8.04 (1H, d, ³J 8.3, C39*H*), 7.94 (1H, d, ³J 8.6, C3*H*), 7.93–7.90 (2H, m, C16*H*, C19*H*), 7.85–7.82 (3H, m, C4H, C14H, C36H), 7.80-7.75 (3H, m, C23H, C24H, C26H), 7.73-7.70 (2H, m, C6H, C9H), 7.58-7.46 (4H, m, C17H, C34H, C37H, C38H), 7.46-7.40 (2H, m, C7H, C18H), 7.38 (1H, ddd, ³J 8.1, 6.9, ⁴J 1.1, C27*H*), 7.33 (1H, ddd, ³J 8.2, 6.9, ⁴J 1.4, C8*H*), 7.18–7.13 (2H, m, C13*H*, C28*H*), 6.83 (1H, d, ³*J* 8.5, C29*H*), 6.01 (1H, d, ³*J* 8.3, C33*H*); ¹³C NMR $(126 \text{ MHz}, \text{CDCl}_3)$: $\delta = 192.2 (CI), 145.7 (CII), 139.1 (C3I), 139.0 (C2I), 137.1 (C32), 139.0 (C2I), 139.0 (C2I), 137.1 (C32), 139.0 (C2I), 137.1 (C32), 139.0 (C2I), 139.0 (C2I), 137.1 (C32), 139.0 (C2I), 139.0 (C2I)$ 135.6 (C5), 134.9 (C22), 133.8 (C35), 133.7 (C15), 133.4 (C20), 133.2 (C2), 132.8 (C25), 132.8 (C30), 132.3 (C23), 131.9 (C40), 131.6 (C12), 131.2 (C33), 131.0 (C10), 130.8 (C13), 129.6 (C19), 128.9 (C9), 128.6 (C4), 128.5 (C7), 128.3 (C36), 128.2 (C6), 128.0 (C14, C16), 127.9 (C26), 127.8 (C39), 127.6 (C38), 127.2 (C34), 127.2 (C37), 126.8 (C24), 126.6 (C17), 126.5 (C29), 126.3 (C28), 126.2 (C27), 126.1 (C8), 126.0 (C18), 125.4 (C41), 122.6 (C3); MALDI-FTICR: m/z calcd. for C₄₁H₂₅BrO^{+•} 612.1083 found 612.1084 [M^{+•}]. Examination of catalysts and conditions can be found on page S18-S21. No unexpected or unusually high safety hazards were encountered.

The in situ double-oxidation was performed according to the general procedure B using

(S_a, S_a, S_a) -1"-Bromo-[1:2']-quaternaphthalene-2-carbaldehyde, (S_a, S_a, S_a) -14

The in situ double-oxidation was performed according to the general procedure **B** using diol C (47.2 mg, 74.3 µmol, 1.00 eq.), IBX (104 mg, 372 µmol, 5.00 eq.) and 4.5 h reaction time. The keto-aldehyde solution was cooled to 0 °C and N-benzylcinchonium chloride (313 µg, 743 nmol, 1.00 mol%) was added, followed by cold aq. KOH (1.0 molL⁻¹, 2.0 mL). The mixture was stirred for 16 h at 0 °C, aq. sat. NH₄Cl (5.0 mL) and H₂O (5.0 mL) were added, the layers were separated and the aq. layer was extracted with CH₂Cl₂ (2x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification by column chromatography (*n*-pentane: CH_2Cl_2 4:1 to 1:4) gave the aldol condensation product (S_a, S_a, S_a) -14 as colorless solid (25.5 mg, 41.5 µmol, 56% over two steps, d.r. = 89:11). Diastereomerically pure material was obtained by reduction using NaBH₄, separation by preparative TLC (CH₂Cl₂) and reoxidation with Dess-Martin periodinane followed by column chromatography (n-pentane:CH₂Cl₂ 4:1 to 1:4) to yield a colorless solid: m.p. 206.0 °C (decomp.); R_f 0.34 (*n*-pentane:CH₂Cl₂ 1:1); [α]_D -546 (*c* 0.5 in CDCl₃); ν_{max} (neat): 3055w, 2853w, 2361w, 1694s, 1679s, 1596w, 1501w, 1425w, 1385w, 1313m, 1033w, 908m, 823s, 747s, 741s; ¹H NMR (500 MHz, CDCl₃): $\delta = 9.96$ (1H, d, ⁴J 0.8, C1H), 8.01–7.97 (2H, m, C24H, C39H), 7.94 (1H, d, ³J 8.1, C23H), 7.91 (1H, d, ³J 8.0, C26H), 7.89 (1H, d, ³J 8.5, C19H), 7.87 (1H, d, ³J 8.9, C14H), 7.84 (1H, d, ³J 7.8, C6H), 7.82 (1H, d, ³J 8.7, C4H), 7.76 (1H, d, ³J 8.4, C3H), 7.60 (1H, d, ³J 8.6, C23H), 7.57 (1H, ddd, ³J 8.1, 7.0, ⁴J 1.1, C17H), 7.45-7.38 (4H, m, C18H, C27H, C37H, C38H), 7.37-7.33 (2H, m, C7H, C36H), 7.28 (1H, d, ³J 8.5, C13*H*), 7.15 (1H, ddd, ³J 8.4, 7.1, ⁴J 1.4, C28*H*), 6.75 (1H, dd, ³J 8.5, 0.8, C29*H*), 6.63 (1H, d, ³J 8.4, C9H), 6.33 (1H, ddd, ³J 8.5, 7.2, ⁴J 1.2, C8H), 6.28 (1H, d, ³J 8.2, C34*H*), 5.33 (1H, d, ³*J* 8.3, C33*H*); ¹³C NMR (126 MHz, CDCl₃): δ = 192.5 (*C1*), 145.6 (C11), 140.4 (C21), 138.6 (C31), 136.5 (C5), 136.5 (C32), 134.2 (C22), 133.9 (C10, C15), 133.7 (C20), 133.5 (C35), 133.2 (C25), 133.1 (C30), 132.4 (C23), 131.7 (C40), 131.2 (C12), 130.3 (C33) 130.1 (C2), 130.0 (C13), 129.8 (C19), 128.4 (C4), 128.3 (C7), 128.2 (C26), 128.0 (C16), 128.0 (C36), 127.9 (C6), 127.7 (C39), 127.7 (C9), 127.6 (C24), 127.4 (C14), 126.9 (C38), 126.7 (C17), 126.6 (C29), 126.5 (C8), 126.4 (C37), 126.4 (C27, C28), 126.0 (*C18*), 125.3 (*C34*), 124.5 (*C41*), 122.2 (*C3*); ${}^{1}H{-}^{1}H$ NOESY (500 MHz, CDCl₃) = MALDI-FTICR: m/z calcd. for C₄₁H₂₅BrO^{+•} 612.1083 found 612.1084 [M^{+•}]. Examination of catalysts and conditions can be found on page S18-S21. No unexpected or unusually high safety hazards were encountered.

(*Z*,*R*,*S*_a,*S*_a,*S*_a)-4-(1'''-Bromo-([1:2']-quaternaphthalen-2-yl(hydroxy)methyl)phenyl)but-3-en-1-ol (diol D)

Prepared according to the general procedure A using (S_a, S_a, S_a) -14 (884 mg, 1.44 mmol, 1.00 eq.), (Z)-4-(2-bromophenyl)but-3-en-1-ol (1, 60 mmolL⁻¹, 491 mg, 2.16 mmol, 1.50 eq.), *n*-Bu₂Mg (0.55 molL⁻¹, 2.04 mL, 1.12 mmol, 0.78 eq.) and *n*-BuLi (1.55 molL⁻¹, 1.45 mL, 2.25 mmol, 1.56 eq.) to yield after purification by column chromatography (CH₂Cl₂:Et₂O 100:1 to 10:1) a colorless solid (886 mg, 1.16 mmol, 81%): m.p. 209.3 °C (decomp.); $R_f 0.14$ (CH₂Cl₂:Et₂O 50:1); $[\alpha]_D - 268$ (c 1.0 in CDCl₃); ν_{max} (neat): 3568w, 3054w, 2954w, 1598w, 1503m, 1315m, 1169w, 1034m, 950m, 819s, 745s; ¹H NMR $(500 \text{ MHz}, C_6D_6)$: $\delta = 8.12 (1H, d, {}^3J 8.5, C29H), 8.02 (1H, dd, {}^3J 8.1, {}^4J 1.4, C49H), 7.93$ (1H, d, ³*J* 8.5, C33*H*), 7.86 (1H, d, ³*J* 8.5, C34*H*), 7.72 (1H, d, ³*J* 8.5, C13*H*), 7.67–7.62, (3H, m, C9H, C26H, C36H), 7.54 (1H, d, ³J 8.7, C14H), 7.48 (1H, d, ³J 8.1, C16H), 7.38 (1H, d, ³*J* 8.5, C24*H*), 7.32 (1H, ddd, ³*J* 8.0, 6.9, ⁴*J* 1.3, C27*H*), 7.27 (1H, ddd, ³*J* 8.5, 6.9, ⁴J 1.5, C28H), 7.18–7.01 (5H, m, C8H, C37H, C46H, C47H, C48H), 7.01–6.97 (2H, m, C6H, C7H), 6.96–6.88 (4H, m, C17H, C23H, C38H, C39H), 6.49 (1H, d, ³J 8.7, C19H), 6.28 (1H, s, C11H), 6.21 (1H, d, ³J 8.3, C44H), 6.07–6.00 (2H, m, C4H, C18H), 5.66 (1H, d, ³J 8.4, C43H), 5.27 (1H, ddd, ³J 11.3, 8.2, 6.7, C3H), 3.00–2.88 (2H, m, C1H), 2.00-1.91 (1H, m, C2H), 1.83 (1H, m, OH), 1.73-1.65 (1H, m, C2H), 0.56 (1H, s, OH);

¹³C NMR (126 MHz, C₆D₆): δ =142.5 (*C10*), 140.0 (*C41*), 138.5 (*C12*), 138.3 (*C31*), 136.9 (*C42*), 136.6 (*C21*), 136.5 (*C5*), 135.6 (*C32*), 135.0 (*C22*), 134.7 (*C20*), 134.5 (*C30*), 134.0 (*C45*), 134.0 (*C25*), 133.7 (*C40*), 133.7 (*C15*), 133.3 (*C33*, *C35*), 132.2 (*C23*), 132.1 (*C50*), 131.3 (*C4*), 130.8 (*C43*), 130.1 (*C29*), 129.9 (*C3*), 129.6 (*C6*), 128.3 (*C14*, HMQC), 128.2 (*C36*, HMQC), 128.2 (*C26*, HMQC), 128.1 (*C46*, HMQC), 128.1 (*C49*, HMQC), 127.7 (*C34*), 127.6 (*C16*), 127.6 (*C9*), 127.5 (*C24*), 127.3 (*C8*), 127.2 (*C39*), 127.1 (*C19*), 127.0 (*C7*), 127.0 (*C38*), 126.9 (*C48*), 126.8 (*C37*), 126.3 (*C47*), 126.2 (*C27*), 126.0 (*C13*), 125.8 (*C44*), 125.8 (*C28*), 125.6 (*C18*), 125.4 (*C17*), 124.5 (*C51*), 70.3 (*C11*), 61.8 (*C1*), 31.7 (*C2*); ESI-MS: m/z calcd. for $C_{51}H_{37}OBrNaO_2^+$ 783.1869 found 783.1880 [M+Na⁺]. Decomposes in chloroform and dichloromethane within hours at RT. No unexpected or unusually high safety hazards were encountered.

