Supplementary Information

Cellular Milieu Imparts Distinct Pathological α-Synuclein Stains in α-Synucleinopathies

Chao Peng, Ronald J. Gathagan, Dustin J. Covell, Coraima Medellin, Anna Stieber, John L. Robinson, Bin Zhang, Rose M. Pitkin, Modupe F. Olufemi, Kelvin C. Luk, John Q. Trojanowski, Virginia M.-Y. Lee*

Table of contents:

- Supplementary Table 1. Clinical Information.
- **Supplementary Table 2.** Biochemical Information for Sarkosyl Insoluble Fractions of Brain Extractions.
- **Supplementary Table 3.** Quantification of α-Syn in the Sarkosyl Insoluble Fraction of Neuronal Culture Extractions.
- Supplementary Table 4. Antibodies Used in This Study.
- Supplementary Table 5. Statistics.
- Supplementary Reference
- Supplementary Fig. 1. Full blots of western blot data

Supplementary Table 1 Clinical Information.

Clinical Information of the Cases Used for the Extraction of Pathological α -Syn

Case No.	Clinical Diagnosis	Pathological Diagnosis	Race	Sex	Age of Disease onset	Age at Death	PMI (h)	Brain Region used
1	MSA-P	MSA	Multi- racial	Female	63	67	11	Cerebellum / Cingulate Gyrus
2	MSA-P	MSA	White	Male	73	77	5	Cerebellum
3	MSA-P	MSA	Asian	Female	47	56	6	Cerebellum / Middle Frontal Gyrus
4	MSA-P	MSA	White	Male	61	72	4.5	Middle Frontal Gyrus
5	MSA-C	MSA	White	Female	55	64	16	Middle Frontal Gyrus
6	MSA-C	MSA	Multi- racial	Male	55	62	24	Middle Frontal Gyrus
7	AD Probable	AD	White	Female	52	62	11	Middle Frontal Gyrus
8	CBS	AD	White	Female	45	55	15	Middle Frontal Gyrus
9	DLB	DLB	White	Male	76	83	6	Cingulate Gyrus
10	PDD	PDD	White	Male	54	75	6.5	Cingulate Gyrus
11	PDD	PDD	White	Female	51	66	12	Middle Frontal Gyrus
12	PDD	PDD	White	Male	49	70	12.5	Cingulate Gyrus
13	PDD	PDD	White	Male	71	74	12	Cingulate Gyrus
14	DLB	PDD	White	Male	66	72	9	Cingulate Gyrus
15	PDD	PDD	White	Male	60	72	19	Cingulate Gyrus
16	Normal	Normal	White	Male	-	59	18	Middle Frontal Gyrus
30	Normal	Normal	White	Male	-	70	10.5	Middle Frontal Gyrus
31	Normal	Normal	Black	Male	-	66	20	Cingulate Gyrus
32	Normal	Normal	White	Male	-	61	15	Cingulate Gyrus
33	Normal	Normal	Black	Female	-	72	6	Middle Frontal Gyrus

Supplementary Table 1 (Continue)

Clinical Information of the Cases Used for IHC Shown in Fig. 1e&f and extended data Fig. 2

Case No.	Clinical Diagnosis	Pathological Diagnosis	Race	Sex	Age of Disease onset	Age at Death	PMI (h)	Brain Region used
3	MSA-P	MSA	Asian	Female	47	56	6	Middle Frontal Gyrus
6	MSA-C	MSA	Multi- racial	Male	55	62	24	Middle Frontal Gyrus
7	AD Probable	AD	White	Female	52	62	11	Hippocampus
12	PDD	PDD	White	Male	49	70	12.5	Middle Frontal Gyrus
17	AD Probable	AD	White	Male	66	71	7	Substantia Nigra
18	AD Probable	AD	White	Male	62	79	8	Middle Frontal Gyrus
19	DLB	DLB	White	Male	67	76	8	Substantia Nigra
20	CBS	DLB	White	Male	78	83	20	Middle Frontal Gyrus
21	DLB	DLB	White	Male	60	68	12	Hippocampus
22	PD (not demented)	PD	White	Male	70	81	7	Substantia Nigra
23	PDD	PDD	White	Male	52	68	7	Hippocampus
24	MSA-C	MSA	Black	Male	61	65	43	Cerebellum
25	MSA-C	MSA	White	Female	53	67	19	Substantia Nigra
26	MSA-C	MSA	White	Male	54	63	24	Hippocampus
27	PD (not demented)	MSA	White	Male	45	54	15	Hippocampus
28	MSA-P	MSA	White	Female	67	76	2	Substantia Nigra
29	MSA-P	MSA	White	Female	50	57	8	Substantia Nigra

Supplementary Table 1 (Continued)

Case No.	Clinical Diagnosis	Pathological Diagnosis	Race	Sex	Age of Disease onset	Age at Death	PMI (h)	Brain Region used
26	MSA-C	MSA	White	Male	54	63	24	Medulla
	PD (not							
27	demented)	MSA	White	Male	45	54	15	Medulla
29	MSA-P	MSA	White	Female	50	57	8	Medulla
34	MSA-P	MSA	White	Male	74	79	16	Medulla
	PD (not							
35	demented)	MSA	White	Female	57	72	14	Hippocampus
36	MSA-P	MSA	White	Male	59	73	8	Hippocampus

Clinical Information of the Cases Used for IHC and Quantification Shown in Fig. 3d&e

Clinical Information of the Cases Used for IHC Shown in Extended Data Fig. 9d

Case No.	Clinical Diagnosis	Pathological Diagnosis	Race	Sex	Age of Disease onset	Age at Death	PMI (h)	Brain Region used
6	MSA-C	MSA	Multi- racial	Male	55	62	24	Middle Frontal Gyrus
25	MSA-C	MSA	White	Female	53	67	19	Substantia Nigra

PMI: postmortem interval

Supplementary Table 2 Biochemical Information for Sarkosyl Insoluble Fractions of Brain Extractions.

