
Supplemental material: Predictors of decline in

self-reported health: addressing non-ignorable

dropout in longitudinal studies of ageing

Sensitivity analysis

We propose a sensitivity analysis to the assumption of ignorable dropout (which is made

when doing complete case analyses). We start with a simple example to introduce the

concept of sensitivity analysis, before we present formally the method proposed.

Example 1: Estimating the proportion of decliners

Assume we are interested in estimating the proportion of individuals declining from good

health to poor health (p) from baseline to follow-up among the Swedish females. Out of

the 1235 individuals responding at baseline only 646 participate at follow up (and 589 drop

out). Out of these 646, 155 are decliners and 491 are not decliners. If we point estimate

the proportion of decliners by using only the complete cases (i.e. the 646 that participate

at follow-up), we get p̂ = 155
646 = 0.24. This estimate is only unbiased if we assume that the

dropout mechanism is ignorable.

The information we have from the data, however, is that between 155 and (155 +

589) = 744 out of the 1235 are decliners, since we do not know how many of the 589

non-respondents have declining SRH. That is, without further assumptions on the missing

data, we can derive bounds for p̂, 155
1235 = 0.13 ≤ p̂ ≤ 0.60 = 744

1235 , we call the interval

[0.13, 0.60] a worst case scenario bound of p̂.

Since we only observe a sample and not the entire underlying population, we want to

derive a 95% confidence interval for p. Assuming ignorable dropout the confidence interval

centered around p̂ = 155
646 = 0.24 is [0.21, 0.27]. The analog of a 95% confidence interval but

centered around the interval [0.13, 0.60] is called herein a 95% uncertainty interval. We
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derive the 95% uncertainty interval, [0.11, 0.63], from the worst case senario bound above

by adding confidence bounds to the lower and upper end of the worst case scenario bound.

Note that the uncertainty interval contain the confidence interval. This is natural since

this uncertainty interval is derived without assumptions on the missing data. Hence the

uncertainty due to missing data is incorporated into a wider interval.

Let us now introduce as a sensitivity parameter the proportion of decliners among

the non-respondents, pZ=0. Ignorable dropout can now be formulated as pZ=0 = pZ=1,

i.e. the proportion of decliners is the same among the non-respondents and respondents.

Alternatively, the no assumption interval estimate from above corresponds to letting the

probability vary freely between 0 and 1, i.e. pZ=0 ∈ [0, 1]. Hence, we retrieve our earlier

results: p̂ = 0.24 if pZ=0 = pZ=1 and p̂ ∈ [0.13, 0.60] if pZ=0 ∈ [0, 1]. Thus, knowledge (or

lack thereof) on the sensitivity parameter leads to different inference for p. Suppose that

we have subject matter knowledge that dropout is related to poor health. In such a case,

we can assume that pZ=0 ≥ pZ=1 and we can estimate bounds for p̂ as [0.24, 0.60]. Note

that the lower bound is p̂Z=1 = 0.24 and the upper bound the same as in the worst case

scenario bound given above. If we derive the corresponding 95% uncertainty interval we

get [0.21, 0.63].

Model and method

In Example 1 the interest was in estimating the proportion of decliners from good SRH to

poor SRH. We now generalize the sensitivity analyses presented above to the estimation of

predictors coefficients in a regression for binary outcome (declining/not declining), where

the latter outcome is missing for those dropping out. If the dropout mechanism is ignorable,

a well specified logistic or probit regression analysis of the outcome against the covariates

using only the complete cases (the ones participate at follow-up) would yield unbiased

estimates of the regression coefficients. However, if the dropout mechanism is not ignorable

the estimates from a complete case analysis are biased. In order to allow for the dropout

mechanism to be non-ignorable, we model both the outcome and the dropout mechanism

with probit regression models. This is formalised below.