(R_a,S_a,S_a,S_a)-1'''-Bromo-[1:2']-quinquenaphthalene-2-carbaldehyde, (R_a,S_a,S_a,S_a)-15

The in situ double-oxidation was performed according to the general procedure B using diol D (57.7 mg, 75.7 µmol, 1.00 eq.), IBX (212 mg, 75.7 µmol, 10.0 eq.) and 6 h reaction time. Aq. KOH (1.0 molL⁻¹, 2.0 mL) was added to the keto-aldehyde solution at RT. The mixture was stirred for 16 h at RT, aq. sat. NH₄Cl (5.0 mL) and H₂O (5.0 mL) were added, the layers were separated and the aq. layer was extracted with CH₂Cl₂ (2x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. Purification by column chromatography (*n*-pentane: CH_2Cl_2 4:1 to 1:4) gave the aldol condensation product (R_a, S_a, S_a, S_a) -15 as colorless solid (21.6 mg, 29.2 µmol, 39% over two steps, d.r. = 97:3). Diastereometrically pure material was obtained by precipitation from CH₂Cl₂ with *n*-pentane: m.p. 213.1 °C (decomp.); $R_f 0.33$ (*n*-pentane:CH₂Cl₂ 1:1); $[\alpha]_D$ -363 (c 1.0 in CDCl₃); v_{max} (neat): 3051w, 2943w, 2852w, 2361w, 1691s, 1595w, 1503w, 1378w, 1231m, 1150w, 1034w, 951w, 865m, 819s, 745s; ¹H NMR (500 MHz, CDCl₃): δ = 8.86 (1H, d, ⁴J 0.6, C1H), 7.99-7.95 (1H, m, C49H), 7.92-7.88 (2H, m, C16H, C36H), 7.88-7.85 (2H, m, C3 H, C14H), 7.81 (1H, d, ³J 8.7, C4H), 7.69-7.65 (2H, m, C26H, C46H), 7.61 (1H, d, ³J 8.3, C34H), 7.57 (1H, d, ³J 8.5, C24H) 7.48 (1H, ddd, ³J 8.0, 6.8, ⁴J 1.1, C37H), 7.45–7.40 (5H, C6H, C9H, C29H, C47H, C48H), 7.38 (1H, d, ³J 8.6, C23H), 7.37-7.31 (2H, m, C7H, C27H), 7.24 (1H, ddd, ³J 8.1, 7.0, ⁴J 1.1, C17H), 7.19-7.12 (4H, m, C8H, C13H, C28H, C38H), 6.70 (1H, d, ³J 8.6, C39H), 6.40-6.36 (2H, m, C19H, C44H), 6.08 (1H, ddd, ³J 8.4, 6.9, ⁴J 1.4, C18H), 6.03 (1H, d, ³J 8.5, C33H), 5.70 (1H, d, ${}^{3}J$ 8.2, C43*H*); ${}^{13}C$ NMR (126 MHz, CDCl₃): δ = 190.9 (*C1*), 145.6 (*C11*), 139.5 (C21), 138.6 (C41), 138.4 (C31), 136.5 (C42), 135.5 (C5), 135.1 (C20), 134.7 (C32), 134.1 (C22), 133.8 (C30), 133.8 (C45), 133.5 (C15), 133.4 (C33), 133.3 (C35), 133.1 (C25), 133.0 (C2), 132.6 (C40), 132.5 (C23), 132.0 (C12), 131.7 (C50), 130.8 (C13), 130.8 (C10), 130.7 (C43), 129.5 (C29), 128.5 (C9), 128.4 (C4), 128.3 (C7), 128.1 (C46), 128.1 (C6), 128.0 (C36), 127.7 (C49), 127.7 (C14), 127.6 (C16), 127.6 (C26), 127.1 (C19), 126.9 (C48), 126.8 (C34), 126.5 (C37, C18), 126.5 (C24), 126.4 (C39), 126.3 (C38), 126.3 (C47), 126.1 (C17), 126.0 (C8), 125.9 (C27), 125.4 (C44), 125.0 (C28), 124.5 (C51), 123.0 (C3); MALDI-FTICR: m/z calcd. for C₅₁H₃₁BrO^{+•} 738.1558 found 738.1550 [M^{+•}]; Crystals suitable for X-ray crystallographic analysis were obtained by slow evaporation of a chloroform solution. Examination of catalysts and conditions can be found on page S21–S22. No unexpected or unusually high safety hazards were encountered.

$(S_a, S_a, S_a, S_a, S_a)$ -1'''-Bromo-[1:2']-quinquenaphthalene-2-carbaldehyde, $(S_a, S_a, S_a, S_a, S_a)$ -16

 $(S_{\rm a}, S_{\rm a}, S_{\rm a}, S_{\rm a})$ -16

The in situ double-oxidation was performed according to the general procedure **B** using diol D (56.1 mg, 73.6 µmol, 1.00 eq.), IBX (206 mg, 736 µmol, 10.0 eq.) and 6 h reaction time. To the keto-aldehyde at RT was added N-(9-anthracenylmethyl)cinchonindinium chloride (3.84 mg, 7.36 µmol, 10.0 mol%) followed by NaH (60% in mineral oil, 17.7 mg, 443 µmol, 6.01 eq.). The mixture was stirred for 16 h at RT, aq. sat. NH₄Cl (5.0 mL) and H₂O (5.0 mL) were added, the layers were separated and the aq. layer was extracted with CH₂Cl₂ (2x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. Purification by column chromatography (n-pentane:CH₂Cl₂ 4:1 to 1:4) yielded the aldol condensation product as colorless solid (22.2 mg, 30.0 µmol, 41%) over two steps, d.r. = 77:23). Diastereomerically pure material was obtained by preparative TLC (n-pentane:CH₂Cl₂ 1:2): m.p. 251.4 °C (decomp.); °C; R_f 0.26 (n-pentane:CH₂Cl₂ 1:1); $[\alpha]_D$ –478 (c 1.0 in CDCl₃); v_{max} (neat): 3052w, 2852w, 1725m, 1693m, 1678s, 1596w, 1503w, 1425w, 1309m, 1267m, 1235m, 1101m, 1033w, 822s, 742s; ¹H NMR (500 MHz, CDCl₃): $\delta = 9.69$ (1H, d, ⁴J 0.8, C1H), 7.98–7.94 (1H, m, C49H), 7.91–7.87 (2H, m, C14H, C16H), 7.84 (1H, d, ³J 8.2, C6H), 7.83-7.79 (2H, m, C26H, C4H), 7.76 (1H, d, ³*J* 8.3, C24*H*), 7.72 (1H, d, ³*J* 8.6, C3*H*), 7.44–7.37 (6H, m, C27*H*, C29*H*, C36*H*, C46H, C47H, C48H), 7.34-7.28 (3H, m, C7H, C13H, C37H), 7.27-7.21 (2H, m, C17H, C23*H*), 7.16 (1H, ddd, ³*J* 8.5, 6.8, ⁴*J* 1.4, C28*H*), 7.08 (1H, ddd, ³*J* 8.4, 6.7, ⁴*J* 1.4, C38*H*), 6.92 (1H, d, ³*J* 8.5, C9*H*), 6.69 (1H, dd, ³*J* 8.5, ⁴*J* 0.7, C39*H*), 6.44 (1H, d, ³*J* 8.5, C34*H*), 6.40 (1H, dd, ³J 8.4, ⁴J 0.6, C44H), 6.33 (1H, d, ³J 8.6, C19H), 6.26 (1H, ddd, ³J 8.3, 6.8, ⁴J 1.3, C8H), 6.09 (1H, ddd, ³J 8.4, 6.9, ⁴J 1.3, C18H), 5.93 (1H, d, ³J 8.3, C43H), 5.60 (1H, d, ${}^{3}J$ 8.6, C33*H*); ${}^{13}C$ NMR (126 MHz, CDCl₃): δ = 192.3 (*C1*), 145.2 (*C11*), 141.1 (C21), 138.2 (C31), 137.6 (C41), 136.7 (C5), 136.7 (C42), 135.3 (C20), 134.1 (C32), 133.9 (C30), 133.7 (C45), 133.6 (C15), 133.5 (C25), 133.4 (C10), 133.3 (C22), 133.0 (C35), 132.4 (C40), 132.2 (C23), 131.8 (C50), 131.5 (C33), 131.3 (C12), 130.5 (C43), 130.0 (C2), 129.8 (C13), 129.6 (C29), 128.3 (C4), 128.1 (C7), 128.1 (C46), 128.0 (C6, C26), 127.8 (C49), 127.7 (C36), 127.5 (C14), 127.5 (C19), 127.2 (C24), 127.2 (C16), 126.9 (C9), 126.9 (C48), 126.5 (C8), 126.4 (C18), 126.3 (C47), 126.2 (C17, C39), 126.0 (C27), 125.7 (C34), 125.6 (C37), 125.6 (C38), 125.3 (C44), 125.1 (C28), 124.8 (C51), 122.2 (C3); MALDI-FTICR: m/z calcd. for C₅₁H₃₁BrO^{+•} 738.1558 found 738.1545 [M^{+•}]. Examination of catalysts and conditions can be found on page S21-S22. No unexpected or unusually high safety hazards were encountered.

Catalyst-controlled Stereodivergent Synthesis, Triaryl Amine End-Group

(Z)-4-(2-((4-(Bis(4-methoxyphenyl)amino)phenyl)(hydroxy)methyl)phenyl)but-3-en-1-ol (diol E)

Prepared according to the general procedure A using 4-(bis(4-methoxyphenyl) amino)benzaldehyde (2.00 g, 6.00 mmol, 1.00 eq.), (Z)-4-(2-bromophenyl)but-3-en-1-ol $(370 \text{ mmolL}^{-1}, 2.04 \text{ g}, 9.00 \text{ mmol}, 1.50 \text{ eq.}), n-Bu_2Mg (0.55 \text{ molL}^{-1}, 8.51 \text{ mL}, 4.68 \text{ mmol})$ 0.78 eq.) and n-BuLi (1.51 molL⁻¹, 6.20 mL, 9.36 mmol, 1.56 eq.), to yield after column chromatography (n-pentane:Et₂O 1:1 to 0:1) the desired diol as a pale yellow solid (2.23 g, 4.62 mmol, 77%): m.p. 51.3-55.0 °C; R_f 0.51 (*n*-pentane:Et₂O 1:3); v_{max} (neat): 3352w, 3001w, 2356w, 2055w, 1605w, 1501s, 1236s, 1175w, 1106w, 1031m, 826m 762w; ¹H NMR (500 MHz, C₆D₆): $\delta = 7.66$ (1H, d, ³J 7.7, C9H), 7.24 (2H, d, ³J 8.4, C13H), 7.13 (1H, d, ³J 7.0, C6H), 7.11–7.05 (8H, m, C7H, C8H, C14H, C17H), 6.72 (4H, d, ³J 8.6, C18H), 6.62 (1H, d, ³J 11.5, C4H), 5.91 (1H, s, C11H), 5.52 (1H, ddd, ³J 11.3, 7.5, 7.5, C3H), 3.30 (6H, s, C20H), 3.19 (2H, dd, ³J 6.4, 6.2, C1H), 2.17–2.08 (6H, m, C2H), 2.05–1.96 (1H, m, C2*H*); ¹³C NMR (126 MHz, C₆D₆): δ = 156.4 (*C19*), 148.5 (*C15*), 143.1 (C10), 141.7 (C16), 136.3 (C12), 136.0 (C5), 130.6 (C4), 130.4 (C3), 129.9 (C6), 128.3 (C13), 127.6 (C7/C8), 127.3 (C9), 127.1 (C7/C8), 126.9 (C17), 121.1 (C14), 115.2 (C18), 73.0 (C11), 62.0 (C1), 55.0 (C20), 32.0 (C2); ESI-MS: m/z calcd. for C₂₁H₂₁NO₄Na⁺ 504.2145 found 504.2146 $[M+Na^+]$. No unexpected or unusually high safety hazards were encountered.

1-(4-(Bis(4-methoxyphenyl)amino)phenyl)-2-naphthaldehyde

The in situ double-oxidation was performed according to the general procedure **B** using diol E (1.30 g, 2.70 mmol, 1.00 eq.) and IBX (2.27 g, 8.10 mmol, 3.00 eq.) with 3 h reaction time. To the keto-aldehyde solution $rac_{(\pm)}-5_{(2-pyrrolidinyl)}-1H$ -tetrazole (150 mg, 1.08 mmol, 40 mol%) in DMF (43 mL) and H_2O (135 mL) was added and the mixture was vigorously stirred at RT for 17 h. The layers were separated and the aq. layer was extracted with CH₂Cl₂ (150 mL). The combined organic layers were concentrated in vacuo, the residue dissolved in Et₂O (150 mL). The resulting solution was washed with H₂O (4x 150 mL) to remove the remaining DMF. The organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo. The crude aldol addition product was dissolved in CHCl₃ (135 mL) and Amberlite® IRA-96 (6.30 g, washed with 2x MeOH and 2x CH₂Cl₂) was added. The mixture was stirred for 2 h at RT, filtered, and concentrated in *vacuo* to give the crude aldehyde. Purification by column chromatography (*n*-pentane:Et₂O 1:1) yielded 1-(4-(bis(4-methoxyphenyl)amino)phenyl)-2-naphthaldehyde as a yellow solid (890 mg, 1.94 mmol, 72% over two steps): m.p. 72.8 °C (decomp.); R_f 0.76 (n-pentane:Et₂O 2:1); v_{max} (neat): 2835w, 1685m, 1602m, 1501s, 1461m, 1382w, 1284m, 1236s, 1179m, 1107w, 1032m, 908w, 821s, 749m; ¹H NMR (500 MHz, CDCl₃): $\delta = 10.01$ (1H, d, ³J 0.7, C1H), 8.04 (1H, d, ³J 8.6, C3H), 7.92–7.88 (2H, m, C6H, C9H), 7.87 (1H, d, ³J 8.4, C4H), 7.62 (1H, ddd, ³J 8.2, 6.9, ⁴J 1.3, C7H), 7.50 (1H, ddd, ³J 8.3, 7.1, ⁴J 1.4, C8H), 7.20-7.16 (6H, m, C13H, C17H), 7.06-7.02 (2H, m, C14H), 6.92-6.88 (4H, m, C18*H*), 3.82 (6H, s, C20*H*). ¹³C NMR (126 MHz, CDCl₃): δ = 193.4 (*C1*), 156.4 (*C19*), 149.1 (C15), 147.1 (C11), 140.6 (C16), 136.3 (C5), 132.9 (C10), 132.0 (C13), 131.6 (C2), 128.8 (C7), 128.4 (C6), 128.1 (C4), 128.0 (C9), 127.3 (C17), 126.8 (C8), 126.0 (C12), 122.4 (C3), 119.0 (C14), 115.0 (C18), 55.6 (C20); ESI-MS: m/z calcd. for C₃₁H₂₅NO₃^{*+} 459.1829 found 459.1827 [M^{•+}]. No unexpected or unusually high safety hazards were encountered.

