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SUMMARY

Huntington’s disease is caused by an abnormally
long polyglutamine tract in the huntingtin protein.
This leads to the generation and deposition of N-ter-
minal exon1 fragments of the protein in intracellular
aggregates. We combined electron tomography
and quantitative fluorescencemicroscopy to analyze
the structural and material properties of huntingtin
exon1 assemblies in mammalian cells, in yeast, and
in vitro. We found that huntingtin exon1 proteins
can form reversible liquid-like assemblies, a process
driven by huntingtin’s polyQ tract and proline-rich re-
gion. In cells and in vitro, the liquid-like assemblies
converted to solid-like assemblies with a fibrillar
structure. Intracellular phase transitions of polyglut-
amine proteins could play a role in initiating irrevers-
ible pathological aggregation.

INTRODUCTION

Huntington’s disease (HD) is an incurable neurodegenerative

disease, caused by a polyglutamine (polyQ) tract expansion in

the huntingtin (HTT) protein (Bates et al., 2015). In humans, polyQ

repeats R42 invariably cause HD, and longer repeats cause

earlier onset (Finkbeiner, 2011). Although loss of HTT function

may partly account for HD pathogenesis, it is known that small

N-terminal, so called ‘‘exon1’’ fragments of HTT (HTTex1), gener-

ated by aberrant splicing (Sathasivam et al., 2013) are key medi-

ators of toxicity. HTTex1 proteins comprise 17 N-terminal amino

acids followed by the polyQ tract (varying lengths), a proline-

rich region (38 residues), and 12 C-terminal residues. Expression

of HTTex1 proteins with expanded polyQ tracts causes HD-like

symptoms in mice (Mangiarini et al., 1996) and is associated

with toxicity in a range of other organisms, including yeast (Faber

et al., 1999; Jackson et al., 1998; Meriin et al., 2002). In addition,

HTTex1 is highly aggregation prone and is a major constituent of
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fibrillar aggregates found in the brains of HD patients (DiFiglia

et al., 1997; Schilling et al., 2007). Such protein aggregates

are a common feature of neurodegenerative diseases including

Alzheimer’s disease, Parkinson’s disease, and amyotrophic

lateral sclerosis (ALS) (Dugger and Dickson, 2017). Aggregation

of HTTex1 is widely recapitulated in model systems and, like

toxicity, is polyQ length dependent. Despite a clear link between

HTTex1 aggregation and toxicity, little is known about the aggre-

gation mechanism in cells.

Onepossible aggregationmechanism is theclassical nucleated

growth model, whereby a critical nucleus, possibly a misfolded

polyQ protein, initiates aggregation that proceeds by a ‘‘dock-

lock’’ mechanism, with monomers adding to the growing fibril

(Esler et al., 2000). This model can explain aggregation of simple

polyQ peptides (Chen et al., 2002; Kar et al., 2011). In contrast,

in vitro structural studies of HTTex1 aggregation have identified

small rounded oligomers, amorphous aggregates, and fibrils

with various dimensions, suggesting amore complexmechanism

(Crick et al., 2013; Legleiter et al., 2010; Poirier et al., 2002; Scher-

zinger et al., 1997; Wetzel, 2012). An alternative model proposes

that amyloid nuclei initially form via intermediate higher-order as-

semblies such as oligomers (Lee et al., 2007; Vitalis and Pappu,

2011), an idea supported by in vitro biophysical experiments

showing that oligomers appear in aggregation reactions prior to

fibril formation (Crick et al., 2013; Jayaraman et al., 2012). In cells,

biophysical and single-molecule experiments also provide evi-

dence that HTTex1 forms transient oligomers (Li et al., 2016; Os-

sato et al., 2010; Takahashi et al., 2007), though these are not

seen consistently (Miller et al., 2011). Furthermore, these assem-

blies are not necessarily intermediates in the aggregation

pathway, and off-pathway reaction products could be artifacts

of in vitro systems. Thus, direct structural evidenceof aggregation

intermediates, particularly in the cell, is lacking.

Recent progress in understanding the formation of mem-

brane-less compartments in cells, such as stress granules, rai-

ses another possible aggregation mechanism for HTTex1.

These compartments, whose components are often enriched

in disordered regions with low sequence complexity (LC), appear

to form by liquid-liquid demixing (Brangwynne et al., 2009;

Kroschwald et al., 2015; Molliex et al., 2015). Within such
Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Aggregation of HTTex1 Proteins Can Involve a Conversion between Distinct Macroscopic Assemblies
(A) Domain organization of HTTex1 constructs in this study.

(B) Representative confocal maximum intensity projections of bright and dim 43QP-GFP assemblies. Scale bar, 10 mm.

(legend continued on next page)
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phase-separated compartments, components are typically mo-

bile and may exchange with the cytoplasm. However, liquid as-

semblies formed by the LC protein FUS may aberrantly convert

into a solid-like state, and this is accelerated by mutations asso-

ciated with ALS (Patel et al., 2015).

Although the aggregation mechanism of HTTex1 in vivo is un-

clear, the end products of aggregation have been well character-

ized in cells. HTTex1-fluorescent protein fusions commonly

assemble into micron-sized aggregates, several orders of

magnitude larger than the assemblies that are often studied

in vitro. A limited number of ultrastructural studies suggest that

these aggregates have fibrillar or granular substructures (DiFiglia

et al., 1997; Legleiter et al., 2010; Scherzinger et al., 1997). Cryo-

electron tomography experiments have recently confirmed the

fibrillar structure of HTTex1 aggregates (B€auerlein et al., 2017).

Using fluorescence microscopy, others have found that these

aggregates can be morphologically and biophysically distinct

(Caron et al., 2014; Dehay and Bertolotti, 2006; Duennwald

et al., 2006a, 2006b). How are these different assemblies related

to the aggregation mechanism?

In this study, we use a combination of correlative light and

electron microscopy (CLEM) and time-lapse fluorescence mi-

croscopy to study the aggregation pathway across different

spatial scales. We applied these techniques to mammalian,

yeast, and in vitro models of HTTex1 aggregation, to dissect the

nanostructures, material properties, and aggregation pathway

of HTTex1 assemblies.