Let Y be a binary outcome and Z be an indicator variable (the dropout mechanism)

that take the value 1 if Y is observed and 0 otherwise. We model these variables by letting

Z = I(Z∗ ≥ 0) and Y = I(Y ∗ ≥ 0) where I(v) is the indicator function taking value 1 if v
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is true and 0 otherwise, and (Y ∗, Z∗) are two latent random variables such that:{
Z∗ = δTx + ε,

Y ∗ = βTx + u,
(1)

where ε and u are two jointly Gaussian random variables, with standardized marginals

and correlation ρ, and x is a k-dimensional covariate vector with the first element fixed to

one (intercept). With this model dropout is ignorable if ρ = 0 and non-ignorable if ρ 6= 0,

i.e. ρ is here the sensitivity parameter. This model and the resulting sensitivity analysis

is a generalization of the approach presented in Genbäck et al. (2015), where the observed

outcome was continuous. A similar approach was also presented in Copas and Li (1997)

and Stingo et al. (2011).

In order to estimate the regression parameters we use maximum likelihood for the

model in (1), see details at the end of this document. Maximization with respect to all

parameters without further assumptions is unstable, since the likelihood function is flat

in the ρ dimension; there is no information in the data on ρ. Therefore, ρ is instead

used as a sensitivity parameter, and varied in order to look at the consequence on β̂, the

estimator of the parameter of interest. We first assume ρ known and fixed and derive the

estimates δ̂(ρ) and β̂(ρ) by maximization of the joint log-likelihood (2), given ρ. Sampling

variation is taken into account by computing standard errors (from the inverse of the Fisher

information matrix) and then constructing confidence intervals for δ and β given ρ.

The uncertainty interval (UI) for β is the union of all the confidence intervals for β

obtained with ρ varying in a given interval [a, b] (Vansteelandt et al. 2006). If we denote

the lower and the upper bound of the confidence interval for βj (element of β) with LCIj(ρ)

and UCIj(ρ) for a fixed ρ then:

UI = (minρ∈[a,b]LCIj(ρ) ; maxρ∈[a,b]UCIj(ρ)).

Not that in the sensitivity analysis the model used for the binary outcome is a probit.

Another popular specification is based on the logit link. Probit and logit inference seldom

disagree, and the probit coefficients could be used to approximate logit with very high

precision (Demidenko 2004; pp. 334-337). Thus, we argue that even if logit models are

fitted (as we do in the paper) to obtain odds ratios, the probit-based sensitivity analysis

is still relevant.
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Example 2: Obesity as predictor of decline

Let us look at the sensitivity analysis for the coefficient for body mass index ≥ 30 (Obesity)

for both women and men in the three countries, (Figure 1 - 8). In the sensitivity analysis

we assume a negative correlation between ε and u ([a, b] = [−0.8, 0]), which is in line with a

belief that dropout is related to poor health. Figure 1 - 3 and 5 - 7 illustrates the maximum

likelihood estimates for the element of β that corresponds to Obesity for the different values

of ρ, β̂j(ρ), the corresponding confidence intervals (CI) and resulting uncertainty interval

(UI). The colored interval is the confidence interval assuming ignorable dropout (ρ = 0),

i.e. identical to a confidence interval from a complete case analysis. The black dashed

intervals are the confidence intervals assuming ρ = −0.1,−0.2, ...,−0.8. The uncertainty

interval is the black unbroken interval (union of the colored and all the dashed intervals).

In Figure 1 we can see that assuming ignorable dropout (ρ = 0, same results as a

complete case analysis) Obesity is significant at the 5 % level for Swedish women (the blue

confidence interval does not contain 0). The coefficient estimate decrease with negative ρ,

and the confidence intervals assuming ρ = −0.6, −0.7 and −0.8 all include 0 (dashed lines).

Consequently the uncertainty interval assuming that ρ ∈ [−0.8, 0] includes 0 and we say

that the conclusions from a complete case analysis is sensitive to non-ignorable dropout.

Similar results are found for Italian women and Swedish men, see Figure 3 and 5. For

Italian men the coefficient estimate also decreases when ρ < 0, but the uncertainty interval

does not contain 0, which suggests that the association in the complete case analysis might

be overestimated. In summary the sensitivity analysis suggests that the significance of

Obesity as a predictor of decline in SRH cannot be trusted.

Figure 4 and 8 contain a summary of Figure 1 - 3 and 5 - 7 respectively. At the

top of Figure 4 and 8 we see in color (blue Sweden, orange Netherlands, green Italy)

confidence intervals (assuming ignorable dropout) for Obesity from the probit regression.