(Z)-4-(2-((1-(4-(Bis(4-methoxyphenyl)amino)phenyl)naphthalen-2-yl)(hydroxy)methyl)phenyl) but-3-en-1-ol (diol F)

Prepared according to the general procedure A using 1-(4-(bis(4-methoxyphenyl)amino) phenyl)-2-naphthaldehyde (846 mg, 1.84 mmol, 1.00 eq.), (Z)-4-(2-bromophenyl)but-3-en-1-ol (370 mmolL⁻¹, 627 mg, 2.76 mmol, 1.50 eq.), *n*-Bu₂Mg (0.55 molL⁻¹, 627 mg, 2.76 mmol, 0.78 eq.) and n-BuLi (1.51 molL⁻¹, 1.91 mL, 2.87 mmol, 1.56 eq.), to yield after column chromatography (n-pentane:Et₂O 1:1 to 0:1) the desired diol as a pale yellow solid (846 mg, 1.39 mmol, 76%); m.p. 87.4–90.7 °C; R_f 0.70 (*n*-pentane:Et₂O 1:3); v_{max} (neat): 3349w, 2949w, 2358w, 1604w, 1501s, 1462w, 1385w, 1236s, 1177w, 1106w, 823m, 756w; ¹H NMR (500 MHz, C_6D_6): $\delta = 8.19$ (1H, d, ³J 8.6, C13H), 7.81–7.77 (2H, m, C14H, C19H), 7.71 (1H, dd, ³J 8.0, ⁴J 1.0, C16H), 7.48–7.44 (1H, m, C9H), 7.26 (1H, ddd, ³J 8.1, 6.8, ⁴J 1.3, C17H), 7.23-7.19 (5H, m, C18H, C27H), 7.16 (1H, dd, ³J 8.3, ⁴J 2.5, C24H/C24'H), 7.09 (1H, dd, ³J 8.4, ⁴J 2.1, C23H/C23'H), 7.06–7.01 (3H, m, C6H, C7H, C8H), 6.93 (1H, dd, ³J 8.4, ⁴J 2.4, C24H, C24'H), 6.81–6.77 (4H, m, C28H), 6.61 (1H, dd, ³J 8.4, ⁴J 2.0, C23H/C23'H), 6.30 (1H, d, ³J 11.5, C4H), 6.28 (1H, s, C11H), 5.54-5.47 (1H, m, C3H), 3.98 (1H, s, OH), 3.33 (6H, s, C30H), 3.21-3.10 (2H, m, C1H), 2.29–2.19 (1H, m, C2H), 2.00 (1H, s, OH), 1.83–1.74 (1H, m, C2H); ¹³C NMR (126 MHz, C_6D_6 : $\delta = 156.6$ (*C29*), 148.4 (*C25*), 143.6 (*C10*), 141.6 (*C26*), 139.4 (*C12*), 138.2 (*C21*), 137.0 (C5), 134.0 (C20), 133.6 (C15), 132.0 (C23), 131.2 (C4), 131.0 (C23'), 130.9 (C3), 129.6 (C6/C7/C8), 128.6 (C22), 128.4 (C9), 128.3 (C16), 127.8 (C6/C7/C8), 127.5 (C14), 127.2 (C19), 127.2 (C6/C7/C8), 127.0 (C27), 126.1 (C18), 125.8 (C17), 125.3 (C13), 121.0 (C24'), 120.7 (C24), 115.3 (C28), 70.7 (C11), 61.6 (C1), 55.1 (C30), 31.6 (C2); ESI-MS: m/z calcd. for $C_{41}H_{37}NO_4Na^+$ 630.2615 found 630.2614 [M+Na⁺]. No unexpected or unusually high safety hazards were encountered.

(S_a)-1'-(4-(bis(4-methoxyphenyl)amino)phenyl)-[1,2'-binaphthalene]-2-carbaldehyde, (S_a)-18

The in situ double-oxidation was performed according to the general procedure B using diol F (835 mg, 1.37 mmol, 1.00 eq.) and IBX (1.15 g, 4.11 mmol, 3.00 eq.) with 3 h reaction time. To the keto-aldehyde solution (S)-(-)-5-(2-pyrrolidinyl)-1H-tetrazole (76.3 mg, 548 µmol, 40 mol%) in DMF (22 mL) and citrate buffer (pH 5, 68 mL) was added and the mixture was vigorously stirred at RT for 60 h. The layers were separated and the aq. layer was extracted with CH_2Cl_2 (2x 150 mL). The combined organic layers were concentrated in vacuo and the residue was redissolved in Et₂O (150 mL). The resulting solution was washed with H₂O (4x 150 mL) to remove the remaining DMF. The organic phases were dried over Na₂SO₄, filtered and the solvent was removed *in vacuo*. The crude aldol addition product was dissolved in CHCl₃ (135 mL) and Amberlite[®] IRA-96 (8.35 g, washed with 2x MeOH and 2x CH₂Cl₂) was added. The mixture was stirred for 6 h at RT, filtered, and concentrated in vacuo to give the crude aldehyde. Purification by column chromatography (*n*-pentane:Et₂O 1:1) yielded (S_a)-17 as a yellow solid (516 mg, 881 µmol, 64%): m.p. 102.8–105.8 °C; R_f 0.62 (*n*-pentane:Et₂O 2:1); [α]_D –279 (c 0.5 in CHCl₃); v_{max} (neat): 2952w, 2836w, 1692m, 1606w, 1504s, 1241s, 1037w, 826m, 754m; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 9.87 (1\text{H}, \text{d}, {}^4J 0.8, \text{C1}H)$, 8.01 (1H, d, ${}^3J 8.2, \text{C1}6H)$, 7.99 (1H, d, ³J 8.3, C14H), 7.92 (1H, d, ³J 8.5, C3H), 7.89–7.85 (2H, m, C6H, C19H), 7.83 (1H, d, ³J 8.6, C4H), 7.64–7.58 (2H, m, C9H, C17H), 7.56 (1H ddd, ³J 8.2, 6.9, ⁴J 1.3, C7H), 7.54-7.50 (2H, m, C13H, C18H), 7.39 (1H, ddd, ³J 8.3, 7.0, ⁴J 1.4, C8H), 6.94 (1H, dd, ³J 8.5, ⁴J 2.1, C23H), 6.87–6.83 (4H, m, C27H), 6.78–6.72 (5H, m, C24H, C28H), 6.55 (1H, dd, ³J 8.6, ⁴J 2.3, C23'H), 6.42 (1H, dd, ³J 8.4, ⁴J 2.4, C24'H), 3.77 (6H, s, C30H); ¹³C NMR (126 MHz, C_6D_6): $\delta = 192.5$ (*C1*), 155.8 (*C29*), 147.6 (*C25*), 146.7 (*C11*), 140.9 (C26), 140.7 (C21), 136.0 (C5), 133.8 (C15), 133.1 (C10), 132.8 (C20), 132.0 (C12), 131.0 (C23), 130.9 (C2), 130.3 (C23'), 130.1 (C22), 128.7 (C13), 128.7 (C7), 128.3 (C16), 128.3 (C6), 128.2 (C9), 128.1 (C4), 127.2 (C14), 127.1 (C19), 126.9 (C18), 126.8 (C8), 126.6 (C17), 126.4 (C27), 121.9 (C3), 120.1 (C24'), 120.0 (C24), 114.7 (C28), 55.6 (C30); ESI-

MS: m/z calcd. for $C_{41}H_{31}NO_3^{\bullet+}$ 585.2298 found 2301 [M^{•+}]; The e.r. (>99:1) of (S_a)-17 was determined by HPLC using a *Chiralcel AD-H* column (1.0 mLmin⁻¹, *i*-PrOH:*n*-heptane 10:90): (S_a) $t_R = 10.1$ min and (R_a) $t_R = 11.5$ min; racemic reference material was obtained with *rac*-5-(2-pyrroidinyl)-1*H*-tetrazole as catalyst. No unexpected or unusually high safety hazards were encountered.

(Z,S_a)-4-(2-((1'-(4-(Bis(4-methoxyphenyl)amino)phenyl)-[1,2'-binaphthalen]-2-yl)(hydroxy) methyl)phenyl)but-3-en-1-ol (diol G)

Prepared according to the general procedure A using (S_a) -18 (464 mg, 792 µmol, 1.00 eq.), (Z)-4-(2-bromophenyl)but-3-en-1-ol (370 mmolL⁻¹, 270 mg, 1.19 mmol, 1.50 eq.), n-Bu₂Mg (0.55 molL⁻¹, 1.12 mL, 618 µmol, 0.78 eq.) and n-BuLi (1.51 molL⁻¹, 824 µL, 1.24 mmol, 1.56 eq.), to yield after column chromatography (n-pentane:Et₂O 1:1 to 0:1) the desired diol as a pale yellow solid (480 mg, 654 µmol, 83%): m.p. 111.1-112.9 °C; Rf 0.62 (c-hexane:EtOAc 1:1); [a]_D -165 (c 1.0 in CHCl₃); v_{max} (neat): 3389br, 3054w, 2949w, 1604w, 1502s, 1462m, 1378w, 1318m, 1281m, 1237s, 1177m, 1107w, 1033s, 823s, 750m; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.18$ (1H, d, ³J 8.1, C29H), 8.05 (1H, d, ³J 8.6, C13H), 7.71 (1H, d, ³J 7.9, C26H), 7.67 (1H, d, ³J 8.6, C14H), 7.64–7.59 (2H, m, C9H, C16H), 7.54 (1H, dd, ³J 8.4, ⁴J 2.2, C33H), 7.50–7.45 (2H, m, C19H, C24H), 7.34–7.27 (2H, m, C27*H*, C28*H*), 7.22 (1H, ddd, ³*J* 8.1, 6.9, ⁴*J* 1.3, C17*H*), 7.13 (1H, ddd, ³*J* 8.2, 6.9, ⁴*J* 1.4, C18H), 7.10-7.03 (3H, m, C7H, C8H, C34H), 7.02-6.98 (2H, m, C6H, C23H), 6.94-6.85 (5H, m, C33'H, C37H), 6.66–6.62 (4H, m, C38H), 6.56 (1H, dd, ³J 8.6, ⁴J 2.5, C34'H), 6.20 (1H, s, C11*H*), 5.96 (1H, d, ³*J* 11.5, C4*H*), 5.20 (1H, ddd, ³*J* 11.3, 9.2, ⁴*J* 5.8, C3*H*), 3.28 (6H, s, C40H), 2.99–2.86 (2H, m, C1H), 2.07–1.98 (1H, m, C2H), 1.63–1.54 (1H, m, C2*H*); ¹³C NMR (126 MHz, C_6D_6): $\delta = 156.5$ (C39), 148.4 (C35), 143.0 (C10), 141.2 (C36), 139.1 (C31), 139.0 (C12), 137.3 (C21), 137.0 (C5), 135.5 (C22) 134.0 (C20), 134.0 (C25), 133.6 (C30), 133.3 (C15), 131.6 (C33), 131.4 (C33²), 130.9 (C4), 130.5 (C32), 130.4 (C3), 130.1 (C23), 129.6 (C6), 128.5 (C26), 128.4 (C16), 128.3 (C9), 128.1 (C14), 127.5 (C29), 127.4 (C19), 127.4 (C8), 127.1 (C7), 127.1 (C24), 127.0 (C37), 126.5 (C28), 126.2 (C18), 126.2 (C27), 125.7 (C17), 125.6 (C13), 120.2 (C34'), 119.8 (C34), 115.1 (C38), 70.7 (C11), 61.7 (C1), 55.0 (C40), 31.5 (C2); ESI-MS: m/z calcd. for C₅₁H₄₃NO₄Na⁺ 756.3084 found 756.3075. No unexpected or unusually high safety hazards were encountered.