RESULTS

Aggregation of HTTex1 Proteins Can Involve a
Conversion between Distinct Macroscopic Assemblies
To explore the aggregation pathway of polyQ-containing pro-

teins, we induced expression of HTTex1 proteins with different

polyQ lengths (25, 43, or 97), fused to a C-terminal eGFP tag (Fig-

ure 1A) in HEK293 cells, and followed their expression by time-

lapse fluorescence microscopy for 24–48 hr. We will refer to

these proteins as 25, 43, or 97QP-GFP, where the number indi-

cates the polyQ length (e.g., 97Q) and the P indicates the C-ter-

minal proline-rich region of HTTex1 (Figure 1A).

As previously observed, HTTex1 aggregation was character-

ized by the rapid growth of an intensely fluorescent aggregate

that sequestered the entire fluorescence signal in the cell (Fig-

ure 1C). We called these aggregates ‘‘bright assemblies’’ (Fig-

ure 1B). In some cases, we observed aggregation events

whereby one or more weakly fluorescent structures appeared

in the cell prior to the formation of a bright assembly. These

structures, which we called ‘‘dim assemblies’’ (Figure 1B), could
(C and D) Time-lapse fluorescence microscopy of 43QP-GFP aggregation withou

assembly formation. Blue asterisk: coalescence of dim assemblies. Scale bar, 1

(E) Quantification of aggregation events occurring without (orange) and with (ora

construct from three independent experiments. p = 0.0003, chi-square.

(F) FRAP experiment showing high HTTex1 mobility in dim assemblies but not in

(G) Averaged FRAP recovery curves. Shaded areas represent 95%confidence inte

n = 20; bright assemblies estimated mobile fraction = 10%, 95% CI: 10%–11%,

(H) EM projection image of a 43QP-GFP bright assembly (orange dashes). Highe

(I) 43QP-GFP bright assembly (orange) and dim assemblies (blue). Higher-ma

assemblies. Low-magnification scale bar, 5 mm; high-magnification scale bar, 50
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grow by coalescence (Figure 1D, blue asterisk) and exist for

hours before a bright assembly grew from the edge of a dim

assembly, sequestering all the fluorescence signal in the cell

(Figure 1D, orange arrow; Video S1). We quantified these aggre-

gation trajectories by computationally tracking single cells (Bove

et al., 2017) and measuring their fluorescence intensity distribu-

tions over time, demonstrating that progression from diffuse

fluorescence to a bright assembly, with or without an intermedi-

ate dim assembly, involves distinct changes in the fluorescence

intensity distributions (Figures S1A and S1B).

We assigned the aggregation events in our time-lapse movies

into one of two categories: formation of a bright assembly via a

visible dim assembly, or formation of a bright assembly without

a visible intermediate dim assembly. In 61% of 43QP-GFP ag-

gregation events, we observed bright assemblies emerging via

dim assemblies (Figure 1E). This reduced to 35% for 97QP-

GFP. These experiments suggest that in some cases, HTTex1 ag-

gregation involves intermediate dim assemblies. Lengthening

the polyQ tract may either reduce the formation of dim assem-

blies or accelerate their progression to bright assemblies.

25QP-GFP also formed dim assemblies, which could coalesce

(Figure S1C), but these did not progress to bright assemblies

(Figure S1D). This suggests that HTTex1 can form dim assemblies

with sub-toxic polyQ lengths but that progression to bright as-

semblies requires aberrant polyQ expansion. To test the effect

of reduced HTTex1 expression on assembly formation, we gener-

ated stable cell lines expressing 25QP-GFP or 97QP-GFP (see

STAR Methods). Time course analysis confirmed that, as with

transfected cells, dim assemblies formed with both polyQ

lengths, whereas bright assemblies required polyQ expansion

(Figure S1E).

Next we characterized the biophysical properties of dim and

bright assemblies using fluorescence recovery after photo-

bleaching (FRAP), which monitors the turnover of fluorescent

molecules in a sub-cellular region bleached by a focused laser

(Figure 1F). HTTex1 was highly mobile within dim assemblies

(estimated mobile fraction = 84%, with 95% confidence interval

[CI]: 83%–85%, n = 20) and highly immobile in bright assemblies

(estimated mobile fraction = 10%, 95% CI: 10%–11%, n = 20)

(Figure 1G). Bright assemblies were also �20–303 brighter

than dim assemblies (p < 0.0015; Figure S1F) and had spiky,

irregular edges, whereas dim assemblies were more spherical

in shape (Video S2; Figure S1G).

To investigate the nanoscale organization of these assem-

blies, we carried out correlative light and electron microscopy

(CLEM) experiments on high-pressure frozen, freeze-substituted

cells. Electron tomography of bright assemblies showed that

they comprised a tightly interwoven meshwork of fibers with
t (C), and with (D), a visible intermediate dim assembly. Orange arrows: bright

0 mm.

nge/blue) visible intermediate dim assemblies. n > 92 aggregation events per

bright assemblies. Scale bar, 3 mm.

rval (CI). Dim assemblies estimatedmobile fraction = 84%, 95%CI: 83%–85%,

n = 20. See also Table S1.

r-magnification image (inset) shows a network of fibrillar structures.

gnification image (inset) shows fibrillar structures emanating from the dim

0 nm.



diameters around 13 nm (Figure 1H; Video S3), and their irregular

shapes arose from bundles of fibers. The fluorescence signal of

dim assemblies was difficult to detect in cell sections, likely due

to the loss of signal associated with sample thinning. However,

we made use of the observation that bright assemblies formed

at the edges of dim assemblies to locate likely candidates for

dim assemblies (Figure S2A). Dim assemblies had an amor-

phous, granular appearance (note that staining intensity does

not necessarily correspond to protein concentration) and, like

bright assemblies, were not enclosed by membranes (Figure 1I).

Fibers from neighboring bright assemblies were seen partially in-

side or at the edges of dim assemblies (Figure 1I; Figure S2B).

Dim assemblies weakly colocalizedwith stress granules (Pear-

son coefficients: 0.20 ± 0.05 and 0.11 ± 0.05 with G3BP1 and

TIA1 markers, respectively), which are also granular and inter-

nally mobile (Buchan and Parker, 2009; Souquere et al., 2009)

(Figure S2C), suggesting partial overlap, but sequestration of

HTTex1 into stress granules cannot account for the existence of

the dim assemblies.

Overall, our results suggest that in aggregation events

involving a dim assembly, HTTex1 proteins initially form amor-

phous, internally mobile assemblies and convert to fibrillar, inter-

nally immobile assemblies over a timescale of minutes to hours.