Case No.	Brain Region	Diagnosis	α-Syn (ug/ml)	Tau (ug/ml)	Abeta 40 (ng/ml)	Abeta 42 (ng/ml)	Total protein (mg/ml)
1	Cerebellum	MSA-P	22.90	0.09	< LOD	6.70	24.13
1	Cingulate Gyrus	MSA-P	2.26	0.27	< LOD	10.6	5.17
2	Cerebellum	MSA-P	7.52	0.49	< LOD	3.89	12.73
3	Cerebellum	MSA-P	19.01	0.10	2.98	13.98	5.88
3	Middle Frontal Gyrus	MSA-P	1.79	0.43	< LOD	5.50	13.74
4	Middle Frontal Gyrus	MSA-P	6.60	0.47	< LOD	< LOD	8.52
5	Middle Frontal Gyrus	MSA-C	5.54	0.53	< LOD	24.75	13.73
6	Middle Frontal Gyrus	MSA-C	40.00	0.09	< LOD	< LOD	20.33
7	Middle Frontal Gyrus	AD	8.01	17.64	14.64	53.55	11.09
8	Middle Frontal Gyrus	AD	13.55	26.00	10.00	82.30	14.40
9	Cingulate Gyrus	DLB	7.55	2.12	< LOD	73.72	12.30
10	Cingulate Gyrus	PDD	20.66	0.77	< LOD	6.00	41.11
11	Middle Frontal Gyrus	PDD	7.43	0.19	< LOD	22.75	12.76
12	Cingulate Gyrus	PDD	8.49	0.77	1.98	58.47	8.85
13	Cingulate Gyrus	PDD	15.87	2.49	0.75	89.12	7.74
14	Cingulate Gyrus	PDD	9.52	4.35	11.00	33.00	14.13
15	Cingulate Gyrus	PDD	8.28	1.50	< LOD	77.00	12.56
16	Middle Frontal Gyrus	Normal	0.2	0.12	3.85	15.67	7.43
30	Middle Frontal Gyrus	Normal	0.45	0.46	< LOD	< LOD	11.68
31	Cingulate Gyrus	Normal	0.40	0.36	< LOD	< LOD	16.28
32	Cingulate Gyrus	Normal	0.39	0.50	< LOD	18.79	14.56
33	Middle Frontal Gyrus	Normal	0.52	0.62	< LOD	< LOD	16.94

LOD: limit of detection

Supplementary Table 3 Quantification of α -Syn in the Sarkosyl Insoluble Fraction of Neuronal Culture Extractions.

Sample	Total α-Syn (ng/uL)	Human α-Syn (ng/uL)	Percentage of Human α-Syn to Total α-Syn
GCI1-N-P1	127.7	<0.15	<0.12%
GCI2-N-P1	65.1	< 0.15	<0.23%
GCI3-N-P1	65.5	<0.15	<0.23%

Antibody	Specificity	Host species	Dilution	Source or Reference
81A	p-α-syn (phosphorylated at Ser 129)	mouse monoclonal	1:5000 (ICC), 1:1000 (WB), 1:10000 (IHC)	1
SNL-4	α-syn (amino acids 2-11)	rabbit polyclonal	1:500 (WB)	2
Syn506	misfolded α-syn	mouse monoclonal	1:5000 (IHC), 1:2500 (IF)	1
NAC1	α-syn (amino acids 75-91)	rabbit polyclonal	1:500 (WB)	3
LB509	α-syn (amino acids 115- 122)	mouse monoclonal	1:500 (WB); 1:2500 (IF)	4
Syn211	α-syn (amino acids 121- 125)	mouse monoclonal	1:500 (WB)	5
Syn102	α-syn (amino acids 131- 140)	mouse monoclonal	1:500 (WB)	6
HuA	Raised against recombinant human α-syn	rabbit polyclonal	3.3ng/µl (ELISA); 1:500 (WB)	7
Syn9027	α-syn (amino acids 130- 140)	mouse monoclonal	3.3ng/µl (ELISA); 1:20000 (WB); IP	8
MJF-R1	human α-syn	rabbit monoclonal	1:1000 (ELISA)	Abcam (ab138501)
SNL-1	α-syn (C-terminal)	rabbit polyclonal	1:500 (WB)	2
Olig-2	Oligodendrocyte transcription factor 2 (Olig- 2)	rabbit polyclonal	1:500 (IF and ICC)	Millipore (AB9610)
Iba1	Macrophage/Microglia- Specific Calcium-Binding Protein (Iba1)	rabbit polyclonal	1:500 (IF) and 1:250 (ICC)	Wako (019-19741)
GFAP	Glial Fibrillary Acidic Protein	rabbit polyclonal	1:1000 (IF) and 1:500 (ICC)	Dako (Z0334)
NeuN	Neuronal Nuclei (NeuN)	rabbit polyclonal	1:1000 (IF) and 1:500 (ICC)	Millipore (ABN78)
MAP2	Microtubule-Associated Protein 2 (MAP2)	rabbit polyclonal	1:2000 (ICC)	9
PLP	proteolipid protein	Rat monoclonal	1:1 (ICC)	Gift from Dr. Judith B. Grinspan, CHOP, Phiadelphia, PA ¹⁰ . The antibody was originally from Dr. Alex Gow, Wayne State University, Detroit, MI
CNP	2',3'-Cyclic-nucleotide 3'- phosphodiesterase	rabbit polyclonal	1:500 (ICC)	11
Syn204	α-syn (amino acids 87- 110)	mouse monoclonal	1:500 (WB)	5
Syn303	α-syn	mouse monoclonal	1:60000 (IHC)	12
Syn7015	Raised against strain A α- syn fibrils	mouse monoclonal	1ng/ml (IHC)	8