The black continuations of the coloured intervals show the uncertainty intervals assuming

ρ ∈ [−0.8, 0]. Below in Figure 4 and 8 we have translated the intervals from a probit scale

into an approximated odds ratio scale in order to simplify comparison with the odds ratios

in the manuscript, this is presented in the manuscript in Table 3 and 4.

Technical details

We now explain how to derive the log likelihood of the model (1). Note that, we can only

observe Z and ZY from the data, and never Z∗ or Y ∗. More specifically, three types of
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Figure 1: Sensitivity analysis (α = 5%, ρ ∈
[−0.8, 0]) for Obesity, Swedish women (see

text).
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Figure 2: Sensitivity analysis (α = 5%,

ρ ∈ [−0.8, 0]) for Obesity, Dutch women

(see text).
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Figure 3: Sensitivity analysis (α = 5%,

ρ ∈ [−0.8, 0]) for Obesity, Italian women

(see text).

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2

Probit scale

−0.4 −0.2 0.0 0.2

0.6 0.8 1.0 1.2 1.4

Approximate Odds Ratio

0.5 1.0 1.5

Figure 4: Confidence interval assuming

ignorable dropout (blue Sweden, orange

Netherlands and green Italy) drawn over

the uncertainty interval assuming ρ ∈
[−0.8, 0] in black.
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Figure 5: Sensitivity analysis (α = 5%,

ρ ∈ [−0.8, 0]) for Obesity, Swedish men (see

text).
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Figure 6: Sensitivity analysis (α = 5%, ρ ∈
[−0.8, 0]) for Obesity, Dutch men (see text).
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Figure 7: Sensitivity analysis (α = 5%,

ρ ∈ [−0.8, 0]) for Obesity, Italian men (see

text).
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Figure 8: Confidence interval assuming

ignorable dropout (blue Sweden, orange

Netherlands and green Italy) drawn over

the uncertainty interval assuming ρ ∈
[−0.8, 0] in black.
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observed patterns are possible. Those are (a) observed units with Z = 0, Y not observed

(b) observed units with Y = 0, Z = 1 and (c) observed units with Y = 1, Z = 1. We have:

P (Z = 0|x) = 1− Φ(δx),

P (Y = 0, Z = 1|x) = Φ2(−βx, δx,−ρ),

P (Y = 1, Z = 1|x) = Φ2(βx, δx, ρ),

where Φ(·) is the standardized normal cdf while Φ2(·, ·; ρ) is the standardized bivariate

normal cdf with correlation ρ. Using the notation in Greene (2012; p. 779-780), for each

observation i, we let qi = 2yi − 1, wi = qiβ
Txi and ρ∗i = qiρ. The expressions above can

be rewritten as:

P (Z,ZY |x) = (1− Φ(δxi))
1−zi Φ2(wi, δ

Txi, ρ
∗
i )
zi .

From this the log-likelihood can be derived:

`(δ,β, ρ) =
∑
i

(1− zi) ln{1− Φ(δTxi)}+
∑
i

zi ln{Φ2(wi, δ
Txi; ρ

∗
i )}. (2)

In order to decrease computing time in the optimization of (2), we use the analytical

first derivative of the log-likelihood function (gradient function):

d`(δ,β, ρ)

dβ
=
∑
i

zi
d ln{Φ2(wi, δ

Txi; ρ
∗
i )}

dβ
=
∑
i

zi

qiφ(βTx)Φ

(
δTx−ρβTx√

1−ρ2

)
Φ2(wi, δTxi; ρ∗i )

,

d`(δ,β, ρ)

dδ
=

∑
i

(1− zi)
d ln{1− Φ(δTxi)}

dδ
+
∑
i

zi
d ln{Φ2(wi, δ

Txi; ρ
∗
i )}

dδ

=
∑
i

(1− zi)
−φ(δTxi)

1− Φ(δTxi)
xTi +

∑
i

zi

φ(δTx)Φ

(
qi

βTx−ρδTx√
1−ρ2

)
Φ2(wi, δ

Txi; ρ∗i )
xTi .
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