Probing HTTex1 Assembly States in Yeast
The budding yeast Saccharomyces cerevisiae has long been

used as a model system to study HTTex1 aggregation (Krobitsch

and Lindquist, 2000; Mason and Giorgini, 2011). Despite its

extensive use, the assemblies we observed in mammalian cells

have not, to our knowledge, been described in yeast. To test

the robustness of our observations, we therefore asked whether

we could recapitulate the different forms of HTTex1 assembly in

yeast. Additionally yeast would allow us to probe the properties

and structures of the assemblies more easily than in our

mammalian cell system: yeast is well suited to medium-

throughput CLEM studies of aggregation due to its excellent

freezing properties and rate and synchronicity of cell growth

(Kukulski et al., 2011).

When we first expressed HTTex1 proteins in yeast, we only

observed intensely fluorescent assemblies, resembling the bright

assemblies we had observed in mammalian cells. We wondered

whether this might be due to the presence of the prion form of

Rnq1 (denoted [RNQ+]) in our strains: although Rnq1 in its prion

conformation is required for polyQ length-dependent toxicity in

yeast (Meriin et al., 2002), mammals do not have an Rnq1 homo-

log. Given the fibrillar structures of bright assemblies in mamma-

lian cells, and the observation that [RNQ+] is required for de

novo formation of the prion formof the translation termination fac-

tor Sup35 (Derkatch et al., 2000), which forms fibrillar assemblies

in yeast (Kawai-Noma et al., 2010; Tyedmers et al., 2010), we

reasoned that [RNQ+] might favor formation of bright assemblies,

makingdimassemblies rare or very transient.Whenweexpressed

HTTex1 constructs in yeast strains lacking theRnq1prion (denoted

[rnq�]), we observed both intensely and weakly fluorescent as-

semblies, as we had done in mammalian cells, suggesting that

HTTex1 can form dim and bright assemblies in yeast (Figure 2A).

FRAP analysis of the yeast assemblies showed that HTTex1
molecules were able to diffuse rapidly within dim assemblies
but were immobile in bright assemblies, regardless of whether

the bright assemblies had formed in [rnq�] or [RNQ+] cells (Fig-

ure 2B). The mobile fractions, estimated from the FRAP curves,

were 89% (dim, [rnq�]), 6% (bright, [rnq�]) and 4% ([RNQ+])

(Figure 2C). This demonstrates that the two types of assembly

have similar biophysical properties in yeast and mammalian

cells. 97QP fused to the engineered monomeric fluorescent pro-

tein mEOS3.1 similarly formed both types of assembly (Fig-

ure S3A), suggesting that eGFP does not affect the nucleation

and properties of the two phases.

To ask whether HTTex1 could move between dim assemblies

and the cytosol, we took advantage of cells containing two dim

assemblies of approximately equal size (Figure 2D). Upon

bleaching one of the two assemblies, the bleached area under-

went a rapid partial recovery (�2 s) but did not immediately

return to its pre-bleached intensity (Figure 2E). On a slower time-

scale (�2 min), the intensities of the two assemblies gradually

equalized, while the average fluorescence intensity in the cell

remained constant. Thus, HTTex1 molecules can exchange be-

tween dim assemblies and the cytosol, but this occurs approxi-

mately 553 slower than exchange within the assemblies them-

selves (Table S2).

When bright assemblies formed in mammalian cells, they

seemed to sequester all available HTTex1, whereas dim assem-

blies could coexist with a pool of diffuse cytosolic HTTex1. To

compare HTTex1 sequestration in the different assemblies in

yeast, wemeasured the intensity ratios (IRs) of GFP fluorescence

in the assemblies versus the cytosol, where IR = Intensityassembly/

Intensitycytosol (see STAR Methods). Bright assemblies were en-

riched in HTTex1 (median IR of 24 and 20 for [rnq�] and [RNQ+]

assemblies, respectively). In contrast, dim assemblies were

less enriched (median IR = 11, Figure 2F).

As in mammalian cells, bright assemblies in yeast appeared

to have less regular shapes than dim assemblies. The shapes

of intracellular assemblies can often reflect underlying physical

properties. For example, intracellular liquid-like assemblies

tend to adopt spherical shapes due to their surface tension

(Hyman et al., 2014). We therefore measured the circularity

ratio (CR), where CR = 4p(Area/Perimeter2) (see STAR

Methods), of the different assemblies (Figure 2G). Dim assem-

blies were more circular (median = 0.88) than bright assem-

blies (medians of 0.57 and 0.70 for [rnq�] and [RNQ+],

respectively).

Plotting IR against CR for individual assemblies showed that

dim assemblies cluster in the low IR, high CR region of the graph.

Bright assemblies from [rnq�] and [RNQ+] backgrounds were

found in the high IR, low CR region, but did not form separate

clusters (Figure 2H). Thus, the distinct clusters were in agree-

ment with our initial visual classification.

These data suggest that in the absence of the prion form of

Rnq1, HTTex1 proteins are capable of forming two types of

higher-order assembly in yeast cells, which have biophysical

and morphological properties analogous to the assemblies that

we characterized in mammalian cells.

Dim Assemblies Display Liquid-like Properties in Cells
We sought to explore the nature of the chemical interactions un-

derlying dim assemblies in yeast cells. 1,6-hexanediol is an
Molecular Cell 70, 588–601, May 17, 2018 591



Figure 2. Probing HTTex1 Assembly States in Yeast
(A) Widefield microscopy of 43QP-GFP assemblies formed in [RNQ+] cells (green arrows), and [rnq�] cells (blue and orange arrows, showing dim and bright

assemblies, respectively). Scale bar, 5 mm.

(B) Averaged FRAP recovery curves. Shaded areas: 95% confidence intervals. See also Table S1.

(C) Estimated mobile fractions of assemblies based on (B). Bright [rnq�] versus dim [rnq�] p = 6.3 3 10–13; bright [rnq�] versus [RNQ+] p = 0.003; dim [rnq�]

versus [RNQ+] p = 3.2 3 10–12; Welch’s two-sample t test.

(D) Photo bleaching of a dim assembly (red outline) in a yeast cell (gray outline) containing a second, coexisting dim assembly (purple outline). Scale bar, 3 mm.