Supplementary Table 4 Antibodies Used in This Study.

Mouse α- syn	Mouse a-syn	Rabbit monoclonal	1:1000 (WB)	Cell Signaling Technology (4179)
β-tubulin	β-tubulin	mouse monoclonal	1:3000 (WB)	Invitrogen (32-2600)
GAPDH	GAPDH	mouse monoclonal	1:18000 (WB)	Advanced Immunochemical (2- RGM2)

Supplementary Table 5 Statistics.

Figure #	Compare (Group size n=)	Statistical methods	P Value	t Value	F value	Degrees of freedom
Figure 1b	LB vs GCI (LB, n=7; GCI,n=5 different cases)	two tailed, unpaired t-test	0.0009	4.69		10
Figure 1e	LB-7015 vs GCI-7015 (LB, n=9, GCI, n=7 different cases)	Mann Whitney U test	0.0157			
Figure 1f	LB vs GCI (LB, n=9, GCI, n=7 different cases)	two tailed, unpaired t-test	0.001	4.149		14
Figure 1i	All LB vs All GCI (LB,n=9; GCI,n=8 different preparations)	two tailed, unpaired t-test with Welch's correction, using the mean value of each case	0.0015	5.023		7.001
Figure 1j	30ng LB vs 30pg GCI (LB, n=6; GCI, n=5 biologically independent replicates)	two tailed, unpaired t-test with Bonferroni correction	0.9693	0.03952		9
Figure 1j	30ng GCI vs 30µg PFF (GCI, n=5; PFF, n=5 biologically independent replicates)	two tailed, unpaired t-test with Bonferroni correction	0.296	1.118		8
Figure 2b	All LB vs All GCI (GCI, n=8, LB, n=9 different preparations)	two tailed, unpaired t-test with Welch's correction, using the mean value of each case	<0.0001	13.51		7.067
Figure 2c	100pg GCI vs 100ng PFF (n=3 biologically independent replicates)	two tailed, unpaired t-test with Bonferroni correction	0.8687	0.1762		4
Figure 2d	10pg GCI vs 10ng LB (n=3 biologically independent replicates)	two tailed, unpaired t-test with Bonferroni correction	0.5405	0.6683		4

	2ng LB vs 2pg GCI					
	(LB, n=7; GCI, n=4					
	biologically	two tailed, unpaired				
Figure 2f	independent replicates)	t-test	0.2019	1.377		9
	200pg GCI vs 200ng					
	PFF (GCI, n=4; PFF,					
	n=3 biologically	two tailed, unpaired	0.0000			_
Figure 2f	independent replicates)	t-test	0.0989	2.024		5
	GCI-WT vs LB-WT at	4				
Eigung	5 mpl (n=5 mice for	two tailed, unpaired				
	WT)	t-test with weich's	0.0417	1 711		2 001
2g	VV 1)	concetion	0.0417	4./44	Brain	2.001
			Brain region:		region.	
			p<0.0001		F-60.98	Brain region.
			Strains		Strain [.]	Df=8. Strain:
			p=0.2074:		F=1.613:	D1=0, Strum: Df=2:
Figure		Two-way ANOVA.	Interaction		Interaction	Interaction
2h	All groups	with Tukey's HSD	p<0.0001		F=18.5	Df=16
	Cotex: GCI-WT vs	, , , , , , , , , , , , , , , , , , ,				
	PFF-WT (GCI-WT,					
Figure	n=3; PFF-WT, n=4	Two-way ANOVA,				
2h	mice)	with Tukey's HSD	< 0.0001			
	Cotex: GCI-WT vs LB-					
Figure	WT (n=3 mice for both	Two-way ANOVA,	0.0001			
2h	GCI-WT and LB-WT)	with Tukey's HSD	< 0.0001			
	PIR2. GCLWT vs PFF-					
Figure	WT (GCL-WT $n=3$)	Two-way ANOVA				
2h	PFF-WT n=4 mice)	with Tukey's HSD	<0.0001			
211		with Tukey STISD	<0.0001			
	PIR2: GCI-WT vs PFF-					
Figure	WT (GCI-WT, n=3;	Two-way ANOVA,				
2h	PFF-WT, n=4 mice)	with Tukey's HSD	< 0.0001			
F '	Str: GCI-WT vs PFF-					
Figure	WI (GCI-WI, $n=3$;	Two-way ANUVA,				
20	PFF-w1, n=4 mice)	with Tukey's HSD	p=0.0003			
	Str: LB-WT vs PFF-WT					
Figure	(LB-WT, n=3; PFF-	Two-way ANOVA.				
2h	WT, n=4 mice)	with Tukey's HSD	p=0.0055			
	Hippo: GCI-WT vs	,	1			
	PFF-WT (GCI-WT,					
Figure	n=3; PFF-WT, n=4	Two-way ANOVA,				
2h	mice)	with Tukey's HSD	p=0.0199			
	Hippo: GCI-WT vs LB-					
Figure	WT (n=3 mice for both	Two-way ANOVA,	0.0500			
2h	GCI-WT and LB-WT)	with Tukey's HSD	p=0.0599			י י ת
			Dural and i		Brain	Brain region:
			Brain region:		region:	DI=8; Strain:
		TWO WON ANOVA	p<0.0001;		$\Gamma = 29.89;$	DI=2;
Figure 2:	all groups	with Tukov's USD	p=0.0027		F_{-6} 406	Df-16
riguit 21	an groups	with runcy STISD	p = 0.0027,		$1^{\circ}-0.470,$	DI-10

