Subunit	Length	Built region	Domain	PDB code	Modeling
	1336	611-1332	CorEx motif (640-710)	-	De novo building
Sec3			CAT-A (740-881)	-	De novo building
			САТ-В (920-1035)	-	De novo building
			CAT-C (1040-1208)	-	De novo building
			CAT-D (1213-1332)	-	De novo building
	971	1-971	CorEx motif (155-231)	-	De novo building
			CAT-A (238-331)	-	De novo building
Sec5			CAT-B (350-619)	-	De novo building
			CAT-C (623-812)	-	De novo building
			CAT-D (813-936)	-	De novo building
	805	1-805	CorEx motif (18-85)	-	De novo building
			CAT-A (92-253)	-	De novo building
Sec6			CAT-B (297-396)	-	De novo building
			CAT-C (414-609)	2FJI	Rigid docking
			CAT-D (619-725)	2FJI	Rigid docking
	1065	23-1065	CorEx motif (91-177)	-	De novo building
			CAT-A (180-335)	-	De novo building
Sec8			САТ-В (338-570)	-	De novo building
			CAT-C (588-858)	-	De novo building
			CAT-D (874-968)	-	De novo building
	871	3-867	CorEx motif (58-172)	-	De novo building
			CAT-A (191-279)	5H11	Homology modeling
Sec10			CAT-B (317-428)	5H11	Homology modeling
			CAT-C (432-696)	5H11	Homology modeling
			CAT-D (697-825)	5H11	Homology modeling
	910	42-890	CorEx motif (78-186)	-	De novo building
			CAT-A (190-445)	-	De novo building
Sec15			CAT-B (453-667)	2A2F	Homology modeling
			CAT-C (668-830)	2A2F	Homology modeling
			CAT-D (838-890)	2A2F	Homology modeling
	623	1-623	CorEx motif (5-67)	-	De novo building
			CAT-A (74-190)	2B1E	Rigid docking
Exo70			CAT-B (194-340)	2B1E	Rigid docking
			CAT-C (341-513)	2B1E	Rigid docking
			CAT-D (514-623)	2B1E	Rigid docking
Exo84	753	170-753	CorEx motif (197-276)	-	De novo building
			PH domain (346-452)	1ZC4	Homology modeling
			CAT-A (527-622)	2D2S	Rigid docking
			CAT-B (625-753)	2D2S	Rigid docking

Supplementary Table 1. Summary of model building for the yeast exocyst complex

Name	Description			
pGV373	p415TEF-TOM20-mCherry			
pG1831	pRS416-Cit1-GFP			
pG1872	p415TEF-TOM20-mCherry-sec3(1-1336)			
pG1976	p415TEF-TOM20-mCherry-sec3(1-620)			
pG1977	p415TEF-TOM20-mCherry-sec3(1-740)			
pG1978	p415TEF-TOM20-mCherry-sec3(601-1336)			
pG1979	p415TEF-TOM20-mCherry-sec3(710-1336)			
pG215	Prs304(TRP)-SEC3-GFP			
pG1980	$Prs304(TRP)$ -sec3($\Delta 621$ -710)-GFP			
GY1132	MAT a trp1, leu2, his3, ura3, lys2			
GY1143	MAT a trp1, leu2, his3, ura3, lys2, Sec5-GFP::URA3			
GY2624	<i>Mat</i> α <i>leu2-3</i> , 112, <i>ura3-52</i> , <i>trp1</i> , <i>his3</i> Δ200, <i>L-A-+</i> , <i>GAL+</i> , <i>sec3::Kan</i>			
GY3485	$MAT a his 3\Delta 1 leu 2\Delta 0 met 15\Delta 0 ura 3\Delta 0 SEC3-TAP::HIS3$			
GY3486	$MAT a his 3\Delta 1 leu 2\Delta 0 met 15\Delta 0 ura 3\Delta 0 SEC5-TAP::HIS3$			
GY3487	$MAT a his 3\Delta 1 leu 2\Delta 0 met 15\Delta 0 ura 3\Delta 0 SEC6-TAP::HIS3$			
GY3489	$MAT a his 3\Delta 1 leu 2\Delta 0 met 15\Delta 0 ura 3\Delta 0 SEC 15-TAP::HIS 3$			
	Mat a ura3-52, leu2-3, 112, his3D200, trp1 Gal+, LA+, SEC6-			
GY3924	Protein A-HIS3::SEC6			
	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ EXO70-TAP::HIS3, SEC8-			
GY3933	GFP::LEU2			
	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ Exo 70 -TAP::HIS3, Exo 84 -			
GY3937	GFP::LEU2			
	Mat α leu2-3, 112, ura3-52, trp1::SEC3-GFP-TRP1, his3 Δ 200, L-A-			
GY3948	+, GAL+, sec3::Kan			
	<i>Mat</i> α <i>leu2-3, 112, ura3-52, trp1::sec3($\Delta 621-710$)-GFP-TRP1,</i>			
GY3949	his3∆200, L-A-+, GAL+, sec3::Kan			