(E) Quantification of data in (D). Solid lines show mean fluorescence intensities in the corresponding colored regions in (D). Dotted lines highlight initial fluo-

rescence levels in the corresponding colored regions. See also Table S2.

(F) Intensity ratios of assemblies. Bright [rnq�] versus dim [rnq�] p = 0.0009; bright [rnq�] versus [RNQ+] p = 0.16; dim [rnq�] versus [RNQ+] p = 0.0019; Welch’s

two sample t test. Black dots represent individual data points that fell outside the whiskers of the boxplots.

(G) Circularity ratios of assemblies. Bright [rnq�] versus dim [rnq�] p = 0.0001; bright [rnq�] versus [RNQ+] p = 0.04; dim [rnq�] versus [RNQ+] p = 0.0006;

Welch’s two-sample t test.

(H) Plot of intensity ratios versus circularity ratios.
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Figure 3. Dim Assemblies Display Liquid-like Properties in Cells

(A) Addition of 1,6-hexanediol to digitonin-permeabilised cells can discriminate between liquid-like assemblies, which dissolve, and solid-like assemblies, which

do not (Kroschwald et al., 2015).

(B) Kymographs showing the effect of hexanediol addition on fluorescence intensities of HTTex1 assemblies in digitonin-permeabilized yeast cells. Hexanediol

was added at time = 0 s.

(C) Quantification of fluorescence intensities in kymographs in (B).

(D) Snapshots and kymograph of hexanediol addition (first dotted white line) to a yeast cell containing dim assemblies, followed by hexanediol removal (second

dotted white line). The red line indicates the slice through which the kymograph was plotted. Blue arrow highlights coalescence. Images were linearly scaled to

increase the visibility of the merging assemblies, saturating some of the pixels in the early frames. Note that dim assemblies do not sequester all the cytoplasmic

fluorescence, which is visible throughout the experiment. Scale bar, 3 mm. Related to Video S4.
aliphatic alcohol that has previously been used to study the weak

hydrophobic interactions between FG-repeat containing nucleo-

porins, and to differentiate between liquid-like and solid-like

membrane-less compartments (Figure 3A) (Kroschwald et al.,

2015; Patel et al., 2007; Ribbeck and Görlich, 2002).

When hexanediol was added to dim assemblies, they dis-

solved within a few minutes, on a timescale comparable with

the dissolution of liquid-like compartments under similar condi-

tions (Figures 3B and 3C, blue; Figure S3B) (Kroschwald et al.,

2015). In contrast, bright assemblies remained intact, irrespec-

tive of Rnq1 prion status (Figures 3B and 3C, orange and green;

Figure S3B). Permeabilization of cells in the absence of hexane-

diol did not affect the integrity of dim assemblies (Figures 3B and

3C, gray; Figure S3B). We next askedwhether removing hexane-

diol could reverse disassembly. When hexanediol was washed

away, dim assemblies rapidly reformed, on timescales similar

to their dissolution (Figure 3D; Video S4), and during reformation

we noticed the coalescence of smaller assemblies into larger

assemblies (Figure 3D, blue arrows).

This suggests that dim assemblies are highly reversible struc-

tures, maintained by weak hydrophobic interactions, whereas

bright assemblies are maintained by stronger, possibly amy-

loid-like, interactions. In addition, the rapid reversibility, circu-
larity, coalescence, and internal mobility of dim assemblies are

consistent with liquid-like properties. From this point on, we

therefore refer to dim and bright assemblies as liquid-like assem-

blies (LAs) and solid-like assemblies (SAs), respectively.

Liquid-like and Solid-like HTTex1 Assemblies Have
Different Nanostructures
To characterize the structures of LAs and SAs in yeast cells, we

carried out CLEM experiments, focusing on two constructs:

43Q-GFP and 43QP-GFP. 43Q-GFP SAs were composed of

fibers with diameters of approximately 13 nm, consistent with

the fibers that we had observed in mammalian cells (Figure 4A).

In contrast, 43Q-GFP LAs appeared as ‘‘smooth,’’ membrane-

less masses with no obvious substructure that largely excluded

ribosomes (Figure 4B). Assemblies formed in [RNQ+] cells were

always composed of fibers, in agreement with our observations

in [rnq�] cells (Figure 4C).

SAs of 43QP-GFP, in both [rnq�] and [RNQ+] backgrounds,

appeared to have a ‘‘granular’’ substructure with evidence of

short fibrillar structureswithin themassof themain assembly (Fig-

ures 4D and 4F). They therefore differed slightly to the obviously

fibrillar assemblies of 43QP-GFP seen in mammalian cells, and

of 43Q-GFP seen in yeast. However, LAs of 43QP-GFP had the
Molecular Cell 70, 588–601, May 17, 2018 593



Figure 4. Liquid-like and Solid-like HTTex1

Assemblies Have Different Nanostructures

Electron tomography of yeast cells expressing

43Q-GFP and 43QP-GFP. Panels show slices

through tomograms of the HTTex1 assemblies.

Colors indicate the type of assembly and prion

status of the cells: orange, [rnq�] SAs; blue, [rnq�]

LAs; green, [RNQ+] SAs.

(A) 43Q-GFP SA in a [rnq�] cell, showing a fibrillar

nanostructure.

(B) 43Q-GFP LA in a [rnq�] cell, with a character-

istic ‘‘smooth’’ appearance.

(C) 43Q-GFP SA in a [RNQ+] cell.

(D) 43QP-GFP SA in a [rnq�] cell.

(E) 43QP-GFP LA in a [rnq�] cell.

(F) 43QP-GFP SA in a [RNQ+] cell. Scale

bar, 200 nm.
characteristic appearance of LAs formedby other HTTex1 proteins

that we characterized (Figure 4E; Figure S4). The assembly-

cytosol boundaries of LAs, but not SAs, were clearly demarcated,

which was consistent with our circularity measurements.

Collectively, these data suggest that SAs have complex nano-

structures that are indicative of the strong intermolecular interac-

tions associated with amyloid deposits, whereas LAs appear to

lack such structures.

HTTex1 Sequence Affects Assembly Formation
The sequences of HTTex1 proteins determine their aggregation

propensities and toxicity (Dehay and Bertolotti, 2006; Duenn-

wald et al., 2006b). However, how these effects are related to

the structural properties of HTTex1 assemblies is not well under-

stood.We therefore compared a series of HTTex1 constructs with

different polyQ lengths, with or without the proline-rich (P-rich)

region, to determine the effects of HTTex1 sequence on the for-

mation of LAs and SAs in yeast. We quantified the fraction of

cells containing (1) an LA, (2) an SA, and (3) no assembly (diffuse

fluorescence), at specific time points after expression induction

(Figure 5A). We did not observe coexisting LAs and SAs in the

same yeast cell.