			Interaction p<0.0001		Interaction F=4.673	
	Cotex: GCI-WT vs PFF-WT (GCI-WT,					
Figure 2i	mice)	with Tukey's HSD	< 0.0001			
Figure 2i	Cotex: GCI-WT vs LB- WT (n=3 mice for both GCI-WT and LB-WT)	Two-way ANOVA, with Tukey's HSD	<0.0001			
Figure 3b	GCI-KOM2 vs LB- KOM2 at 1 mpi (n=3 mice for both GCI- KOM2 and LB-KOM2)	two tailed, unpaired t-test with Bonferroni correction	<0.0001	18.61		4
Figure	GCI-KOM2 vs LB- KOM2 at 3 mpi (n=5 mice for both GCI-	two tailed, unpaired t-test with Welch's correction and	0.0001	10.01		
3b Figure	KOM2 and LB-KOM2) GCI-KOM2 vs LB- KOM2 at 6 mpi (n=5 mice for both GCI-	Bonterroni correction two tailed, unpaired t-test with Welch's correction and	0.3391	1.067		4.583
3b	KOM2 and LB-KOM2)	Bonferroni correction	0.1308	1.835		4.616
Figure 3c	All groups	One-way Anova with Dunnett's Multiple Comparison Test comparing each group with LB- KOM2	0.0041		6.566	between columns: Df=4; within colums: Df=13; Total: Df=17
Figure 3c	LB-KOM2 vs GCI (LB- KOM2, n=4 mice; GCI, n=3 cases)	One-way Anova with Dunnett's Multiple Comparison Test	0.2193			
Figure 3c	LB-KOM2 vs LB (n=4 mice; for LB-KOM2; n=3 cases for LB)	One-way Anova with Dunnett's Multiple Comparison Test	0.0043			
Figure 3c	LB-KOM2 vs GCI- KOM2 (n=4 mice for both LB-KOM2 and GCI-KOM2)	One-way Anova with Dunnett's Multiple Comparison Test	0.2			
Figure 3c	LB-KOM2 vs M83 (n=4 mice for both LB- KOM2 and M83)	One-way Anova with Dunnett's Multiple Comparison Test	0.0024			
Figure 3e	NI vs GCI (n=6 cases for both NI and GCI)	two tailed, unpaired t-test	0.0002	5.734		10
Figure 4c	All groups	One-way Anova with Dunnett's Multiple Comparison Test comparing each group with PFF- KOM2	<0.0001		65.39	between columns: Df=4; within colums: Df=15; Total: Df=19