Supplementary Table 2. Plasmids and yeast strains used in this study

Supplementary Note 1. Evolutionary conversation of the CorEx motif in the exocyst subunits.

CeEXOC1 182 LTIGEAHIFAEM TEQLQSL GANINSMMDSENSVNQLLSSIDAALTGVESVEKELDRCDDILAFVRNSIELIEEKDSLSVVERKNKQRLNEE VSFVNSLQAVTDS 288 DFEXOC1 197 FAIKDAEQFIEQ SRELHDL GANIQSVLASEGVVMKMBHIDNAISEADKEFTKLDIGTVEDTLGHVKETMERIGGKNAMIELIANNNIKLMKE NKVISQLD-LPHS 302 DEXCOL 198 YAISNAFAEK SRELUGU GANIQSVLASEGVVMKMBHIDNAISEADKEFTKLDIGTVEDUGHVKETMERIGGKNAMIELIANNNIKLMKE NKVISQLD-LPHS 302 SCSeC3 636 SIEDDADSHIFR DLRIAET YLFNQNLLSLQKIGPNIRPYEDKVNDECHRIIPTISLFLMEMSNFSNDIENVESQDNGLQVESANKKLLWNT DELLKTVS-LDEI 742
CCEXOC2 197 QNEAKRSEEMHKANLYSLINCVDTLAN HQALEKGENA-DHFAALKN SKLIKDSKSKAENVFAD LKRKDDADATRNALGV VRFKFIFFLSSKIEDSMKKGE I 301 DEEXOC2 190 ESQKEGQLSFLKSNAGSVIDQLDTLMN RDKLQEDVKL-HGNETLNI ETSIENSISESQKIFTD LVRKEKADSTRSVLFA SRHKFLFCLPNSVDRAKAGE D 294 huEXOC2 195 NKKSEGSLAVVKGLSTFFEADDALSA HQKLEADGTEKVGNETLNI ETSIENSISESQKIFTD LVRKEKADSTRNALMV QRFKFLFNLPLNIENNIQKGC D 300 ScSec5 141 QDQSIHLKQLVGKNFTKYVKIKNKLDQ YKEFDEKTNE-KNQCDSPKENQINVES NKKVDEVIRTTTFKLKP MDNYQKILNYQATKKF ELNKFYFNLPKSLKRCLTNND N 253
CCEXCC3 1 MDVDVEEAA EQ AAL ORDOL PEL KRAD KKLAVEAMLRTGVOGOLEG RTA AHLOTASDD TA SOCVH RERLGPFPOLKEKLRE RDANARHG 104 DTEXOC3 1 MDLQQLEEQARQAA KD QNM QRPGQL EQY HRIA KKASVEALLKTGMOGOLDG RVG KQLETCMQD RE RRRMD ERLGPFPOLKEKLRE RDANARHG 104 MLEXOC3 1 MQ-CEDSTSFFTMKETDREAVATA QR AGMLORPDQL EQY HRIA KKASVEALLKAJQSOLDG RTG SOLHNALND KD QOSLA SKDWRQSINTIESIKD KDAVVDHS 118 SCSec6 1 MSSDP QQ CDL KCDLSL RDI EQLL EKSVVEYQLNKESDKYYGE EES KLINLSKNS TS KQQIN NKLGNDNRFAINRYDI FRATKLYE 100
CCEXOC4 56 EKGYKESGAL DR KNHQQDVEKCLVS RDVSSK SNCRERIHN NAIHTVKSL ELR DDLKKLWHENAQQKSVCEIMAK EE REAPS IENLISKEQ QQAADT TE 168 DrEXOC4 49 EAEFKRSDR NE SRHDQDITQVLPL SQVSSE TASRERIHA ENLGVCKL QCRRDELRKMWMDAVQHKYVLEMLEQ QE RKVPQ VVGYTAKRQ LHASKA TD 161 huEXOC4 47 EEAYEKCDRD DE VQHYTELTTAIRT QSITER TMSRNKIKQ ENLLSCKNL HCKRDELRKMWHDAVQHKYVLEMLEQ DE NKVPQ LEQCMASKH LSATDM VS 159 ScSec8 81 KSQIGSH QD NEHSQVFNTNVAS GKAVSS MQAQEQTLN NCLKEANEK TTDRGSLQELNDNNLKYTKMIDVLVN EE LQIPE IEENIRKEN HQVQIL ER 190