In cells expressing 25Q-GFP, we did not observe assemblies,

indicating that a 25Q tract is not sufficient to form macroscopic

assemblies. However, 25QP-GFP began to form LAs at

8–12 hr, and by 24 hr, 25% of cells contained LAs, suggesting

that the P-rich region can promote the formation of LAs. In our

experiments, 25QP-GFP did not form SAs. 43Q-GFP was able

to form both LAs and SAs, suggesting that lengthening the polyQ

tract is sufficient to drive assembly formation, even in the

absence of the P-rich region. In agreement with the idea that

the P-rich region facilitates LA formation, 43QP-GFP formed

LAs more readily than 43Q-GFP. As polyQ length was increased

further (97Q-GFP and 97QP-GFP), SAs formed earlier and were

more abundant than LAs. In cells expressing 43Q-GFP and

43QP-GFP, LAs formed earlier than SAs. With 97Q-GFP and
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97QP-GFP, LAs were seen early on, but

by 24 hr all assemblies were SAs, sug-

gesting that LAs could convert to SAs,

as seen in mammalian cells.
Expression levels were similar between different constructs

and dropped slightly for longer constructs (Figure S5A), as ex-

pected for long polyQ tracts (Duennwald, 2011). To explore the

concentration dependence of the assemblies we used quantita-

tive dot blotting (see STAR Methods) to estimate intracellular

HTTex1 concentrations at 4 and 24 hr time points (Figures 5B

and 5C). At 4 hr, when polyQ-expanded proteins began to

form assemblies, HTTex1 concentrations were in an �1–10 mM

range, increasing to 3–46 mM at 24 hr, when 25QP-GFP (mean

conc. 25 mM) had formed LAs in >25% of cells.

These data support the notion that both the polyQ tract and

the P-rich region play important roles in driving the formation

of higher-order assemblies of HTTex1, as suggested previously

(Crick et al., 2013; Dehay and Bertolotti, 2006; Duennwald

et al., 2006b). In addition, the data demonstrate how the polyQ

tract and P-rich region can affect the propensity of HTTex1 to

form assemblies with strikingly different biophysical properties.

The observation that LAs appeared in cell populations before

SAs, coupled to the fact that we did not observe coexisting

LAs and SAs, suggests that LAs are on pathway to SAs. More-

over, increasing polyQ length to disease-associated lengths

appears to accelerate this pathway.

HTTex1 Forms Liquid-like Assemblies by Liquid-Liquid
Phase Separation
How is assembly formation initiated?What is the relationship be-

tween LAs and SAs? To answer these questions, we reconsti-

tuted assembly formation in vitro, using recombinantly ex-

pressed and purified 25QP-GFP. Purified 25QP-GFP had the

advantage of being more stable than other proteins with longer

polyQ tracts. On its own, 25QP-GFP showed a diffuse distribu-

tion. In the presence of 10% dextran, which can be used to

mimic crowding conditions in the cell (Patel et al., 2015),

25QP-GFP assembled into micron-sized, spherical droplets

(Figures 6A; Figures S6A and S6B). BSA did not form droplets

under the same conditions (Figure S6C). Smaller droplets of



Figure 5. HTTex1 Sequence Affects Assembly Formation

(A) Yeast cells in the [rnq�] background expressing HTTex1 constructs with different polyQ lengths, with or without the P-rich region, were imaged by widefield

fluorescence microscopy at specific time points after induction of HTTex1 expression. The percentage of cells containing an SA (orange), an LA (blue), or diffuse

fluorescence (gray) was determined at each time point by manual counting. n = 207–259 cells per construct.

(B) Quantitative dot blots calibrated with purified 25QP-GFP were used to determine HTTex1 concentration in cellular lysates (red).

(C) Cellular concentrations of HTTex1 constructs at 4 and 24 hr. Plots show individual experiments (black) and mean ± SEM (gray).
25QP-GFP fused to form larger droplets, relaxing back into

spherical shapes (Figure 6B; Video S5). We next asked whether

25QP-GFP molecules could diffuse within the droplets, using

FRAP (Brangwynne et al., 2009). After bleaching, the fluores-

cence intensity in the unbleached region gradually decreased,

while the intensity in the bleached region gradually increased,

indicating mixing of 25QP-GFP within the droplets (Figure 6C).
Our experiments demonstrate that 25QP-GFP forms liquid-like

assemblies in vitro. We attempted to purify 43QP-GFP but it

was highly aggregation-prone in vitro. Nevertheless, 43QP-

GFP also showed signs of assembling into droplets at lower con-

centrations than 25QP-GFP and in the absence of crowding

agent (Figure S6D), consistent with the idea that polyQ expan-

sion promotes HTTex1 assembly/aggregation.
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Figure 6. HTTex1 Forms Liquid-like Assemblies by Liquid-Liquid Phase Separation

(A) Liquid-liquid phase separation of 25QP-GFP induced by molecular crowding. Scale bar, 5 mm.

(B) Fusion of 25QP-GFP droplets. Scale bar, 2 mm. See also Video S5.

(C) Half-bleach (Brangwynne et al., 2009) of a 25QP-GFP droplet (white dashed outline). Kymograph shows redistribution of 25QP-GFP after the bleach. Scale

bar, 1 mm.