	PFF-KOM2 200pg vs					
	PFF 200pg (PFF-					
	KOM2 $n=6$ PFF $n=3$	One-way Anova with				
Figure	biologically	Dunnett's Multiple				
4c	independent replicates)	Comparison Test	0.0045			
-+0	PEE KOM2 200ng vs	Comparison rest	0.0045			
	DEE 2ng (DEE KOM2					
	$r \Gamma \Gamma 2 lig (\Gamma \Gamma \Gamma - KOM2, $					
E:	hiele sizeller	Durn ett's Multiple				
Figure	biologically	Dunnett's Multiple	0.0205			
4c	independent replicates)	Comparison Test	0.0205		-	
	PFF-KOM2 200pg vs					
	PFF 20ng (PFF-KOM2,					
	n=6; PFF n=3	One-way Anova with				
Figure	biologically	Dunnett's Multiple				
4c	independent replicates)	Comparison Test	0.0001			
	PFF-KOM2 200pg vs					
	KOM2 + PFF (PFF-					
	KOM2, n=6; KOM2 +	One-way Anova with				
Figure	PFF n=5 biologically	Dunnett's Multiple				
4c	independent replicates)	Comparison Test	0.002			
	LB-KOM2 vs LB (LB-					
	KOM2. n=7: LB. n=3					
Figure	biologically	two tailed, unpaired				
4d	independent replicates)	t-test	0.0439	2.389		8
		One-way Anova with	010103	21007		between
		Dunnett's Multiple				columns.
		Comparison Test				Df-7: within
		comparing each				colume:
		group with DEE				Df-22: Total:
Eigung 4f	All Crowns	gloup with FTT-	<0.0001		120.4	D1=23, 10tal.
Figure 41	All Gloups	Oligo-Syli	<0.0001		130.4	DI-30
	PFF-Oligo-Syli 200pg					
	VS PFF-KatH-Syn					
	200pg (PFF-Oigo-Syn,					
	n=6; PFF-RatH-Syn,	One-way Anova with				
	n=4 biologically	Dunnett's Multiple	0.0001			
Figure 4f	independent replicates)	Comparison Test	0.0001			
	PFF-Oligo-Syn 200pg					
	vs PFF-RatC-Syn					
	200pg (PFF-Oigo-Syn,					
	n=6; PFF-RatC-Syn,	One-way Anova with				
	n=4 biologically	Dunnett's Multiple				
Figure 4f	independent replicates)	Comparison Test	0.0001			
	PFF-Oligo-Syn 200pg					
	vs PFF-QBI-Syn 200pg					
	(PFF-Oigo-Syn, n=6;					
	PFF-QBI-Syn, n=4	One-way Anova with				
	biologically	Dunnett's Multiple				
Figure 4f	independent replicates)	Comparison Test	0.0001			
	PFF-Oligo-Svn 200pg	· ·				
	vs PFF 200pg (PFF-					
	· · · · · · · · · · · · · · · · · · ·	0 1 11				
	Oigo-Svn, n=6: PFF.	One-way Anova with				
	Oigo-Syn, n=6; PFF, n=4 biologically	One-way Anova with Dunnett's Multiple				
Figure 4f	Oigo-Syn, n=6; PFF, n=4 biologically independent replicates)	One-way Anova with Dunnett's Multiple Comparison Test	0.0001			

				1	r	
	PFF-Oligo-Syn 200pg					
	vs PFF 2ng (PFF-Oigo-					
	Syn, n=6; PFF, n=3	One-way Anova with				
	biologically	Dunnett's Multiple				
Figure 4f	independent replicates)	Comparison Test	0.0001			
	PFF-Oligo-Syn 200pg					
	vs PFF 20ng (PFF-					
	Oigo-Syn, n=6; PFF,	One-way Anova with				
	n=3 biologically	Dunnett's Multiple				
Figure 4f	independent replicates)	Comparison Test	0.9999			
	PFF-Oligo-Syn 200pg					
	vs PFF 200ng (PFF-					
	Oigo-Syn, n=6; PFF,	One-way Anova with				
	n=3 biologically	Dunnett's Multiple				
Figure 4f	independent replicates)	Comparison Test	0.0001			
						between
						columns:
						Df=3; within
		One-way Anova with				colums:
Figure		Dunnett's Multiple				Df=14; Total:
4h	All Groups	Comparison Test	0.0025		7.913	Df=17
	Oligo-PFF vs RatC-PFF					
	(Oligo-PFF, n=6; RatC-	One-way Anova with				
Figure	PFF, n=4 biologically	Dunnett's Multiple				
4h	independent replicates)	Comparison Test	0.0107			
	Oligo-PFF vs RatH-PFF					
	(Oligo-PFF, n=6; RatH-	One-way Anova with				
Figure	PFF, n=4 biologically	Dunnett's Multiple				
4h	independent replicates)	Comparison Test	0.0045			
	Oligo-PFF vs PFF					
	(Oligo-PFF, n=6; PFF,	One-way Anova with				
Figure	n=4 biologically	Dunnett's Multiple				
4h	independent replicates)	Comparison Test	0.004			
		One-way Anova with				between
		Dunnett's Multiple				columns:
		Comparison Test				Df=9; within
		comparing each				colums:
		group with GCI				Df=28; Total:
Figure 4j	All Groups	200pg group.	< 0.0001		16.88	Df=37
	GCI 200pg vs GCI-N-	One-way Anova with				
	P1 200pg (GCI, n=3;	Dunnett's Multiple				
	GCI-N-P1, n=5	Comparison Test				
	biologically					
Figure 4j	independent replicates)		0.3584			
	GCI 200pg vs GCI-N-	One-way Anova with				
	P2 200pg (GCI, n=3;	Dunnett's Multiple				
	GCI-N-P2, n=4	Comparison Test				
	biologically					
Figure 4j	independent replicates)		0.3156			
	GCI 200pg vs GCI-N-	One-way Anova with				
	P3 200pg (GCI, n=3;	Dunnett's Multiple				
	GCI-N-P1, n=4	Comparison Test				
	biologically	-				
Figure 4j	independent replicates)		0.9049			