$(Z,R_a,S_a)-1''-(4-(Bis(4-methoxyphenyl)amino)phenyl)-[1:2']-ternaphthalene-2-carbaldehyde, (R_a,S_a)-19$

The in situ double-oxidation was performed according to the general procedure B using diol G (50.0 mg, 68.1 µmol, 1.00 eq.), IBX (57.2 mg, 204 µmol, 3.00 eq.) and 2 h reaction time. To the keto-aldehyde solution aq. KOH (1.0 molL⁻¹, 3.4 mL) was added. The mixture was stirred for 2 h at RT, aq. sat. NH₄Cl (5.0 mL) and H₂O (5.0 mL) were added, the layers were separated and the aq. layer was extracted with CH₂Cl₂ (2x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification by column chromatography (n-pentane:Et₂O 5:1) yielded the aldol condensation product as a yellow solid (21.0 mg, 29.0 µmol, 43% over two steps, d.r. = 95:5): m.p. 160.2–162.5 °C; R_f 0.44 (c-hexane:EtOAc 4:1); [α]_D -84.7 (c 1.0 in CHCl₃); v_{max} (neat): 3054w, 2952w, 2835w, 1688m, 1603m, 1503s, 1374w, 1286m, 1239s, 1179w, 1107w, 1035m, 909m, 823s, 731s, 647w; ¹H NMR (500 MHz, CDCl₃, line-broadening due to triaryl amine rotation): $\delta =$ 8.57 (1H, d, ⁴J 0.7, C1*H*), 8.00 (1H, d, ³J 8.3, C16*H*), 7.93 (1H, d, ³J 8.5, C14*H*), 7.78 (1H, d, ³J 8.6, C3H), 7.70–7.60 (5H, m, C4H, C6H, C9H, C26H, C29H), 7.58 (1H, ddd, ³J 8.1, 6.8, ⁴J 1.2, C17H), 7.55–7.52 (2H, m, C19H, C24H), 7.49 (1H, d, ³J 8.5, C23H), 7.45 (1H, ddd, ³J 8.3, 6.8, ⁴J 1.4, C18H), 7.40 (1H, ddd, ³J 8.1, 6.9, ⁴J 1.2, C7H), 7.38–7.31 (2H, m, C8H, C27H), 7.29 (1H, d, ³J 8.4, C13H), 7.28–7.24 (1H, m, C28H), 7.24–7.16 (4H, m br, C37H/C38H), 6.89–6.84 (4H, m br, C37H/C38H), 6.79–6.73 (1H, m br, C33H/C34H),

6.54–6.48 (1H, m br, C33*H*/C34*H*), 6.40–6.31 (1H, m br, C33*H*/C34*H*), 3.80 (6H, s, C40*H*); ¹³C NMR (126 MHz, CDCl₃, line-broadening due to triaryl amine rotation): $\delta = 192.5$ (*C1*), 156.3 (*C39*), 148.1 (*C35*), 145.1 (*C11*), 140.7 (*C36*), 139.6 (*C21*), 138.8 (*C31*), 135.4 (*C5*), 134.7 (*C20*), 134.0 (*C22*), 133.3 (*C15*, *C25*), 132.9 (*C2*, *C30*), 132.6 (*C32*/*C33*/*C33*²), 132.0 (*C12*), 131.3 (*C10*), 130.6 (*C23*), 130.5 (*C32*/*C33*/*C33*²), 130.0 (*C13*), 128.5 (*C9*), 128.4 (*C16*), 128.3 (*C4*), 128.2 (*C7*), 128.0 (*C6*), 127.9 (*C26*), 127.8 (*C32*/*C33*/*C33*²), 127.5 (*C14*), 127.4 (*C19*), 127.1 (*C18*), 126.9 (*C29*), 126.5 (*C17*), 126.0 (*C24*), 125.9 (*C8*), 125.8 (*C28*), 125.8 (*C37*), 125.7 (*C27*), 122.0 (*C3*), 118.2 (*C34*/*C34*²), 118.0 (*C34*/*C34*²), 114.8 (*C38*), 55.6 (*C40*); ESI-MS: m/z calcd. for C₅₁H₃₇NO₃Na⁺ 734.2666 found 734.2669 [M+Na⁺]. Test-reaction for the aldol condensation were performed with KOH_(S) in the absence of water and showed the following selectivities: CHCl₃ 85:15, toluene 80:20, THF (>90:10). No unexpected or unusually high safety hazards were encountered.

$(Z,R_a,S_a)-1''-(4-(Bis(4-methoxyphenyl)amino)phenyl)-[1:2']-ternaphthalene-2-carbaldehyde, <math>(S_a,S_a)-20$

The in situ double-oxidation was performed according to the general procedure **B** using diol G (147 mg, 200 µmol, 1.00 eq.), IBX (168 mg, 600 µmol, 3.00 eq.) and 2 h reaction time. To the keto-aldehyde solution N-benzylcinchonium chloride (8.42 mg, 20.0 µmol, 10.0 mol%) and aq. KOH (1.0 molL⁻¹, 5.7 mL) were added. The mixture was stirred for 16 h at RT, H₂O (10 mL) was added, the layers were separated and the aq. layer was extracted with CH₂Cl₂ (2x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. Purification by preparative TLC (n-pentane:Et₂O 2:1) yielded a mixture of (R_a, S_a) -19 and (S_a, S_a) -18 (21.0 mg, 29.0 µmol, 43% over two steps, d.r. = 35:65). Diastereomerically pure material was obtained by preparative TLC (*c*-hexane:EtOAc 4:1): $R_f 0.40$ (*c*-hexane:EtOAc 4:1); $[\alpha]_D -272.1$ (*c* 0.2 in CHCl₃); v_{max} (neat): 3054w, 2928w, 2849w, 1678m, 1604m, 1503s, 1462w, 1379w, 1239s, 1180w, 1104w, 1034m, 909m, 824s, 731s; ¹H NMR (500 MHz, CDCl₃): $\delta = 9.93$ (1H, d, ⁴J 0.9, C1*H*), 8.01 (1H, dd, ³*J* 8.5, ⁴*J* 1.1, C16*H*), 7.97 (1H, d, ³*J* 8.3, C14*H*), 7.81 (1H, d, ³*J* 8.1, C26H), 7.79 (1H, d, ³J 8.5, C24H), 7.71–7.67 (2H, m, C3H, C6H), 7.64 (1H, d, ³J 8.8, C4H), 7.61-7.56 (2H, m, C17H, C19H), 7.48-7.43 (2H, m, C13H, C18H), 7.42-7.36 (4H, m, C7H, C23H, C27H, C29H), 7.25-7.21 (2H, m, C8H, C28H), 7.07-7.02 (4H, m, C37H), 6.92 (1H, d, ³J 8.6, C9H), 6.86–6.81 (4H, m, C38H), 6.51 (dd, ³J 8.4, ⁴J 1.9, C33H), 6.41 (1H, dd, ³J 8.4, ⁴J 2.4, C34H) 5.80 (1H, dd, ³J 8.4, ⁴J 2.3, C34'H) 5.44 (1H, dd, ³J 8.4, ${}^{4}J$ 1.9, C33'*H*), 3.80 (6H, s, C40*H*); ${}^{13}C$ NMR (126 MHz, CDCl₃): δ = 192.4 (*C1*), 156.2 (C39), 147.1 (C35), 145.7 (C11), 141.1 (C21), 140.6 (C36), 138.9 (C31), 136.1 (C5), 134.6 (C20), 133.9 (C22), 133.4 (C25), 133.4 (C15), 133.1 (C30), 132.9 (C10), 131.8 (C33'), 131.7 (C12), 130.5 (C2), 130.2 (C23), 129.9 (C33), 129.4 (C13), 128.6 (C32), 128.3 (C16), 128.2 (C26), 128.1 (C4), 128.1 (C7), 127.9 (C6, C9), 127.8 (C19), 127.3 (C37), 127.0 (C14), 126.9 (C18, C24, C29), 126.7 (C8), 126.6 (C17), 125.9 (C28), 125.8 (C27), 121.9 (C3), 117.5 (C34), 117.4 (C34'), 114.8 (C38), 55.6 (C40); ESI-MS: m/z calcd. for $C_{51}H_{37}NO_3Na^+$ 734.2666 found 734.2669 [M+Na⁺]. No unexpected or unusually high safety hazards were encountered.

NMR Analysis of the Structures in Solution

- strong nOe signal -- weak nOe signal ----
- ¹H signal (in ppm), ring current effect

 $(R_{\rm a}, S_{\rm a}, S_{\rm a})$ -13

Br

 (S_{a}, S_{a}, S_{a}) -14

 $(R_{\rm a}, S_{\rm a}, S_{\rm a}, S_{\rm a})$ -15

7.61 CHO 7. Ì 7.17 $(R_{\rm a}, S_{\rm a}, S_{\rm a}, S_{\rm a})$ -15

 $(S_{\mathrm{a}}, S_{\mathrm{a}}, S_{\mathrm{a}}, S_{\mathrm{a}})$ -16

 $(S_{\rm a}, S_{\rm a}, S_{\rm a}, S_{\rm a})$ -16

Evaluation of Catalysts and Conditions

General Procedure C for the examination of catalysts and conditions of the diastereoselective arene-forming aldol condensation:

The in situ double-oxidations were performed in batches for several entries (3.0–4.0 mg of the diol per entry) using IBX (5.0–10 eq.) in MeCN (1.0 mL per entry) at 60 °C. After complete oxidation (monitored by ¹H NMR) the mixture was filtered, concentrated *in vacuo* and to the residue was added CHCl₃ (1.0 mL per entry). The mixture was filtered again and distributed into portions. For entries with CHCl₃ as solvent: co-solvents and catalysts were added directly. For entries with other solvents: solution was concentrated *in vacuo* and the residue dissolved in the solvent of choice. For entries with a temperature below RT: solution was cooled and catalyst (followed by base) was added. The mixtures were stirred for 14–20 h and poured on aq. sat. NH₄Cl (2.5 mL) and H₂O (2.5 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (5.0 mL). The combined organic layers were concentrated *in vacuo* (co-evaporation with toluene for entries with DMF) and analyzed by ¹H NMR. The yields were estimated by integration of the product aldehyde peaks in comparison with aromatic signals.

Catalyst list^[5]

Initial examination of catalysts and conditions for (R_a, S_a) -7 and (S_a, S_a) -8

The reactions were performed according to the general procedure \mathbf{B} .

Entry	Catalyst ¹	Solvent 1	Solvent 2	Solvent 3	Solvent	Additive	d.r.	Estimated Yield
					Ratio		8:7	
1	(S)-Tet	CDCl ₃	DMF	H ₂ O	3/1/1		92:8	$46\%^2$
2	(R)-Tet	CDCl ₃	DMF	H_2O	3/1/1		2:98	<5% ²
3	L-Met	CDCl ₃	DMF	H_2O	3/1/1		92:8	<5%
4	(S,S)-Cat1	CDCl ₃	DMF	H_2O	3/1/1		97:3	<5%
5	Cat2	CDCl ₃	DMF	H_2O	3/1/1			<5%
6	Cat3	CDCl ₃	DMF	H_2O	3/1/1			<5%
7	Cat4	CDCl ₃	DMF	H_2O	3/1/1			<5%
8	Cat5	CDCl ₃	DMF	H_2O	3/1/1			<5%
9	(S)-Cat6	CDCl ₃	DMF	H_2O	3/1/1		97:3	~35%
10	Cat7	CDCl ₃	DMF	H_2O	3/1/1		40:60	<5%
11	(R,S)-Cat1	CDCl ₃	DMF	H_2O	3/1/1		95:5	~15%
12	(S,R)-Cat1	CDCl ₃	DMF	H_2O	3/1/1		36:64	<5%
13	(R,R)-Cat1	CDCl ₃	DMF	H_2O	3/1/1		8:92	~15%
14	(R)-Cat6	CDCl ₃	DMF	H_2O	3/1/1		12:88	~20%
15	(R)-Cat8	CDCl ₃	DMF	H_2O	3/1/1		10:90	~20%
16	Glycinol	CDCl ₃	DMF	H_2O	3/1/1		36:64	<5%
17	<i>i</i> -Pr ₂ NH	CDCl ₃	DMF	H_2O	3/1/1		7:93	~10%
18	Pyrrolidine	CDCl ₃	DMF	H_2O	3/1/1			<5%
19	Piperidine	CDCl ₃	DMF	H_2O	3/1/1		42:58	~5%
20	Me ₂ -piperidine	CDCl ₃	DMF	H_2O	3/1/1		5:95	~5%
21	(H ₄)-quinoline	CDCl ₃	DMF	H_2O	3/1/1			<5%
22	Cy ₂ NH	CDCl ₃	DMF	H_2O	3/1/1		<5:95	<5%
23	Bn ₂ NH	CDCl ₃	DMF	H_2O	3/1/1			<5%
24	Morpholine	CDCl ₃	DMF	H_2O	3/1/1			<5%
25	Me ₄ -piperidine	CDCl ₃	DMF	H_2O	3/1/1		<5:95	~5%
26	Me ₂ N-Et-NH ₂	CDCl ₃	DMF	H_2O	3/1/1			~5%
27	Me ₂ N-Et-NMeH	CDCl ₃	DMF	H_2O	3/1/1		50:50	<5%
28	Ph ₂ NH	CDCl ₃	DMF	H_2O	3/1/1		13:87	<5%
29	Aniline	CDCl ₃	DMF	H_2O	3/1/1			~5%
30	Me ₂ NH [•] HCl	CDCl ₃	DMF	H_2O	3/1/1			<5%
31	(R)-Tet	CDCl ₃		H_2O	3/0/1		2:98	<5%
32	(R)-Tet	CDCl ₃	DMF	H_2O	30/1/10		2:98	<5%
33	(R)-Tet	CDCl ₃	DMF	H_2O	6/1/1		2:98	<5%
34	(R)-Tet	CDCl ₃	DMF	H_2O	30/1/30		2:98	<5%
35	(R)-Tet	CDCl ₃	Toluene		1/1/0			<5%
36	(R)-Tet	CDCl ₃	Br-benzene		1/1/0			<5%
37	(<i>R</i>)-Tet	CDCl ₃	MeNO ₂		1/1/0			<5%
38	(R)-Tet	CDCl ₃	Et(OMe) ₂		1/1/0			<5%
39	(R)-Tet	CDCl ₃	EtOAc		1/1/0			<5%
40	(R)-Cat8	DMF			1/0/0			<5%
41	(R)-Cat8	DMF	H_2O		10/1/0			<5%
42	(R)-Cat8	THF			1/0/0			<5%
43	(R)-Cat8	THF	H_2O		10/0/0			<5%
44	(R)-Cat8	Toluene			1/0/0			<5%
45	(R)-Cat8	Toluene	H_2O		10/0/0			<5%
46	(R)-Cat8	CDCl ₃	DMF		3/1/0			<5%
47	(R)-Cat8	DMSO			1/0/0			<5%
48	(R,R)-Cat1	DMF			1/0/0			<5%
49	(R,R)-Cat1	DMF	H_2O		10/1/0			<5%
50	(R,R)-Cat1	THF			1/0/0			<5%
51	(R,R)-Cat1	THF	H_2O		10/0/0			<5%
52	(<i>R</i> , <i>R</i>)-Cat1	Toluene			1/0/0			<5%
53	(<i>R</i> , <i>R</i>)-Cat1	Toluene	H_2O		10/0/0			<5%
54	(<i>R</i> , <i>R</i>)-Cat1	CDCl ₃	DMF		3/1/0			<5%
55	(<i>R</i> , <i>R</i>)-Cat1	DMSO			1/0/0			<5%
56	(R)-Cat8	CDCl ₃	DMF	H_2O	3/1/1	Drop AcOH	19:81	~15%
57	(R)-Cat8	CDCl ₃	DMF	H_2O	3/1/1	Drop HCl (1.0 molL^{-1})		
58	(R)-Cat8	CDCl ₃	DMF	H_2O	3/1/1	Drop conc. NH ₄ Cl	12:88	~15%
59	(R)-Cat8	CDCl ₃	DMF	H_2O	3/1/1	Drop NaOH (1.0 molL ⁻¹)	22:78	<5%
60	(R)-Cat8	CDCl ₃	DMF	H_2O	3/1/1	Drop aq. H ₂ SO ₄ (20%)		