(D and E) Intermolecular interactions of 25QP-GFP in droplets. (D) Droplet formation at different salt and protein concentrations. The phase diagram indicates

conditions where 25QP-GFP forms droplets (blue dots) and where it does not (gray dots). (E) Phase diagram showing the effect of 1,6-hexanediol concentrations

on droplet formation. All experiments were carried out in the presence of 10% dextran as a crowding agent, and each condition was assessed at least twice.
Phase separation often involves electrostatic interactions to

promote droplet formation (Elbaum-Garfinkle et al., 2015; Nott

et al., 2015). We asked whether this was true for 25QP-GFP by

assessing phase separation at different protein and salt concen-

trations (Figure 6D). Salt concentration had little effect on droplet

formation, even at very high concentrations (up to 1 M), suggest-

ing that electrostatic effects do not play a significant role in the

formation and stability of 25QP-GFP droplets. Next, we tested

the effect of increasing 1,6-hexanediol concentrations on droplet

formation (Figure 6E). Hexanediol had a major destabilizing ef-

fect on droplets and prevented their formation even at very low

concentrations (0.1%). Our data suggest that HTTex1 can form

macroscopic reversible assemblies by a liquid-liquid phase sep-

aration mechanism, likely due to weak hydrophobic interactions

mediated by the polyQ and P-rich regions.
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Liquid-like HTTex1 Assemblies Convert into Solid-like
Assemblies
When imaging droplets of 25QP-GFP, we noticed that the drop-

lets gradually developed irregularly shaped edges. To examine

this phenomenon in more detail, we performed time-lapse

total internal reflection fluorescence (TIRF) microscopy of

25QP-GFP droplets. Over a period of 30–60 min, macroscopic,

spike-like projections began to grow from the edges of droplets,

depleting the protein in the droplet centers so that they appeared

hollow, and leading to a reduction in the average circularity of

objects in the field of view (Figures 7A and 7B; Video S6). This

suggests that phase-separated 25QP-GFP liquid-like droplets

progressively convert into solid-like aggregates. After photo-

bleaching, fluorescence recovery in the spike features at the

edges of droplets was slower than recovery at the centers of



Figure 7. Liquid-like HTTex1 Assemblies Convert into Solid-like Assemblies

(A) Liquid-like droplets gradually convert into solid-like structures. Scale bar, 2 mm.

(B) Quantification of the mean circularity of droplets during the conversion shown in (A).

(legend continued on next page)

Molecular Cell 70, 588–601, May 17, 2018 597



the droplets, indicating reduced mobility of 25QP-GFP in the

spikes (Figure 7C). This implies that the growth of spikes repre-

sents conversion of the reversible liquid-like state to an irrevers-

ible solid-like state, analogous to the phase transition of G156E

FUS-GFP in vitro (Patel et al., 2015).

To distinguish the liquid-like from the solid-like components of

the reaction and study their localization in droplets, we incubated

droplets for 20min to allow conversion to begin, then added hex-

anediol to dissolve the liquid-like components, leaving the solid-

like components intact (Video S7). By imaging a fixed field of

view before and after hexanediol addition, we could see that

early solid-like structures localized to the edges of droplets,

often as rings that were not visible before hexanediol addition,

due to masking by the fluorescence of the droplets (Figure 7D).

We quantified the position of these structures in droplets early

during the conversion by measuring the radial shift in droplet

maximum fluorescence intensity upon hexanediol addition (Fig-

ure 7E). Droplets with an�1 mm diameter had a mean radial shift

of 0.25 ± 0.02 mm, suggesting that conversion begins in droplets,

near droplet edges. We therefore looked for evidence of conver-

sion from a liquid- to a solid-like state in yeast assemblies using

FRAP. Occasionally we observed cells containing LAs that ap-

peared to be undergoing a conversion similar to the one we

had observed in vitro, with irregular features visible at the edge

of the LA (Figure S7). FRAP revealed decreased mobility of

HTTex1 in these regions, suggesting a liquid- to solid-like conver-

sion. To further explore the possibility of conversion in cells, we

used electron tomography. We found isolated fibers buried

within the featureless masses of some LAs, suggesting that irre-

versible solid-like structures can originate from reversible liquid-

like assemblies in the cell as well as in vitro (Figure 7F). Such

snapshots may represent the earliest stages in conversion,

with fibers moving out toward the edges later on.

DISCUSSION

By applying CLEM and fluorescence microscopy to different

HTTex1 aggregation models, we found that HTTex1 proteins can

assemble into macroscopic liquid-like structures. In contrast to

amyloid-like aggregates, these assemblies are maintained by

weakhydrophobic interactions thatareeasily reversedbyhexane-

diol. Our CLEM experiments show that liquid-like assemblies lack

a visible substructure at the nanoscale, consistent with their high

internal mobility assessed using FRAP. Over time, in cells and

in vitro, the liquid-like assemblies gradually convert into assem-

blies that behave like solids. These solid-like assembliesare highly

structured at the nanoscale and resemble aggregates that have

been found in the brain tissue of HD patients (DiFiglia et al., 1997).

We propose an aggregation model whereby diffusely distrib-

uted HTTex1 initially forms liquid-like assemblies by a liquid-liquid
(C) FRAP of partially converted droplets comparing recovery of spike features (m

confidence interval. Scale bar, 2 mm. See also Table S1.

(D) Droplets before (green) and after (magenta) hexanediol addition. Scale bar, 5

(E) Quantification of early stages of droplet conversion (related to Figure 7D). Ra

(green) and after (magenta) hexanediol. n = 20 similarly sized droplets. Shaded r

(F) Slices through a tomogram of a yeast cell containing a 43Q-GFP liquid-like ass

Scale bar, 200 nm.
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phase separation mechanism that is promoted by increasing

HTTex1 concentration and mediated by weak hydrophobic inter-

actions between the polyQ and P-rich regions. Disease-associ-

ated polyQ expansions increase the propensity to form liquid-

like assemblies, likely by lowering the critical concentration for

phase separation. Formation of macroscopic liquid-like assem-

blies promotes a liquid to solid phase transition of HTTex1 that

is concomitant with the formation of an ordered, fibrillar nano-

structure. Our aggregation model is consistent with the kinetics

of multi-step aggregation models that propose metastable inter-

mediates like micelles or oligomers (Ossato et al., 2010; Thakur

et al., 2009) andmay explain previous observations of HTTex1 as-

semblies with different biophysical properties (Caron et al.,

2014). As proposed previously for FUS, liquid-like assemblies

could facilitate the assembly of more stable structures, by

lowering the free-energy barrier of nucleation (Patel et al.,

2015; ten Wolde and Frenkel, 1997).