	GCI 200pg vs PFF	One-way Anova with				
	200ng (GCI, n=3; GCI- N-P1 n=3 biologically	Comparison Test				
Figure 4i	independent replicates)	Comparison rest	0.1082			
						between
						columns:
						Df=3; within
		One-way Anova with				colums:
F ¹ (1		Tukey's Multiple	0.0001		11.10	Df=24; Total:
Figure 41	All Groups	Comparison Test	<0.0001		44.43	Df=27
	(GCL vs GCI-M-P1	One way Anova with				
	n=6 biologically	Tukey's Multiple				
Figure 41	independent replicates)	Comparison Test	0.2562			
	GCI-M-P1 vs LB-M-P1					
	(n=6 biologically					
	independent replicates	One-way Anova with				
	for both GCI-M-P1 and	Tukey's Multiple				
Figure 41	LB-M-P1)	Comparison Test	< 0.0001			
	LB VS LB-M-PI (LB, $n=8$, LP M D1, $n=6$	One way Anove with				
	hiologically	Tukey's Multiple				
Figure 41	independent replicates)	Comparison Test	0.9944			
	F					
Extented	LB vs GCI at Syn7015					
data Fig.	15 ng/ml (LB, n=5; GCl,	two tailed, unpaired	0.0400	2 470		7
26	n=4 cases)	t-test	0.0423	2.479		/
Extented	LB vs GCI at Syn7015					
data Fig.	5ng/ml (LB, n=5; GCI,	two tailed, unpaired				
2b	n=4 cases)	t-test	0.0153	3.187		7
Extended	I D vo CCL at Svm7015					
data Fig	1.67 ng/ml (I B n-5)	two tailed unnaired				
2b	GCI. n=4 cases)	t-test	0.0435	2.459		7
	All GCI vs All LB (n=3					
	biologically					
	independent replicates					
Extented	for MSA-P, MSA-C,	two tailed, unpaired				
data Fig.	AD, PDD, DLB, PFF	t-test with Welch's	0.0010	6 (2)1		5 002
30	and PBS) $A11 CCL us A11 LP (n-2)$	correction	0.0012	6.621		5.003
	hiologically					
	independent replicates					
Extented	for MSA-P, MSA-C,	two tailed, unpaired				
data Fig.	AD, PDD, DLB, PFF	t-test with Welch's				
4b	and PBS)	correction	0.0071	4.387		5.008
		two tailed, unpaired				
Enter 1		t-test with Welch's				
Extented data Fig	All LB VS All GCI (LB, n=0: CCI $n=8$ different	correction, using the				
4c	preparations]	case	<0.0001	12.71		7 102
	All GCI vs All LB (n=3			12.71		,
Extented	biologically	two tailed, unpaired				
data Fig.	independent replicates	t-test with Welch's				
4e	for MSA-P, MSA-C,	correction	0.0012	6.621		5.003

	AD, PDD, DLB, PFF					
	and PBS)					
						between
						columns:
Extented		One-way Anova with				colums:
data Fig.		Tukey's Multiple				Df=24: Total:
4f	All Group	Comparison Test	< 0.0001		33.44	Df=35
	10ng IP purified GCI vs	One-way Anova with				
	10ng GCI (n=3	Tukey's Multiple				
	biologically	Comparison Test				
Extented	independent replicates					
data Fig.	for both IP purified GCI		0.0700			
41	and GCI)		0.9799			
	10ng IP purified I B	Tukey's Multiple				
Extented	(n=3 biologically	Comparison Test				
data Fig.	independent replicates	comparison rest				
4f	for both GCI and LB)		< 0.0001			
	GCI Depleted vs GCI					
	Depleted + PFF (n=3					
Extented	biologically	two tailed, unpaired				
data Fig.	independent replicates	t-test with Bonferroni	0.7754	0.2052		4
4g	I Dor both group)	correction	0.7754	0.3052		4
	Depleted \pm PFE (n=3					
Extented	biologically	two tailed unpaired				
data Fig.	independent replicates	t-test with Bonferroni				
4g	for both group)	correction	0.1986	1.539		4
	Depleted GCI + 100ng					
	PFF vs 100ng PFF					
Extented	(n=3 biologically	two tailed, unpaired				
data Fig.	independent replicates	t-test with Bonferroni	0.6526	0 40 41		4
4h	for both group)	correction	0.6536	0.4841	Stancing	4
			Strrains		$F-24.66^{\circ}$	
			p<0.0001: Ch		Ch	Strrains Df=2:
			trestment		trestment	Ch trestment
Extented		Two-way ANOVA,	p<0.0001;		F=71.89;	Df=1;
data Fig.		with Sidak's multiple	interaction		interaction	interaction
4i	All group	comparisons test	p<0.0001		F=25.65	Df=2
	GCI without Ch vs GCI with Ch $(n-2)$					
Extented	with Cn (n=3	Two way ANOVA				
data Fig	independent replicates	with Sidak's multiple				
4i	for both group)	comparisons test	< 0.0001			
	PFF without Ch vs PFF	For a construction				
	with Ch (n=3					
Extented	biologically	Two-way ANOVA,				
data Fig.	independent replicates	with Sidak's multiple				
4i	for both group)	comparisons test	0.0065			