Entry	Catalyst ¹	Solvent 1	Solvent 2	Solvent 3	Solvent	Additive	d.r.	Estimated Yield
·	·				Ratio		8:7	
61	(R)-Cat8	CDCl ₃	DMF	H_2O	3/1/1	Drop aq. NH4OH (25%)	10:90	~15%
62	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. sat. Na ₂ CO ₃	8:92	~20%
63	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Citrate buffer pH 5	11:89	~20%
64	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Phosphate buffer pH 8	16:84	<5%
65	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Borate buffer pH 10		
66	(R)-Cat8	CDCl ₃	DMF	H_2O	3/1/1	NH ₄ OAc (ca 0.2 mg)	16:84	~15%
67	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. sat. Na ₂ CO ₃	8:92	~20%
68	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. sat. NaHCO ₃	9:91	~5%
69	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. sat. K ₂ CO ₃	6:94	~40%
70	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. sat. Na ₂ SO ₄	11:89	~5%
71	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. sat. Na ₂ SO ₃	10:90	~10%
72	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. sat. KNO ₃	9:91	~15%
73	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. sat. NaOAc	12:88	~5%
74	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. sat. NaCl	8:92	~15%
75	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. sat. CaCl ₂	48:52	<5%
76	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. sat. NaH ₂ PO ₄	7:93	~5%
77	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. sat. Na ₂ HPO ₄	16:84	~5%
78	(R)-Cat8	$CDCl_3$	DMF	Additive	3/1/1	Citrate buffer pH 6	12:88	~10%
79	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. K ₂ CO ₃ (8.0 molL ⁻¹)	7:93	~35%
80	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. $K_2CO_3(1.0 \text{ mol}L^{-1})$	6:94	~25%
81	(R)-Cat8	CDCl ₃	DMF	Additive	3/1/1	Aq. $K_2CO_3(0.1 \text{ molL}^{-1})$	10:90	~10%
82	(S)-Cat6	CDCl ₃	DMF	H_2O	3/1/1		95:5	~40%
83	(S)-Cat6	CDCl ₃	DMF	Additive	3/1/1	Aq. $K_2CO_3(4.0 \text{ molL}^{-1})$	7:93	~35%
84		CDCl ₃	DMF	Additive	3/1/1	Aq. sat. K ₂ CO ₃	8:92	48% ²
85		CDCl ₃		Additive	3/1/1	Aq. sat. K ₂ CO ₃	18:82	64% ²
86	Cat27	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$	5:95	~60%
87	Cat28	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$		<5%
88	Cat29	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$	10:90	~45%
89	Cat30	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$	8:92	~35%
90	Cat31	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$	21:79	~55%
91	Cat32	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$	24:76	~50%
92	Cat33	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$	22:78	~20%
93	Cat34	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$	34:66	~45%
94	Cat35	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$	11:89	~50%
95	Cat36	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$	15:85	~35%
96	Cat37	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$	31:69	~30%
97	Cat38	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$		<5%
98	Cat39	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$	9:91	~35%
99	Cat40	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ molL}^{-1})$	5:95	~60%
100	Cat41	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$		<5%
101	Cat42	CDCl ₃		Additive	5/0/1	Aq. KOH (1.0 molL ⁻¹)	7:93	~45%
102	Cat43	CDCl ₃		Additive	5/0/1	Aq. $KOH(1.0 \text{ mol}L^{-1})$	26:74	~60%
103	Cat44	CDCl ₃		Additive	5/0/1	Aq. KOH (1.0 molL^{-1})	53:47	~60%
104		CDCl ₃		Additive	5/0/1	Aq. KOH (1.0 molL^{-1})	23:77	~55%

¹ 40 mol%; ² isolated yield. (S)-Tet: (S)-5-(pyrrolidin-2-yl)-1H-tetrazole; (R)-Tet: (R)-5-(pyrrolidin-2-yl)-1H-tetrazole.

Final examination of catalysts and conditions for (R_a, S_a) -7 and (S_a, S_a) -8

The in situ double-oxidation was performed according to the general procedure **B** using **6** (50.8 mg, 99.7 μ mol, 1.00 eq.) and IBX (83.8 mg, 299 μ mol, 3.00 eq.) with 4 h reaction time. After the optional solvent switch, catalyst and the additive were added. The mixture was stirred for a given time at RT, aq. sat. NH₄Cl (5.0 mL) and H₂O (5.0 mL) were added, the layers were separated and the aq. layer was extracted with CH₂Cl₂ (2x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification by column chromatography (*n*-pentane:CH₂Cl₂ 4:1 to 1:4) gave the aldol condensation product.

Entry	Catalyst	Loading	Time	Solvent 1	Solvent 2	Solvent 3	Solvent	Additive	d.r.	Isolated
							ratio		7:8	Yield
1			24	CHCl ₃	Additive			Aq. KOH (1.0 molL ⁻¹)	80:20	65%
2	(S)-Tet	40	24	CHCl ₃					8:92	13%
3	(S)-Tet	40	24	DMF	H_2O				3:97	55%
4	(S)-Tet	40	48	CHCl ₃	DMF	H_2O			4:96	54%
5	(S)-Tet	40	48	CHCl ₃	DMF	Additive		Citrate buffer pH 5	3:97	75%
6	(R)-Tet	40	48	CHCl ₃	DMF			Citrate buffer pH 5	96:4	64%
7	Cat29	10	24	CHCl ₃	Additive			Aq. $KOH(1.0 \text{ mol}L^{-1})$	89:11	54%
8	Cat33	10	24	CHCl ₃	Additive			Aq. $KOH(1.0 \text{ molL}^{-1})$	78:22	44%
9	Cat28	10	24	CHCl ₃	Additive			Aq. $KOH(1.0 \text{ molL}^{-1})$	78:22	18%
10	Cat27	10	24	CHCl ₃	Additive			Aq. $KOH(1.0 \text{ mol}L^{-1})$	94:6	72%
11	Cat27	5	24	CHCl ₃	Additive			Aq. $KOH(1.0 \text{ mol}L^{-1})$	94:6	70%
12	Cat27	1	24	CHCl ₃	Additive			Aq. $KOH(1.0 \text{ mol}L^{-1})$	94:6	69%

 $(S)-{\rm Tet:}\ (S)-5-({\rm pyrrolidin-2-yl})-1{\rm H-tetrazole};\ (R)-{\rm Tet:}\ (R)-5-({\rm pyrrolidin-2-yl})-1{\rm H-tetrazole}.$

Examination of catalysts and conditions for (R_a, S_a, S_a) -13 and (S_a, S_a, S_a) -14

Entry	Catalyst	Solvent 1	Solvent 2	Solvent 3	Solvent	Additive	d.r.	Estimated
	(mol%)				Ratio		14:13	Yield
1	(R,R)-Cat1 (40)	CDCl ₃	DMF	H_2O	3/1/1			<5%
2	(S,S)-Cat1 (40)	CDCl ₃	DMF	H_2O	3/1/1			
3	(R,S)-Cat1 (40)	CDCl ₃	DMF	H_2O	3/1/1			
4	(S,R)-Cat1 (40)	CDCl ₃	DMF	H_2O	3/1/1			
5	(S)-Cat6 (40)	CDCl ₃	DMF	H_2O	3/1/1			<5%
6	(R)-Cat6 (40)	$CDCl_3$	DMF	H_2O	3/1/1			<5%
7	(S)-Cat8 (40)	CDCl ₃	DMF	H_2O	3/1/1			<5%
8	(S)-Tet (40)	$CDCl_3$	DMF	H_2O	3/1/1			
9	(R)-Tet (40)	CDCl ₃	DMF	H_2O	3/1/1			
10	Cat9 (40)	CDCl ₃	DMF	H_2O	3/1/1			<5%
11	Cat10 (40)	CDCl ₃	DMF	H_2O	3/1/1			
12	Cat11 (40)	CDCl ₃	DMF	H_2O	3/1/1			<5%
13	L-Ile (40)	CDCl ₃	DMF	H_2O	3/1/1			
14	L-Pro (40)	CDCl ₃	DMF	H_2O	3/1/1			
15	L-Met (40)	CDCl ₃	DMF	H_2O	3/1/1			
16	L-Tyr (40)	$CDCl_3$	DMF	H_2O	3/1/1			
17	L-Ala (40)	CDCl ₃	DMF	H_2O	3/1/1			
18	(R,R)-Cat1 (40)	CDCl ₃						
19	(R)-Cat6 (40)	CDCl ₃						<5%
20	(S)-Cat12 (40)	CDCl ₃						<5%
21	(R)-Cat8 (40)	CDCl ₃						
22	(S)-Cat11 (40)	CDCl ₃						<5%
23	Cat13 (40)	CDCl ₃						
24	Cat14 (40)	CDCl ₃						
25	Cat15 (40)	CDCl ₃						
26	Cat16 (40)	CDCl ₃						
27	Cat17 (40)	CDCl ₃						<5%
28	L-Lys (40)	$CDCl_3$						
29	(R)-Cat6 (40)	DCE					95:5	~10%
30	(R)-Cat6 (40)	Toluene					90:10	<5%
31	(R)-Cat6 (40)	THF						<5%
32	(R)-Cat6 (40)	EtOAc						<5%
33	(R)-Cat6 (40)	MeCN						<5%