In cells, HTTex1 with sub-toxic polyQ lengths can form liquid-

like assemblies but these do not convert to irreversible solid-

like assemblies. The conversion occurs only when polyQ length

extends beyond the threshold for HD. Yet, in vitro, 25QP-GFP

droplets do convert to irreversible solid-like structures. Other

proteins such as chaperones may influence the conversion pro-

cess in vivo.Whether full-length HTT forms liquid-like assemblies

in cells is also yet to be tested. Sequence analysis shows that the

polyQ tract may play a role in HTT function (Tartari et al., 2008)

but that role is unclear (Bates et al., 2015). HTT is associated

with dynamic cytosolic compartments (Maiuri et al., 2017; Nath

et al., 2015; Savas et al., 2008), and bioinformatic analyses sug-

gest that polyQ tracts stabilize protein-protein interactions (Sa-

vas et al., 2008; Schaefer et al., 2012). It is tempting to speculate

that HTT makes use of its ‘‘sticky’’ exon1 region to promote

liquid-liquid phase separation.

The nature of the toxic species in HD is an area of intense

research. Several studies point toward the protective effect of

aggregates (Kuemmerle et al., 1999; Arrasate et al., 2004; Slow

et al., 2005), yet others suggest that aggregates themselves

potentiate toxicity (Li et al., 2016; Michalik and Van Broeck-

hoven, 2003; Woerner et al., 2016). Evidence from yeast indi-

cates that toxicity depends on the proteins they sequester

(Gong et al., 2012). As liquid-like aggregation intermediates are

more amenable to chemical intervention than their solid counter-

parts, theymight provide ameans to promote or hinder aggrega-

tion, to ameliorate toxicity. HTTex1 toxicity could also be probed

by modulating aggregation via the liquid-like phase.

Recent studies show that phase-separated low complexity

proteins can mature into more stable structures in vitro (Molliex

et al., 2015; Patel et al., 2015; Zhang et al., 2015), and it has

been hypothesized that similar changes in cellular assemblies,

such as P-bodies and stress granules could contribute to
agenta) and droplet centers (green). Shaded region of graph represents 95%

mm.

dial shift is the distance between intensity maxima in droplet linescans before

egions: 95% confidence intervals. Scale bar, 0.5 mm.

embly (blue dotted line) containing isolated fibrillar structures (orange arrows).



neurodegenerative diseases (Li et al., 2013; Ramaswami et al.,

2013). Our results provide a dramatic example of how HTTex1
can aggregate via a liquid to solid conversion, and provide direct

structural evidence that such conversions can take place in the

cellular context.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-GFP Clontech Laboratories Cat# 632381, RRID: AB_2313808

Anti-TIA-1 Santa Cruz Biotechnology Cat# sc-1751, RRID: AB_2201433

Anti-G3BP BD Biosciences Cat# 611126, RRID: AB_398437

Goat anti-Mouse IgG (H+L) Secondary Antibody,

DyLight 488

Thermo Fisher Scientific Cat# 35502, RRID: AB_844397

Bacterial and Virus Strains

Rosetta DE3 competent cells Merck Millipore 70954

Chemicals, Peptides, and Recombinant Proteins

99% 1,6-hexanediol Sigma-Aldrich 240117

Dextran from Leuconostoc mesenteroides (average

mol wt 64-76k)

Sigma-Aldrich D8821

25QP-GFP This study N/A

43QP-GFP This study N/A

Experimental Models: Cell Lines

HEK293 ATCC CRL-1573

Flp-In 293 Thermo Fisher Scientific R75007

Flp-In 293 - 25QP-GFP This study N/A

Flp-In 293 - 97QP-GFP This study N/A

Experimental Models: Organisms/Strains

S. cerevisiae: Strain background: 74-D694 Chernoff et al., 1995 N/A

Recombinant DNA

Plasmid: p425GAL1 (yeast) Mumberg et al., 1995 N/A

Plasmid: 97QP-GFP (yeast) This study N/A

Plasmid: 97Q-GFP (yeast) This study N/A

Plasmid: 43QP-GFP (yeast) This study N/A

Plasmid: 43Q-GFP (yeast) This study N/A

Plasmid: 25QP-GFP (yeast) This study N/A

Plasmid: 97QP-mEOS3.1 (yeast) This study N/A

Plasmid: 25Q-GFP (yeast) This study N/A

Plasmid: 97QP-GFP (mammalian) This study N/A

Plasmid: 43QP-GFP (mammalian) This study N/A

Plasmid: 25QP-GFP (mammalian) This study N/A

Plasmid: pET His6-MBP-Asn10 TEV LIC vector Scott Gradia Addgene 29654

Software and Algorithms

MATLAB N/A https://www.mathworks.com/products/matlab.html

Python N/A https://www.python.org/

Fiji Schindelin et al., 2012 https://fiji.sc/

R N/A https://www.r-project.org/

Bayesian tracking library Bove et al., 2017 https://github.com/quantumjot/BayesianTracker

TensorFlow Abadi et al., 2016 https://www.tensorflow.org/

IMOD Kremer et al., 1996 http://bio3d.colorado.edu/imod/

SerialEM Mastronarde, 2005 http://bio3d.colorado.edu/SerialEM/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Dot blot device Bio-Rad Laboratories 1706545

35mm Dish, No. 1.5 high tolerance coverslip, 14mm

Glass diameter

Mattek P35G-0.170-14-C

Micron-slide VI 0.4 Ibidi 80601

Serial connector for Micron-Slides Ibidi 10830

Finder grids Agar Scientific AGS160-H2H

Protein-A gold 10 nm fiducials Electron Microscopy Sciences 50-281-94
CONTACT FOR REAGENT AND RESOURCES SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Helen

Saibil (h.saibil@mail.cryst.bbk.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial Culture
Recombinant HTTex1-GFP was expressed as a His6-MBP-Asn10 fusion in E. coli Rosetta (DE3) competent cells (Merck Millipore;

Billerica, MA). Cells were grown in LB media and expression was induced at an OD600 of 0.8 with 1 mM IPTG and grown overnight

at 12�C. Cells were pelleted by centrifugation and resuspended in 150 mM NaCl, 50 mM Na2HPO4/NaH2PO4 (pH 7.4) and protease

inhibitors (Roche). Cells were lysed by sonication using a VC 130 sonicator (Sonics and Materials; Newtown, CT) and the lysate was

clarified by centrifugation at 4�C.

Yeast Culture
Yeast cells were grown using standard culturing techniques in YPD (1% yeast extract, 2% peptone, 2% glucose), or synthetic

dropout media (0.7% yeast nitrogen base without amino acids, 2% glucose) for auxotrophic selection of plasmids. Excess adenine

(100 mg/L) was included in all experiments. For induction of galactose-controlled expression, cells were grown in media containing

raffinose as the sole carbon source for several doublings to anOD600 of 0.5-0.7 thenwashed and switched tomedia containing galac-

tose as the sole carbon source to induce protein expression. Cells were grown at 30�C with shaking at 220 rpm.