CeEXOC5 2
CeEXOC6 58 GDVQSFARALQQRISHYDKN QKVCSEHYQ-SFVDAMQE MKLKEQCQ-D KEETVAIDAEIQQISQRLCQKKQEI RY KLMKNAKTAMDQ AVC PVLENYAKLQEQMSNRK Q 172 DFEXOC6 27 NNTKQIGDQLEQRIRSHDKE EKICNLYYQ-GFIDSIDE LQVKTQAQ-Q HREVISLDTSLRQISASLIQQGNDL RA QIESNLASAIEA KSC PALECYMKTQQAKNKQY Q 141 huEXOC6 42 NAHKKFMEKLDACIRNHDKE EKMCNFHHQ-GFVDAITE LKVRTDAE-K KVQVTDTNRRFQDAGKEVIVHTEDI RC IQQRNITTVVEK QLC PVLEMYSKLKEQMSAKRY S ScSec15 75 NgLDPVIDELENSIEDNFQGLE QLLQDSQMNDKLETSIDE ANIQGMVQDT SSEISKFQIRLSESANELIVKKQMY NN KISLKISEATIL TKV RILELSSKCQELITERKF K 193
CCEXOC7 22 MASDQNAAESIAKK AQ EEW QNFQKNIAKSAQ RQGIEQV EKFDQRLSSLEKNVLPMHISNGKLQKKOHNIQRL NTIDATLQFYGKTSTVENA NS 121 DFEXOC7 1 NNNLDSSLQAHNK EK ATN ALLKDRVDYHD STOMSSI TIFERKIGNLEGTLPVYQETEQLQKRQQNLEAT NCLSSVLSHVDVSQEVCQL FQ NEXOC7 1 NIPPQEASARREIENK KQ EET SFIRDSLESSOD KINNVSI SESRIMKLENSIIPVKGTENLOKIGENVEKT SCHDHUSYHVASDTEKI HE 103 SCEXO70 1 MPAE DI EAD LVLSQELQKTSK TFEINKS KKIAATSNQSSQLFTPILARNNVLTTLQRNIEST NSVASVKDLANEASKYEII QK 90
CCEXOC-8 13 AFSESD IRDRIKGVKIGDETRK RHLRSEMGALNHASQET KNNVFR YQOFIDASK S-HLEREIYQ THS I QKQV ENLIMMTGD

Sequences of full-length exocyst subunits from *Saccharomyces cerevisiae* ("Sc"), *C. elegans* ("Ce"), *Human* ("Hu") and *Drosophila* ("Dr") are aligned based on their secondary structures using PROMALS3D¹. The CorEx motifs are indicated by black lines under each alignment. Same residues in the alignment are colored in red and the conserved ones in orange. The gray background in each sequence shows predicted α helices in the alignment.

Reference

1. Pei, J., Kim, B.H. & Grishin, N.V. PROMALS3D: a tool for multiple protein sequence and structure alignments. *Nucleic Acids Res.* **36**, 2295–2300 (2008).