Entry	Catalyst	Solvent 1	Solvent 2	Solvent 3	Solvent Ratio	Additive	d.r. 14·13	Estimated Vield
34	(R)-Cat6 (40)	MTBE			Tutto		14.10	<1%
35	(R)-Cat8 (40)	CH ₂ Cl ₂						~5%
36	Cat11 (40)	CH_2Cl_2						<5%
37	(S)-Cat12 (40)	CH_2Cl_2						<5%
38	Cat13 (40)	CH_2Cl_2						
39	(R,R)-Cat1 (40)	CH_2Cl_2						
40	Cat9 (40)	CH_2Cl_2						
41	Cat17 (40)	CH_2Cl_2						
42	Cat18 (40)	CH_2Cl_2						
43	Cat19 (40)	CH ₂ Cl ₂						-
44	L -Phe (40)	CH ₂ Cl ₂						<5%
45	L-Ala (40)	CH ₂ Cl ₂						
46	L-Ser (40)	CH ₂ Cl ₂						
4/	L - Met (40)							
40	$(R) - 1 \text{ ft} (40)^{1}$	DCF						<10/
49 50	(R) -Cat8 $(40)^1$	DCE						<1%
51	(R) -Cat6 $(40)^2$	DCE						<1%
52	(R) -Cat8 $(40)^2$	DCE						<1%
53	L-Phe $(40)^2$	DCE						<1%
54	(R) -Cat12 $(40)^2$	DCE						<1%
55	(S)-Cat20 (40)	Toluene						<1%
56	(S)-Cat20 (40)	CH_2Cl_2						<1%
57	(S)-Cat20 (40)	CDCl ₃						
58	(S)-Cat20 (40)	DCE						
59	(S)-Cat20 (40)	THF						<1%
60	(S)-Cat20 (40)	MTBE						<1%
61	n-propylamine (~40)	$CDCl_3$					95:5	<5%
62	n-propylamine (~40)	$CDCl_3$	H_2O		7/1/0		95:5	<5%
63	n-propylamine (~40)	CDCl ₃	DMF	H_2O	3/1/1		65:35	<5%
64	(<i>R</i>)-Tet (40)	$CDCl_3$						<1%
65	(R)-Tet (40)	$CDCl_3$				KHCO ₃ (ca 10 mg)		<1%
66	(<i>R</i>)-Tet (40)	DMF	H_2O		7/1/0		80:20	~10%
67	(S)-Tet (40)	CDCl ₃						<1%
68	(S)-Tet (40)	CDCl ₃	но		7/1/0	KHCO ₃ (ca 10 mg)	95:5	<5%
69 70	(S) - 1 et (40)	DMF	H ₂ O		7/1/0		95:5	~5%
70	L-Pne (40)	DMF	H ₂ O		7/1/0			<1%
/1	L-Ala (40)	DMF	H ₂ O		7/1/0		70.21	<1%
72	L-Set (40)	DMF	H O		7/1/0		79.21	20%
73	D-Ile (40)	DMF	H ₂ O		7/1/0		80.20	20%
75	D-Met(40)	DMF	H ₂ O		7/1/0		80.20	<1%
76	Glv(40)	DMF	H ₂ O		7/1/0		73.27	10%
77	L-Thr (40)	DMF	H ₂ O		7/1/0		78:22	20%
78	L-Leu (40)	DMF	H ₂ O		7/1/0		56:44	<5%
79	L-Tyr (40)	DMF	H ₂ O		7/1/0			<1%
80	L-Pro (40)	DMF	H ₂ O		7/1/0			
81	D-Ala (40)	DMF	H_2O		7/1/0		70:30	~10%
82	Cat21 (40)	DMF	H_2O		7/1/0			<1%
83	D-Pro (40)	DMF	H_2O		7/1/0		95:5	<5%
84	D-Val (40)	DMF	H_2O		7/1/0		82:18	~15%
85	(R)-Cat8 (40)	DMF	H_2O		7/1/0		95:5	<5%
86	(R)-Cat6 (40)	DMF	H_2O		7/1/0		95:5	<5%
87	(<i>R</i> , <i>R</i>)-Cat1 (40)	DMF	H ₂ O		7/1/0		95:5	<5%
88	(S,S)-Catl (40)	DMF	H ₂ O		7/1		95:5	<5%
89	(S,K)-Catl (40)	DMF	H ₂ O		//1		95:5	<5%
90	(R,S)-Cat1 (40)	DMF	H ₂ O		7/1		95:5	<5%
91	Cat22 (40)	DMF	H ₂ O		7/1		95:5	<5% <50/
92	cal25 (40)	DMF			7/1		93.3 20:70	<5%
93	D Thr (40)	DMF	H O		7/1		30.70 85:15	-20%
95	Cat24(40)	DMF	H ₂ O		7/1		72.28	<5%
96	Cat25 (40)	DMF	H ₂ O		7/1		95.5	<5%
97	Cat26 (40)	DMF	H ₂ O		7/1		0.00	<1%
98	D-Cys (40)	DMF	H ₂ O		7/1			<1%
99	(R)-Cat12 (40)	DMF	H ₂ O		7/1			<1%
100	Cat16 (40)	DMF	H_2O		7/1		24:76	<5%
101	Cy ₂ NH	CDCl ₃	DMF	H_2O	3/1/1			
102	<i>i</i> -Pr ₂ NH	CDCl ₃	DMF	H_2O	3/1/1			
103	Pyrrolidine	CDCl ₃	DMF	H_2O	3/1/1			
104	<i>i</i> -Pr ₂ NH	CDCl ₃						
105	Pyridine	CDCl ₃						
106	AcOH	CDCl ₃						
107		CDCl ₃	DMF	Additive	3/1/1	Citrate buffer pH 5	- · · ·	< %
108		CDCl ₃	DMF	Additive	3/1/1	Aq. sat. K ₂ CO ₃	21:79	35%

Entry	Catalyst	Solvent 1	Solvent 2	Solvent 3	Solvent	Additive	d.r.	Estimated
100	(mol%)	CDCI		Additivo	2/0/1	A a set V CO	14:13	¥ ield
109		CDCI3 MeCN		Additive	3/0/1	Aq. sat. K_2CO_3	33:00	03%
111	TiCL (100)	CDCh		Additive	5/0/1	Aq. sal. R ₂ CO ₃		
112	11014 (100)	CDCl ₂				KOtBu (ca 10 eq)	35.65	65%
113		CDCl ₃				NaH (ca 10 eq)	42:58	55%
114		CDCl ₃		Additive	3/0/1	Citrate buffer pH 5		
115		CDCl ₃		Additive	3/0/1	Citrate buffer pH 6		
116		CDCl ₃		Additive	3/0/1	Aq. sat. NH ₄ Cl		
117		CDCl ₃		Additive	3/0/1	Aq. NH4OH (25%)	88:12	35%
118		CDCl ₃		Additive	3/0/1	Aq. sat. Na ₂ CO ₃		
119		CDCl ₃		Additive	3/0/1	Aq. sat. Cs ₂ CO ₃	35:65	5%
120		CDCl ₃		Additive	3/0/1	Aq. sat. KNO ₃		
121		CDCl ₃		Additive	3/0/1	Aq. sat. NaCl		
122		CDCl ₃		Additive	3/0/1	Aq. NaOH (1.0 molL ⁻¹)	13:87	60%
123		CDCl ₃		Additive	3/0/1	Aq. $KOH(1.0 \text{ mol} L^{-1})$	14:86	65%
124		CDCl ₃		Additive	3/0/1	Aq. sat. K ₂ CO ₃	33:66	65%
125	(R)-Cat6 (40)	CDCl ₃	DMF	Additive	3/1/1	Citrate buffer pH 5	92:8	<5%
126	(R)-Cat6 (40)	CDCl ₃	DMF	Additive	3/1/1	Citrate buffer pH 6		<1%
127	(R)-Cat6 (40)	CDCl ₃	DMF	Additive	3/1/1	Phosphate buffer pH 7.4		<1%
128	(R)-Cat6 (40)	CDCl ₃	DMF	Additive	3/1/1	Phosphate buffer pH 8		<1%
129	(R)-Cat6 (40)	CDCl ₃	DMF	Additive	3/1/1	Aq. sat. NaCl	95:5	<5%
130	(R)-Cat6 (40)	$CDCl_3$	DMF	Additive	3/1/1	Aq. sat. KNO3		<1%
131	(R)-Cat6 (40)	CDCl ₃	DMF	Additive	3/1/1	Aq. sat NH ₄ Cl	95:5	<5%
132	(R)-Cat6 (40)	CDCl ₃	DMF	Additive	3/1/1	Aq. AcOH (5%)	95:5	<5%
133	(R)-Cat6 (40)	$CDCl_3$		Additive	3/0/1	Citrate buffer pH 6	95:5	~10%
134	(R)-Cat6 (40)	CDCl ₃		Additive	3/0/1	Aq. sat. NaCl	95:5	~10%
135	(R)-Cat6 (40)		DMF	Additive	0/7/1	Citrate buffer pH 6		<1%
136	(R)-Cat6 (40)	CH_2Cl_2					95:5	~10
137	(S)-Cat6 (40)	CDCl ₃	DMF	Additive	3/1/1	Citrate buffer pH 6		<1%
138	(R)-Cat8 (40)	CDCl ₃	DMF	Additive	3/1/1	Citrate buffer pH 6		<1%
139	Cat11 (40)	CDCl ₃	DMF	Additive	3/1/1	Citrate buffer pH 6		<1%
140	Cat12 (40)	CDCl ₃	DMF	Additive	3/1/1	Citrate buffer pH 6		<1%
141	Cat16 (40)	CDCl ₃	DMF	Additive	3/1/1	Citrate buffer pH 6		15%
142	L-Lys (40)	CDCl ₃	DMF	Additive	3/1/1	Citrate buffer pH 6		
143	L-Lys (40)	CDCl ₃		Additive	3/0/1	Citrate buffer pH 6		
144	(R)-Cat6 (40)	Additiv				TPGS (2%)		<2%
145	(R)-Cat6 (40)	CH_2Cl_2		Additive	1/0/1	TPGS (2%)	92:8	
146	(R)-Cat6 (40)	Additiv				Nok (2%)		<10%
147	(R)-Cat6 (40)	CH_2Cl_2		Additive	1/0/1	Nok (2%)		<5%
148	(R)-Cat6 (40)	CH_2Cl_2	H_2O		5/1/0	Drop Triton B	40:60	~20%
149	D-Ile (40)	CH_2Cl_2	H ₂ O		5/1/0	Drop Triton B	30:70	~55%
150	(R)-Cat6 (40)	CH ₂ Cl ₂	H_2O		5/1/0	Bu_4NBr (ca 1.0 mg)		~5%
151	D-Ile (40)	CH ₂ Cl ₂	H ₂ O		5/1/0	Bu ₄ NBr (ca 1.0 mg		~30%
152	Cat27 (30)	CH ₂ Cl ₂	-	Additive	5/0/1	Aq. KOH (1.0 molL^{-1})	85:15	~60%
153	Cat27 (30)	toluene		Additive	5/0/1	Aq. KOH (1.0 molL^{-1})	57:43	~50%
154	Cat28 (20)	CH ₂ Cl ₂		Additive	1/0/1	Aq. KOH (0.1 molL^{-1})	12:88	~20%
155	Cat27 (20)	CH ₂ Cl ₂		Additive	1/0/1	Aq. KOH (0.1 molL^{-1})	78:22	~65%
156	Cat27 (20)	CH ₂ Cl ₂		Additive	1/0/1	Aq. KOH (0.01 molL^{-1})	77:23	~65%
157	(S)-Tet (40)	CH ₂ Cl ₂		Additive	1/0/1	TPGS (2%)		
158	(R)-Tet (40)	CH ₂ Cl ₂		Additive	1/0/1	TPGS (2%)		25%
159	D-Ile (40)	CH ₂ Cl ₂		Additive	1/0/1	TPGS (2%)		25%
160	L-Ile (40)	CH ₂ Cl ₂	H ₂ O		5/1	Drop Triton B	42:58	~40%
161	L-Ser (40)	CH ₂ Cl ₂	H ₂ O		5/1	Drop Triton B	66:34	~10%
162	L-Thr (40)	CH ₂ Cl ₂	H ₂ O		5/1	Drop Triton B	33:67	~40%
163	D-Thr (40)	CH ₂ Cl ₂	H ₂ O		5/1	Drop Triton B	35:65	~45%
164	L-Phe (40)	CH ₂ Cl ₂	H ₂ O		5/1	Drop Triton B	35:65	~45%
165	L-Val (40)	CH ₂ Cl ₂	H ₂ O		5/1	Drop Triton B	35:65	~45%
166	D-Val (40)	CH ₂ Cl ₂	H ₂ O		5/1	Drop Triton B	58:42	~20%
167	L-Pro (40)	CH ₂ Cl ₂	H ₂ O		5/1	Drop Triton B	31:69	~50%
168	D-Pro (40)	CH ₂ Cl ₂	H ₂ O		5/1	Drop Triton B	34:66	~50%
169	(S)-Tet (40)	CH ₂ Cl ₂	H ₂ O		5/1	Drop Triton B	35:65	~45%
170	(R)-Tet (40)	CH ₂ Cl ₂	H ₂ O		5/1	Drop Triton B	35:65	~35%
171	Cat27 (20)	CH ₂ Cl ₂	2 -	Additive	5/0/1	Aq. sat. K ₂ CO ₂	78:22	~65%
172	Cat27 (20)	CH ₂ Cl ₂		Additive	5/0/1	Aq. sat. Na ₂ CO ₂	78:22	~65%
173	Cat27 (20)	CH ₂ Cl ₂		Additive	5/0/1	Ag. sat. Cs ₂ CO ₂	77:23	~65%
174	Cat27 (20)	CH ₂ Cl ₂		Additive	5/0/1	Ag. NaOH (2.0 molL^{-1})	78.22	~70%
175	Cat27 (20)	CH ₂ Cl ₂		Additive	5/0/1	Aq. NaOH (0.5 molL^{-1})	78:22	~65%
176	Cat27 (20)	CH ₂ Cl ₂		Additive	5/0/1	An LiOH (2.0 moll $^{-1}$)	77.22	~65%
177	Cat 27 (20)	CH ₂ Cl ₂		Additive	5/0/1	Aq. LiOH (0.5 molL^{-1})	78.23	~65%
	Cat27 (20)	CH ₂ Cl ₂		Additive	5/0/1	An sat NaOAc	77.22	~30%
178	Cut2 / (20)			Additive	5/0/1	An Na HPO. (1 moll ⁻¹)	11.43	-3070
178	Cat27 (20)	1 14 11 1		Additive	5/0/1	A_{1} , M_{2} M_{2} M_{2} M_{2} M_{1} M_{2} $M_{$		
178 179 180	Cat27 (20)	CH Cl				KOH(lac)	78.22	~40%
178 179 180	Cat27 (20) Cat27 (20) Cat27 (20)	CH_2Cl_2 CH_2Cl_2 CH_2Cl_2				KOH (1 eq.)	78:22 78:22	~40% ~40%
178 179 180 181	Cat27 (20) Cat27 (20) Cat27 (20) Cat27 (20)	CH_2Cl_2 CH_2Cl_2 CH_2Cl_2 CH_2Cl_2				KOH (1 eq.) CsOH $^{+}H_{2}O$ (1 eq.)	78:22 78:22	~40% ~40%