Mammalian Cell Culture
HEK293 cells were maintained in DMEM (Thermo Fisher Scientific), supplemented with 10% FBS and maintained at 37�C, 5% CO2

atmosphere. Before live cell imaging, cells were switched to FluoroBrite DMEM (Thermo Fisher Scientific) containing doxycycline

(150ng/mL).

METHOD DETAILS

Yeast Methods
Yeast strains for the analysis of HTTex1 assemblies were derived from the 74-D694 background (MATa, ade1-14 ura3-52 leu2-3, 112

trp1-289 his3-D200; Chernoff et al., 1995). To generate the HTTex1-eGFP expression plasmids, an N-terminal FLAG tag was added

to existing sequences (Dehay and Bertolotti, 2006) by PCR amplification, and these were cloned into the 2m expression plasmid

p425GAL1 (Sikorski and Hieter, 1989) at SpeI-SalI sites. The integrity of all clones was confirmed by sequencing. As eGFP has a pro-

pensity todimerize (Zachariaset al., 2002),wegenerateda97QPconstruct fused to themonomeric fluorescentproteinmEOS3.1 (Zhang

etal., 2012), toconfirmthatweobservedboth typesofassembly regardlessof thefluorescentprotein tag.The97QP-mEOS3.1construct

was generated by splicing overhang extension (SOEing) PCR (Horton et al., 1989) of 97QP and mEOS3.1 fragments. To ensure that

polyQ lengths were exactly matched between P-rich ± proteins, it was necessary to synthesize the sequences for 97Q-GFP and

43Q-GFP (GenScript). Transformation of cells was carried out using a standard lithium acetate method.

Prion Curing
Yeast cells were cured by passaging over 2% glucose YPD plates (see yeast methods) containing 5 mM Gd-HCl (Cox et al., 1988), 4

times, so that aggregation could be compared in isogenic [RNQ+]/[rnq-] strains. To confirm prion curing, we transformed the [RNQ+]/

[rnq-] strainswith a plasmid encodingRnq1-GFPand induced its expression for 4 hr before checking cells by fluorescencemicroscopy.
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Rnq1-GFP formed aggregates in the [RNQ+] strain but not in the [rnq-] strain (Figure S3C), confirming that the [rnq-] strain had been

cured of the prion form of Rnq1. [RNQ+] and [rnq-] strains both gave rise to the expected patterns of toxicity (Figure S5B; Meriin

et al., 2002).

Yeast Toxicity Assay
Strains were grown to exponential phase in selective media with 2% glucose (see yeast methods), washed in sterile water, and

normalized to an OD600 of 0.1. 4x 5-fold serial dilutions of cells were spotted onto selective medium agar plates containing galactose

(induction) or glucose (repression). Amulti-channel pipette was used tomake sure that spots were aligned. Older plates were used to

prevent the spots from running into one another when applying the dilutions (we used 5 mL per spot but this may require optimization

depending on the concentration of cells and the composition of the plates). Plates were photographed 2-3 days later (Duenn-

wald, 2012).

Yeast Expression Levels
After 4 or 24 hr induction, cell densities were normalized for all samples (OD600 measurement), pelleted by centrifugation (1800 g,

10min) and re-suspended in cold lysis buffer (50 mMTris HCl, pH 7.4, 150mMNaCl, 0.5 mMDTT, 50 mg/ml heparin, 1:5000 antifoam

A concentrate (Sigma-Aldrich; St. Louis, MO), 1 complete mini EDTA free protease inhibitor tablet per 50 mL (Roche; Basel,

Switzerland)). Samples were lysed in lysis buffer by vortexing with 425-600 mm acid-washed glass beads (Sigma-Aldrich), for 6x

cycles of vortexing (1 min) and cooling on ice (1 min). Lysates were cleared of cellular debris by centrifugation (800 g, 2 min), then

4x 5-fold serially diluted and applied to a 0.2 mm nitrocellulose membrane (Bio-Rad; Hercules, CA) using a Bio-Dot Apparatus

(Bio-Rad). HTTex1-GFP proteins were detected using a Living Colors A.v. Monoclonal Antibody JL-8 (Clontech Laboratories;

Mountain View, CA), Goat anti-mouse IgG (H+L) secondary antibody, DyLight 488 (Thermo Fisher Scientific; Waltham, MA) and

FLA-3000 fluorescent image analyzer (Fujifilm; Tokyo, Japan).

Quantitative Dot Blots
Yeast lysates were prepared as described above, serially diluted, and blotted onto nitrocellulose membranes, along with a series of

ten 2-fold serial dilutions of purified 25QP-GFP at a known concentration (from a starting concentration of 2 mM). The resulting blots

were probed and imaged as described above and analyzed in Fiji. First, the images were inverted and background subtracted using a

rolling ball radius of 10. Equally sized circles, the sizes of dots, were centered on each dot and used to measure the raw integrated

density of the fluorescence signal from each dot. The dots made by purified 25QP-GFP were used to generate calibration curves by

plotting the raw integrated density against the known concentration of the protein (Figure 5B). The calibration curves were generated

by fitting the data to a hyperbolic curve,

Raw integrated density =
a 3 ½protein�
b+ ½protein�

with a and b being free parameters (Janes, 2015). The concentrations of HTTex1 proteins in the lysates were determined using the

calibration curve generated from the same blot. The intracellular concentrations of HTTex1 proteins were then estimated based on

the number of cells contributing to each dot.

Mammalian Cell Methods
DNA sequences for the HTTex1-GFP constructs were taken from the yeast expression plasmids and inserted into the pcDNA5-FRT-

TO (Thermo Fisher Scientific) mammalian expression vector allowing doxycycline-inducible expression of the construct. At

80%–90% confluency, cells were transfected with expression plasmids using Lipofectamine 2000 (Thermo Fisher Scientific) accord-

ing to the manufacturer’s protocol, and HTTex1-GFP expression was induced using doxycycline (150 ng/mL). The Flp-In HEK293

HTTex1-GFP (25 and 97QP) isogenic stable cell lines were generated using Flp-In System (Invitrogen) following the manufacturer’s

protocol. