
Supplementary method 

Marker Selection 

Selection of differentially abundant operational taxonomic units (OTUs) 

We selected 1850 abundant OTUs present in at least 30% of all samples and calculated adjusted 𝑅" for 

each OTU. Before selecting the OTUs that are differentially abundant across stages of GC, we considered 

adjusting for potential confounding factors including age, gender, Helicobacter pylori status and tissue 

positions. The OTUs were divided into confounder-sensitive and -insensitive groups using linear regression 

with adjusted 𝑅". 

First, we defined two variable sets:  

Let 𝑋 = (𝑋&, 𝑋", … , 𝑋))+	𝑏𝑒	𝑡ℎ𝑒	𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒	𝑚𝑎𝑡𝑟𝑖𝑥, 𝐹 𝑥: 𝑐 = Pr	(𝑋: < 𝑥:|𝑐), 

𝐶:	𝑡ℎ𝑒	𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑖𝑛𝑔	𝑓𝑎𝑐𝑡𝑜𝑟	𝑠𝑒𝑡 

𝐴 = {𝑋::	𝐹 𝑥: 𝑐 	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑦	𝑑𝑒𝑝𝑒𝑛𝑑𝑠	𝑜𝑛	𝑐	𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑐 ∈ 𝐶, 𝑘 = 1,2, … , 𝑝}, 

𝐵 = {𝑋::	𝐹 𝑥: 𝑐 	𝑑𝑜𝑒𝑠	𝑛𝑜𝑡	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑦	𝑑𝑒𝑝𝑒𝑛𝑑𝑠	𝑜𝑛	𝑐	𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑐 ∈ 𝐶, 𝑘 = 1,2, … , 𝑝}, 

𝑋: ∈ 	𝐴 is refered to be a confounder sensitive factor and 𝑋: ∈ 𝐵 is refered to be a confouner insensitive 

factor.  

Threshold Setting 

The distribution of the adjusted 𝑅" is plotted in Graph a). In a further step, we set a threshold for the adjusted 

𝑅"  as the classification standard of set 𝐴 and 𝐵. The threshold was obtained by adding some artificial 

auxiliary variables to the data as detailed in previously described.1, 2 We randomly generated d auxiliary 

variables 𝐳~𝑁U(0, 𝐼U) which were independently distributed. A relatively large d is preferred as a small d 

will lead to an unstable threshold. While d should not be too large since expectedly, a large d will introduce 

a large value to threshold 𝑅:", which may make our thresholding method too strict to include some real 



confounder sensitive factors. Considering these, a d that is relatively small and can also introduce low 

variability is preferred. We moved the number of auxiliary variables from 1 to 1000 and calculated the 

corresponding maximal adjusted 𝑅"  (Graph b). Theoretically, the expectation of maximal adjusted 𝑅": 

𝐸 𝑓 𝑑 	is a monotone increasing function of the number of the auxiliary variables d. From graph b), the 

maximal adjusted 𝑅" tends to be stable when the number of auxiliary variables d is larger than 200. So, in 

a further step, we set d from 150 to 250 and for each d, we did 100 simulations and obtained the median, 

25% and 75% quantile of 𝑓 𝑑  (Graph c). Graph c showed that the increment of 𝑓 𝑑  is very small as d 

increases when d is around 200. Thus, we used 200 auxiliary variables for thresholding the adjusted 𝑅". 

We simulated 𝑓 200 1000 times and used median value as our threshold value. Our covariate dataset 

extends to (𝑋+, 𝑍+) by adding the d auxiliary variables. Since z is truly confounder insensitive, we have 

𝑚𝑖𝑛Z[∈\𝑅:
" > 𝑚𝑎𝑥^_&,",..,U𝑅)a^"  and defined the confounder sensitive set A as below: 

	𝐴 = {𝑋::	𝑅:" > 𝑚𝑎𝑥^_&,",..,U𝑅)a^" , 𝑘 = 1,2, … , 𝑝} 

 

Selection of OTUs that are sensitive to confounding factors 

To evaluate the dependency of 𝑋:	on the confounding factors, we used multiple linear regression with the 

confounding factors mentioned above as the covariates and 𝑋: as response. For each regression fitted with 

𝑋:  as response, the corresponding adjusted 𝑅:" was calculated. 𝑋:  with large adjusted 𝑅:" was classified 

into A. With 200 auxiliary variables, 60 OTUs are classified as confounder sensitive and 1790 OTUs are 

classified as confounder insensitive. In a further step, we determined the significance of the confounder 

sensitive OTUs in 𝐴.  

Define 𝐴 = (𝐴&, 𝐴", … , 𝐴)b)+. We determined the marginal significance of the covariates in 𝐴 with logistic 

regression, where 𝑌 containing the cancer status served as the response and the 𝐴: with the confounding 

factor matrix served as the predictors. Here, we inserted the confounding factors into our model to adjust 



for their effects. After fitting the model, we obtained p value of each 𝑋:, 𝑘 = 1,2, … , 𝑝d, denoted as 𝑝: and 

performed FDR adjustment of the values. Bacterial markers were finalized by selecting the OTUs with 

adjusted 𝑝: smaller than 0.05.  

Selection of OTUs that are insensitive to confounding factors 

For the confounding-insensitive covariates, we considered using some screening methods first due to the 

high dimensionality of the confounder insensitive covariates . We adopted the Model-Free Feature 

Screening earlier proposed3 to screen out a candidate set of the OTU markers. Define 𝜔: =

𝐸 Ω:" 𝑌 , 𝑤ℎ𝑒𝑟𝑒	Ω 𝑦 = 𝐸 𝐱 𝑦 𝐱 , 𝑘 = 1,2, … , 𝑝; 𝑌:	𝑡ℎ𝑒	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑣𝑒𝑐𝑡𝑜𝑟. We used the cancer status 

as the response. 𝜔: served as the marginal utility measure for ranking the covariates. 

Before the screening, all the sample covariates were standardized to &
j

𝑋k: = 0j
k_&  and &

j
𝑋k:" = 1j

k_&  for 

𝑘 = 1,2, … , 𝑝. The natural estimator for 𝜔:	is  𝜔: = &
j

{&
j

𝑋k:𝟏(j
m_&

j
k_& 𝑌k < 𝑌m)}". 𝜔� was used in our 

case for feature screening. A threshold was also needed to determine the candidate set of bacterial markers. 

A hard cutoff was chosen by retaining a fixed number of covariates from  screening. According to the 

thresholding rule proposed by Fan and Lv (2008),4we set the number at [𝑛 log 𝑛]. Similar to the selection 

of the confounder sensitive variables, the logistic regression was used to determine the significance of the 

covariates. We also performed p value adjustment by FDR and chose the covariates (OTUs) with adjusted 

p value smaller than 0.05.  

Abundance Adjustment 

Since some OTU abundance is closely correlated with the confounding factors included in our study, we 

considered adjusting the OTU’s abundance with respect to confounding factors.  To keep the consistency 

of our analysis, linear regression was used to adjust the confounding effect with the OTU abundance after 

log transformation as the response and the confounding factors as the predictors. The residuals of the 



regression are linearly independent of the confounding factors showing abundance changes after removing 

the effect of the confounding factors. 
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