Entry	Catalyst	Solvent 1	Solvent 2	Solvent 3	Solvent	Additive	d.r.	Estimated
	(mol%)				Ratio		14:13	Yield
184	Cat27 (20)	CHCl ₃		Additive	5/0/1	Aq. NaOH (2.0 molL^{-1})	81:19	~65%
185	Cat27 (20)	benzene		Additive	5/0/1	Aq. NaOH (2.0 molL^{-1})	55:45	~60%
186	Cat27 (20)	DMF		Additive	5/0/1	Aq. NaOH (2.0 molL^{-1})	35:65	~15%
187	Cat27 (20)	MeCN		Additive	5/0/1	Aq. NaOH (2.0 molL^{-1})	28:72	~35%
188	Cat27 (20)	EtOAc		Additive	5/0/1	Aq. NaOH (2.0 molL^{-1})	60:40	~55%
189	Cat27 (20)	MTBE		Additive	5/0/1	Aq. NaOH (2.0 molL^{-1})	58:42	~60%
190	Cat27 (20)	THF		Additive	5/0/1	Aq. NaOH (2.0 molL^{-1})	52:48	~50%
191	Cat27 (20)	Et_2O		Additive	5/0/1	Aq. NaOH (2.0 molL^{-1})	54:46	~60%
192	Cat27 (20)	Dioxane		Additive	5/0/1	Aq. NaOH (2.0 molL^{-1})	11:89	~35%
193	Cat27 (20)	CH ₂ Cl ₂ (1/4)		Additive	1/0/1	Aq. NaOH (2.0 molL^{-1})	76:24	~60%
194	Cat27 (20)3	CH_2Cl_2		Additive	5/0/1	Aq. NaOH (2.0 molL^{-1})	80:20	~60%
195	Cat29 (20)4	CH_2Cl_2		Additive	5/0/1	Aq. NaOH (2.0 molL^{-1})	64:36	~50%
196	Cat27 (20)4	CH_2Cl_2		Additive	20/0/1	Aq. CsOH (2.0 molL^{-1})	86:14	~40%
197	Cat27 (20)4	CH_2Cl_2		Additive	20/0/1	Aq. Sat. K ₂ CO ₃	78:22	~20%
198	Cat27 $(20)^4$	CH_2Cl_2				KOH (5-10 eq.)	86:14	~25%
199	Cat27 $(20)^4$	CH_2Cl_2				tBuOK (5-10 eq.)	77:23	~55%
200	Cat27 $(20)^4$	CH_2Cl_2				NaH (5-10 eq.)	80:20	~40%
201	Cat27 (20)	O ₂ N-methane		Additive	5/0/1	Aq. NaOH (1.0 molL^{-1})	35:65	~20%
202	Cat27 (20)	p-xylene		Additive	5/0/1	Aq. NaOH (1.0 molL^{-1})	54:46	~65%
203	Cat27 (20)	HFIP				KOH (ca 5 eq.)		
204	Cat27 (20)	CHCl ₃	EtOH		5/1	KOH (ca 5 eq.)	56:44	~25%
205	Cat27 (20)	CHCl ₃	n-BuOH		5/1	KOH (ca 5 eq.)	58:42	~40%
206	Cat27 (20)	CHCl ₃		Additive	5/0/1	Aq. NH4OH (25%)	82:18	~75%
207	Cat27 (20)4	CH_2Cl_2				CsOH•H2O (2.0 mg)	79:21	~30%
208	$Cat27 (40)^4$	CH_2Cl_2				CsOH•H2O (2.0 mg)	86:14	~20%
209	$Cat27 (40)^4$	CH_2Cl_2		Additive	100/0/1	Aq. CsOH (2.0 molL^{-1})	87:13	~25%
210	Cat27 (20)4	CH_2Cl_2				CsOH•H2O (2.0 mg)	79:21	~20%
211	Cat27 (20)4	CH_2Cl_2				Drop Et ₃ N		<1%
212	Cat27 (20)4	CH_2Cl_2				Drop Pyridine		<1%
213	Cat27 (20)4	CH_2Cl_2				Drop DBU	85:15	~10%
214	Cat27 (20)4	CH_2Cl_2				Drop DABCO		<1%
215		THF				KOH (10 eq.)	30:70	
216		toluene				KOH (10 eq.)	27:73	

¹-30 °C; ² 60 °C; ³ 0 °C; ⁴-78 °C.

Examination of catalysts and conditions for (R_a, S_a, S_a, S_a) -15 and (S_a, S_a, S_a, S_a) -16

 $(S_{\mathrm{a}},S_{\mathrm{a}},S_{\mathrm{a}},S_{\mathrm{a}})$ -16

 $(R_{\rm a}, S_{\rm a}, S_{\rm a}, S_{\rm a})$ -15

Base/Additive d.r. Entry Catalyst Solvent 1 Solvent 2 Solvent 3 Solvent Estimated (mol%) Ratio 16:15 Yield (S)-Tet (40) CHCl₃ DMF Citrate buffer pH5 3:1:1 1 <5% 2 (R)-Tet (40) CHCl₃ DMF Citrate buffer pH5 3:1:1 3 CH_2Cl_2 H_2O 4:1 BnNMe₃Cl (0.4 eq.) BnNMe₃Cl (0.4 eq.) (S)-Tet (40) CH₂Cl₂ H_2O 4:1 4 (R)-Tet (40) CH_2Cl_2 4:1 BnNMe₃Cl (0.4 eq.) 5 H_2O 6 L-Ile (40) $\mathrm{CH}_2\mathrm{Cl}_2$ H_2O 4:1 BnNMe₃Cl (0.4 eq.) 7 D-Ile (40) CH_2Cl_2 H_2O 4:1 BnNMe₃Cl (0.4 eq.) Triton B (0.4 eq.) <5:95 ~50% 8 $CH_2Cl_2 \\$ 9 (S)-Tet (40) CH_2Cl_2 Triton B (0.4 eq.) <5:95 ~50% 10 (R)-Tet (40) CH₂Cl₂ Triton B (0.4 eq.) <5:95 ~50% Citrate buffer pH5 2:1 11 L-Ile (40) DMF Citrate buffer pH5 2:1 12 D-Ile (40) DMF 13 L-Pro (40) DMF Citrate buffer pH5 2:1 14 D-Pro (40) DMF Citrate buffer pH5 2:1 (S)-Cat8 (40) Citrate buffer pH5 15 CHCl₃ DMF 3:1:1 16 (R)-Cat8 (40) CHCl₃ DMF Citrate buffer pH5 3:1:1 17 (S)-Cat12 (40) CHCl₃ DMF Citrate buffer pH5 <5% 3:1:1 (R)-Cat12 (40) 18 CHCl₃ DMF Citrate buffer pH5 3:1:1 1:99 19 Aq. KOH (1.0 molL⁻¹) ~35% CHCl₃ H_2O 4:1 Aq. KOH (1.0 molL^{-1}) 20 Cat27 (20) CHCl₃ H_2O 4:1 28:72 ~35% 21 CHCl₃ Barton's base 26:74 ~10% Aq. KOH (1.0 molL^{-1}) 30:70 ~35% 22 Cat27 (20) CHCl₃ H_2O 4:1