	GCI with Ch vs PFF					
	with Ch (n=3					
Extented	biologically	Two-way ANOVA,				
data Fig.	independent replicates	with Sidak's multiple				
4i	for both group)	comparisons test	0.0036			
					Strrains	
			Strrains		F=17.93;	
			p<0.0001; Ch		Ch	Strrains Df=2;
			trestment		trestment	Ch trestment
Extented		Two-way ANOVA,	p<0.0001;		F=92.1;	Df=1;
data Fig.		with Sidak's multiple	interaction		interaction	interaction
<u>4</u> j	All group	comparisons test	p=0.0003		F=13.52	Df=2
Extented	GCI without Ch vs GCI	Two-way ANOVA,				
data Fig.	with Ch (n=3	with Sidak's multiple				
4 <u>J</u>	biologically	comparisons test				
	independent replicates		0.0001			
	for both group)		<0.0001			
Extented	PFF without Ch vs PFF	Two-way ANOVA,				
data Fig.	with Cn (n=3	with Sidak's multiple				
4]	biologically	comparisons test				
	for both group)		<0.0001			
Extented	GCL with Chays PEE		<0.0001			
data Fig	with Ch $(n-3)$	with Sidak's multiple				
4i	biologically	comparisons test				
	independent replicates	comparisons test				
	for both group)		0.2822			
	GCI-WT vs LB-WT at		0.2022			
Extented	6 mpi (n=3 mice for)	two tailed, unpaired				
data Fig.	both GCI-WT and LB-	t-test with Welch's				
4k	WT)	correction	0.2852	1.445		2.002
	GCI-KOM2 vs LB-	two tailed, unpaired				
Extented	KOM2 at 1 mpi (n=3	t-test with Welch's				
data Fig.	mice for both GCI-	correction and				
7b	KOM2 and LB-KOM2)	Bonferroni correction	0.0515	4.212		2.012
Extented	GCI-KOM2 vs LB-	two tailed, unpaired				
data Fig.	KOM2 at 3 mpi (n=5	t-test with Welch's				
7b	mice for both GCI-	correction and				
	KOM2 and LB-KOM2)	Bonferroni correction	0.267	1.259		4.694
Extented	GCI-KOM2 vs LB-	two tailed, unpaired				
data Fig.	KOM2 at 6 mpi (n=5	t-test with Welch's				
7b	mice for both GCI-	correction and				
	KOM2 and LB-KOM2)	Bonferroni correction	0.1069	2.054		4.133
	GCI-KOM2 vs LB-	two tailed, unpaired				
Extented	KOM2 at 1 mpi (n=3	t-test with Welch's				
data Fig.	mice for both GCI-	correction and	0.0177			0.046
/c	KOM2 and LB-KOM2)	Bonferroni correction	0.0177	7.174		2.046
Extented	GCI-KOM2 vs LB-					
data Fig.	KOM2 at 3 mpi (n=5	two tailed, unpaired				
/C	mice for both GCI-	t-test with Bonferroni	0.5226	0 6505		0
Enterte 1	CCL KOM2 and LB-KUM2)	correction	0.5550	0.0505		ð
data Eig	VOM2 at 6 mpi (n=5	two tailed unnaired				
uata Fig.	mice for both CCI	t test with Bonforroni				
	KOM2 and I R ₋ KOM2	correction	0.0673	2116		8
	1301012 and $LD^{-1}(01012)$	concetton	0.0075	2.110	1	0

	GCI-KOM2 vs LB-	two tailed, unpaired				
Extented	KOM2 at 1 mpi (n=3	t-test with Welch's				
data Fig.	mice for both GCI-	correction and				
7d	KOM2 and LB-KOM2)	Bonferroni correction	0.3468	1.22		2
Extented	GCI-KOM2 vs LB-	two tailed, unpaired				
data Fig.	KOM2 at 3 mpi (n=5	t-test with Welch's				
7d	mice for both GCI-	correction and				
	KOM2 and LB-KOM2)	Bonferroni correction	0.3906	0.9617		4.004
Extented	GCI-KOM2 vs LB-	two tailed, unpaired				
data Fig.	KOM2 at 6 mpi (n=5	t-test with Welch's				
7d	mice for both GCI-	correction and				
74	KOM2 and LB-KOM2)	Bonferroni correction	0 3183	1 1 3 9		4 004
	GCI-KOM2 vs LB-	two tailed unpaired	010100	11107		
Extented	KOM2 at 1 mpi (n-3	t-test with Welch's				
data Fig	mice for both GCL	correction and				
	KOM2 and LB KOM2)	Bonferroni correction	0 1661	2 136		2 001
Extented	CCL KOM2 vo L P	two toiled unneired	0.1001	2.150		2.001
data Eig	VOM2 at 2 mpi (n=5	t test with Welch's				
data Fig.	KOW2 at 5 lipt (II-5	t-test with weich's				
7e	KOM2 and LD KOM2)	Deuferneni eennetien	0.5(2)(0 (2(2		4 224
$\mathbf{F} \leftarrow 1$	KOM2 and LB-KOM2)	Bonierrom correction	0.3626	0.0203		4.334
Extented	GCI-KOM2 vs LB-	two tailed, unpaired				
data Fig.	KOM2 at 6 mpi (n=5	t-test with Welch's				
/e	mice for both GCI-	correction and	0.0001			
	KOM2 and LB-KOM2)	Bonferroni correction	0.0831	2.223		4.477
		One-way Anova with				between
		Dunnett's Multiple				columns:
		Comparison Test				Df=5; within
Extented		comparing each				colums:
data Fig.		group with PFF-				Df=12; Total:
10d	All Groups	Oligo-Syn	< 0.0001		23.56	Df=17
	PFF-Oligo-Syn vs PFF-					
	HipN-Syn (n=3					
Extented	biologically	One-way Anova with				
data Fig.	independent replicates	Dunnett's Multiple				
10d	for both group)	Comparison Test	0.0001			
	PFF-Oligo-Syn vs PFF-					
	CtxN-Syn (n=3					
Extented	biologically	One-way Anova with				
data Fig.	independent replicates	Dunnett's Multiple				
10d	for both group)	Comparison Test	0.0001			
	PFF-Oligo-Syn vs PFF-					
	QBI-Syn (n=3					
Extented	biologically	One-way Anova with				
data Fig.	independent replicates	Dunnett's Multiple				
10d	for both group)	Comparison Test	0.0001			
	PFF-Oligo-Syn vs PFF					
Extented	(n=3 biologically	One-way Anova with				
data Fig.	independent replicates	Dunnett's Multiple				
10d	for both group)	Comparison Test	0.0001			
	PFF-Oligo-Syn vs					
Extented	PPBS (n=3 biologically	One-way Anova with				
data Fig	1 1 1 1 1 1	Dunnatt's Multipla				
uata 11g.	independent replicates	Dunneu's Muniple				

		One-way Anova with			between columns:
		Dunnett's Multiple			Df=5; within
Extented		Comparison Test			colums:
data Fig.		comparing each			Df=12; Total:
10g	All Groups	group with GCI	0.0003	11.63	Df=17
	GCI vs GCI-N-P1 (n=3				
Extented	biologically	One-way Anova with			
data Fig.	independent replicates	Dunnett's Multiple			
10g	for both group)	Comparison Test	0.9998		
	GCI vs GCI-N-P2 (n=3				
Extented	biologically	One-way Anova with			
data Fig.	independent replicates	Dunnett's Multiple			
10g	for both group)	Comparison Test	0.6404		
	GCI vs GCI-N-P3 (n=3				
Extented	biologically	One-way Anova with			
data Fig.	independent replicates	Dunnett's Multiple			
10g	for both group)	Comparison Test	0.6721		
	GCI vs PFF (n=3				
Extented	biologically	One-way Anova with			
data Fig.	independent replicates	Dunnett's Multiple			
10g	for both group)	Comparison Test	0.0061		
	GCI vs PBS (n=3				
Extented	biologically	One-way Anova with			
data Fig.	independent replicates	Dunnett's Multiple			
10g	for both group)	Comparison Test	0.009		

Supplementary References:

- 1 Waxman, E. A. & Giasson, B. I. Specificity and regulation of casein kinase-mediated phosphorylation of alpha-synuclein. *Journal of neuropathology and experimental neurology* **67**, 402-416, doi:10.1097/NEN.0b013e31816fc995 (2008).
- 2 Giasson, B. I., Uryu, K., Trojanowski, J. Q. & Lee, V. M. Mutant and wild type human alphasynucleins assemble into elongated filaments with distinct morphologies in vitro. *The Journal of biological chemistry* **274**, 7619-7622 (1999).
- Giasson, B. I., Murray, I. V., Trojanowski, J. Q. & Lee, V. M. A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. *The Journal of biological chemistry* **276**, 2380-2386, doi:10.1074/jbc.M008919200 (2001).
- 4 Jakes, R. *et al.* Epitope mapping of LB509, a monoclonal antibody directed against human alphasynuclein. *Neuroscience letters* **269**, 13-16 (1999).
- 5 Giasson, B. I. *et al.* A panel of epitope-specific antibodies detects protein domains distributed throughout human alpha-synuclein in Lewy bodies of Parkinson's disease. *Journal of neuroscience research* **59**, 528-533 (2000).
- 6 Tu, P. H. *et al.* Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. *Annals of neurology* **44**, 415-422, doi:10.1002/ana.410440324 (1998).
- 7 Murray, I. V. *et al.* Role of alpha-synuclein carboxy-terminus on fibril formation in vitro. *Biochemistry* **42**, 8530-8540, doi:10.1021/bi027363r (2003).
- 8 Covell, D. J. *et al.* Novel conformation-selective alpha-synuclein antibodies raised against different in vitro fibril forms show distinct patterns of Lewy pathology in Parkinson's disease. *Neuropathology and applied neurobiology*, doi:10.1111/nan.12402 (2017).

- 9 Volpicelli-Daley, L. A. *et al.* Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. *Neuron* **72**, 57-71, doi:10.1016/j.neuron.2011.08.033 (2011).
- 10 Reid, M. V. *et al.* Delayed myelination in an intrauterine growth retardation model is mediated by oxidative stress upregulating bone morphogenetic protein 4. *Journal of neuropathology and experimental neurology* **71**, 640-653, doi:10.1097/NEN.0b013e31825cfa81 (2012).
- 11 Yazawa, I. *et al.* Mouse model of multiple system atrophy alpha-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. *Neuron* **45**, 847-859, doi:10.1016/j.neuron.2005.01.032 (2005).
- 12 Duda, J. E., Giasson, B. I., Mabon, M. E., Lee, V. M. & Trojanowski, J. Q. Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. *Annals of neurology* **52**, 205-210, doi:10.1002/ana.10279 (2002).

Undigested

Supplementary Fig. 1. Full blots of western blot data (Continue)

Supplementary Fig. 1. Full blots of western blot data (Continue)

10

Supplementary Fig. 1. Full blots of western blot data (continue)

Extended Data Fig. 10c

Extended Data Fig. 10f