Entry	Catalyst	Solvent 1	Solvent 2	Solvent 3	Solvent	Additive/Base	d.r.	Estimated
	(mol%)				Ratio		16:15	Yield
23	Cat36 (20)	CHCl ₃	H ₂ O		4:1	Aq. KOH (1.0 molL^{-1})	54:46	<5%
24	Cat40 (20)	CHCl ₃	H_2O		4:1	Aq. KOH (1.0 molL^{-1})	25:75	~35%
25	Cat42 (20)	CHCl ₃	H_2O		4:1	Aq. KOH (1.0 molL^{-1})	45:55	~20%
26	Cat43 (20)	CHCl ₃	H_2O		4:1	Aq. KOH (1.0 molL^{-1})	7:93	~35%
27	Cat44 (20)	CHCl ₃	H ₂ O		4:1	Aq. KOH (1.0 molL^{-1})	5:95	~40%
28	Cat29 (20)	CHCl ₃	H ₂ O		4:1	Aq. KOH (1.0 molL^{-1})	30:70	<10%
29	Cat31(20)	CHCh	H ₂ O		4.1	Aq KOH (1.0 molL^{-1})	3.97	~45%
30	Cat27(20)	CHCl.	1120		1.1	NaOH (ca 2.0 mg)	52.48	~30%
21	Cat27(20)		ПО		4.1	A a Na CO (0.1 mall^{-1})	27.72	200/
31	Cat27(20)		П ₂ О		4.1	Aq. Na_2CO_3 (0.1 moll)	21.15	~30%
32	Cat27 (20)	CHCl ₃	H ₂ O		4:1	NaOAc (sat.)		
33	Cat27 (20)	CHCl ₃	H ₂ O		4:1	$NH_4OH (25\%)$	17:83	~50%
34		CHCl ₃	H_2O		4:1	NH ₄ OH (25%)		
35	Cat42 $(20)^{1}$	CHCl ₃				NaOH (ca 2.0 mg)		<5%
36	$Cat27 (40)^{1}$	CHCl ₃				NaOH (ca 2.0 mg)	38:62	~10%
37	$Cat27 (20)^{1}$	CHCl ₃				NaOH (ca 2.0 mg)	34:66	~5%
38	$Cat27 (20)^{1}$	CHCl ₃				K ₂ CO ₃ (ca 2.0 mg)	13:87	~15%
39	$Cat27 (20)^{1}$	toluene				NaOH (ca 2.0 mg)	20:80	~10%
40	$Cat27(20)^{1}$	MeCN				NaOH (ca 2.0 mg)	7:93	~10%
41	$Cat27 (20)^1$	EtOAc				NaOH (ca 2.0 mg)	1.99	~5%
42	$Cat27 (20)^1$	THE				NaOH (ca 2.0 mg)	1.99	<5%
42	$Cat27 (20)^{1}$	THE	4DuQUI		4.1	NaOII (ca 2.0 mg)	1.00	100/
43	Cat27 (20)		iBuOII		4.1		1.99	~10%
44	Cat27(20)	CH ₂ Cl ₂				Thton B (0.4 eq.)	<5:95	~33%
45	$Cat27 (20)^{2}$	CH_2Cl_2				Triton B (0.1 eq.)		
46	$Cat27 (20)^2$	CH_2Cl_2				Triton B (0.01 eq.)		
47	Cat27 (20)	CH_2Cl_2	H_2O		5:1	Triton B (0.1 eq.)	11:89	~20%
48	Cat28 (20)	CH_2Cl_2	H_2O		5:1	Aq. KOH (1.0 molL^{-1})		<5%
49	Cat30 (20)	CH_2Cl_2	H_2O		5:1	Aq. KOH (1.0 molL^{-1})		<5%
50	Cat32 (20)	CH_2Cl_2	H_2O		5:1	Aq. KOH (1.0 molL^{-1})	<5:95	~40%
51	Cat33 (20)	CH ₂ Cl ₂	H ₂ O		5:1	Aq. KOH (1.0 molL^{-1})		<5%
52	Cat34 (20)	CH ₂ Ch	H ₂ O		5:1	Aa KOH (1.0 molL^{-1})		<5%
53	Cat35(20)	CH ₂ Cl ₂	H ₂ O		5.1	Aq KOH (1.0 molL^{-1})	20.80	~20%
54	Cat37 (20)	CH-Ch	H20		5:1	Ag KOH (1.0 moll^{-1})	20.00	< 5%
55	Cat37(20)				5.1	Ag. KOII (1.0 molL ^{-1})		<50/
55	Cat38 (20)				5.1	Aq. $KOH(1.0 \text{ mol}L)$		< 5%
50	Cat39 (20)	CH ₂ Cl ₂	H ₂ O		5:1	Aq. KOH(1.0 molL)		<5%
57	Cat41 (20)	CH_2Cl_2	H_2O		5:1	Aq. KOH (1.0 molL^{-1})		<5%
58	Cat27 (20)	CHCl ₃				$Ca(OH)_2$ (ca 2.0 mg)		<5%
59	Cat27 (20)	CHCl ₃				$Mg(OH)_2$ (ca 2.0 mg)		<5%
60	Cat27 (20)	CHCl ₃				CaCO ₃ (ca 2.0 mg)		
61	Cat27 (20)	CHCl ₃				KOtBu (ca 2.0 mg)	55:45	~40%
62	Cat27 (20)	CHCl ₃				NaH (ca 2.0 mg)	57:45	~40%
63	Cat27 (20)	CHCl ₃				LiHMDS (ca 2.0 mg)		
64	Cat27 (20)	CHCl ₃				Drop NEt ₃		
65	Cat27 (20)	CHCl ₃				Drop pyridine		
66	Cat27 (20)	CHCl ₂				Drop Barton's base		
67	Cat27 (20)	CHCL				Dron DABCO		
68	Cat27 (20)	CHCl	MeOH		5.1	Ag KOH $(0.2 \text{ mol } L^{-1})$	<5.95	~15%
60	Cat27 (20)	CHCI	EtOH		5:1	Ag KOH (0.2 moll^{-1})	<5:95	- 5%
70	Cat27(20)	MTDE	LIOII		5.1	Ag. KOII $(0.2 \text{ mol} L^{-1})$	<5.95 0.01	500/
70	Cat27 (20)	MIDE	H ₂ O		5.1	Aq. $KOH(1.0 \text{ mol}L)$	9.91	~30%
/1	$Cat_{27}(20)$	MeNO ₂	H ₂ O		5:1	Aq. KOH (1.0 molL)	10.00	1.50/
12	Cat27 (20)	DMF	H ₂ O		5:1	Aq. KOH (1.0 molL ⁻¹)	12:88	~15%
73	Cat27 (20)	CHCl ₃	Citrate buffer pH5		5:1	KOH (ca 2.0 mg)	28:72	~40-45%
74	$Cat27 (20)^{1}$	CHCl ₃				NaH (1 eq.)		<5%
75	$Cat27 (20)^{1}$	CHCl ₃				NaH (10 eq.)	28:72	~15%
76	1	CHCl ₃				NaH (10 eq.)		<5%
77	$Cat27 (20)^{1}$	CHCl ₃				KOtBu (1 eq.)		<5%
78	Cat27 (20) ¹	CHCl ₃				KOtBu (10 eq.)		<5%
79	1	CHCl ₃				KOtBu (10 eq.)	<5:95	~5%
80	Cat42 $(20)^1$	CHCh				NaH (10 eq.)	50.50	~10%
81	$Cat42 (20)^{1}$	CHCl				KOtBu (10 eq.)	20.20	<5%
82	$Cat 42 (20)^{1}$	CHCI	ЧО		100.1	NoH (10 cq.)		<5%
82	$Cat27(20)^{1}$				100.1	KOrby (10 ag.)		~570
83	Cat 27 (20)		п ₂ О		100:1	NoLL (10 eq.)	60.40	250/
84	Cat27 (20)	CHCl ₃				NaH (1 eq.)	60:40	~35%
85	Cat27 (20)	CHCl ₃				NaH (10 eq.)	62:38	~35%
86		CHCl ₃				NaH (10 eq.)	28:72	~35%
87	Cat27 (20)	CHCl ₃				KOtBu (1 eq.)	57:43	~30%
88	Cat27 (20)	CHCl ₃				KOtBu (10 eq.)	57:43	~30%
89		CHCl ₃				KOtBu (10 eq.)	23:77	~40%
90	Cat42 (20)	CHCl ₃				NaH (10 eq.)	83:17	~25%
91	Cat42 (20)	CHCl				KOtBu (10 ea.)	77:23	~20%
92	Cat27(20)	CHCL	H ₂ O		100:1	NaH (10 eq.)	60.40	~35%
93	Cat 27 (20)	CHCL	H ₂ O		100.1	KOtBu (10 eg)	55.45	~35%
1	200 2 2002	011013	1120		100.1		<i></i>	5570
·40	u ⁻C; ⁻ −/8 °C.							

HPLC Data

X-ray Crystallographic Analysis (Dr. Markus Neuburger)

X-ray of (*R*_a,*S*_a)-7 (CCDC 1584599)

Volume min/max Ø Number of collected reflections Number of independent refections Number of observed reflections Number of refined parameters R wR Goodness of fit Flack The crystal was measured on a *Bruker Kappa Apex2* diffractometer at 123K using graphite-monochromated Cu K_{α} -radiation with $\lambda = 1.54178$ Å, $\Theta_{max} = 68.976^{\circ}$. Minimal/maximal transmission 0.78/0.90, $\mu = 2.697$ mm⁻¹. The Apex2 suite has been used for datacollection and integration. From a total of 28773 reflections, 4085 were independent (merging r = 0.030). From these, 4040 were considered as observed (I>2.0 σ (I)) and were used to refine 299 parameters. The structure was solved by Other methods using the program Superflip. Least-squares refinement against F was carried out on all non-hydrogen atoms using the program CRYSTALS. R = 0.0167 (observed data), wR = 0.0186 (all data), GOF = 1.0888. Minimal/maximal residual electron density = -0.18/0.20 e Å⁻³. Chebychev polynomial weights were used to complete the refinement.

C₃₁H₁₉BrO 487.39 4 $1.465 \text{ Mg} \cdot \text{m}^{-3}$ 992 colourless block $0.040 \cdot 0.090 \cdot 0.190 \text{ mm}^3$ 2.697 mm^{-1} 0.78 / 0.90 123K Cu K_{α} ($\lambda = 1.54178$ Å) orthorhombic P 2₁ 2₁ 2₁ a = 7.9226(9) Å b = 15.7270(18) Å c = 17.738(2) Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$ 2210.1(4) Å³ 3.756° / 68.976° 28773 4085 (merging r = 0.030) 4040 (I>2.0σ(I)) 299 0.0167 0.0186 1.0888 0.004(8)

X-ray of (*R*_a,*S*_a,*S*_a,*S*_a)-15 (CCDC 1584600)

Chemical formula Formula weight Z D_{calc.} F(000) Crystal description Crystal size Absorption coefficient min/max transmission Temperature Radiation (wavelength) Crystal system Space group Unit cell dimensions

Volume min/max O Number of collected reflections Number of independent refections Number of observed reflections Number of refined parameters R wR Goodness of fit Flack The crystal was measured on a *Stoe StadiVari* diffractometer at 123K using graded multilayer mirror-monochromated Ga K_{α} -radiation with $\lambda = 1.34143$ Å, $\Theta_{max} = 59.457^{\circ}$. Minimal/maximal transmission 0.79/0.82, $\mu = 3.330$ mm⁻¹. The STOE X-AREA suite has been used for datacollection and integration. From a total of 55626 reflections, 9450 were independent (merging r = 0.030). From these, 8792 were considered as observed (I>2.0\sigma(I)) and were used to refine 551 parameters. The structure was solved by Other methods using the program Superflip. Least-squares refinement against F was carried out on all non-hydrogen atoms using the program CRYSTALS. R = 0.0360 (observed data), wR = 0.0425 (all data), GOF = 1.0558. Minimal/maximal residual electron density = -0.66/1.11 e Å⁻³. Chebychev polynomial weights were used to complete the refinement.

 $C_{51}H_{31}BrO \cdot 2 CHCl_3$ 978.47 4 $1.501 \text{ Mg} \cdot \text{m}^{-3}$ 1984 colourless needle $0.060 \cdot 0.070 \cdot 0.180 \text{ mm}^3$ 3.330 mm^{-1} 0.79 / 0.82 123K Ga K_{α} ($\lambda = 1.34143$ Å) orthorhombic P 2₁ 2₁ 2 a = 21.3901(3) Å b = 20.8054(3) Å c = 9.73190(10) Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ γ =90° 4330.98(10) Å³ 2.578° / 59.457° 55626 9450 (merging r = 0.030) 8792 (I>2.0σ(I)) 551 0.0360 0.0425 1.0558 -0.005(12)

NMR Data

2, ¹H NMR (400 MHz, CDCl₃):

2, ¹³C NMR (126 MHz, CDCl₃):

3, ¹H NMR (500 MHz, CDCl₃):

3, ¹³C NMR (126 MHz, CDCl₃):

6, ¹H NMR (500 MHz, CDCl₃):

6, ¹³C NMR (126 MHz, CDCl₃):

(R_a, S_a) -7, ¹H NMR (500 MHz, CDCl₃):

 (R_a, S_a) -7, ¹³C NMR (126 MHz, CDCl₃):

(*S*_a,*S*_a)-8, ¹H NMR (500 MHz, CDCl₃):

(*S*_a,*S*_a)-8, ¹³C NMR (126 MHz, CDCl₃):

Diol C, ¹H NMR (500 MHz, CDCl₃):

Diol C, ¹³C NMR (126 MHz, CDCl₃):

Diol C, ¹³C NMR (126 MHz, C₆D₆):

(*R*_a,*S*_a,*S*_a)-13, ¹H NMR (500 MHz, CDCl₃):

 (R_a, S_a, S_a) -13, ¹³C NMR (126 MHz, CDCl₃):

(S_a, S_a, S_a) -14, ¹H NMR (500 MHz, CDCl₃):

 (S_a, S_a, S_a) -14, ¹³C NMR (126 MHz, CDCl₃):

Diol D, ¹H NMR (500 MHz, C₆D₆):

Diol D, ¹³C NMR (126 MHz, C₆D₆):

 (R_a, S_a, S_a, S_a) -15, ¹H NMR (500 MHz, CDCl₃):

 (R_a, S_a, S_a, S_a) -15, ¹³C NMR (126 MHz, CDCl₃):

(S_a, S_a, S_a, S_a) -16, ¹H NMR (500 MHz, CDCl₃):

 (S_a, S_a, S_a, S_a) -16, ¹³C NMR (126 MHz, CDCl₃):

Diol E, ¹H NMR (500 MHz, C₆D₆):

Diol E, ¹³C NMR (126 MHz, C₆D₆):

1-(4-(bis(4-methoxyphenyl)amino)phenyl)-2-naphthaldehyde, ¹H NMR (500 MHz, CDCl₆):

1-(4-(bis(4-methoxyphenyl)amino)phenyl)-2-naphthaldehyde, ¹³C NMR (126 MHz, CDCl₃):

136.5 136.0 135.5 136.0 134.5 134.0 133.5 133.0 132.5 132.0 131.5 131.0 130.5 130.0 129.5 129.0 128.5 128.0 127.5 127.0 126.5 126.0 127.5 ppm

Diol F, ¹³C NMR (126 MHz, C₆D₆):

(*S*_a)-18, ¹³C NMR (126 MHz, CDCl₃):

Diol G, ¹H NMR (500 MHz, C₆D₆):

Diol G, ¹³C NMR (126 MHz, C₆D₆):

(*R*_a,*S*_a)-19, ¹³C NMR (126 MHz, CDCl₃):

 (S_a, S_a) -20, ¹H NMR (500 MHz, C₆D₆):

(*S*_a,*S*_a)-20, ¹³C NMR (126 MHz, CDCl₃):

Literature

- [1] Frigerio, M.; Santagostino, M.; Sputore, S.; A User-Friendly Entry to 2-Iodoxybenzoic Acid (IBX). J. Org. Chem. 1999, 64, 4537–4538.
- [2] Lotter, D.; Neuburger, M.; Rickhaus, M.; Häussinger, D.; Sparr, C.; Stereoselective Arene-Forming Aldol Condensation: Synthesis of Configurationally Stable Oligo-1,2-naphthylenes. *Angew. Chem. Int. Ed.* 2016, 55, 2920–2923.
- [3] Method from: Hellwinkel, D.; Bohnet, S.; Dibenzocycloocten-, Dibenzochalcocin- und Diarenochalconindione. *Chem. Ber.* **1987**, *120*, 1151–1173.
- [4] Moleele, S. S.; Michael, J. P.; de Koning, C. B.; Methodology for the synthesis of 1,2-disubstituted arylnaphthalenes from α-tetralones. *Tetrahedron* **2006**, *62*, 2831–2844.
- [5] We thank Prof. M. Waser (JKU Linz) for generously providing catalyst Cat34 Cat44 for our test reactions.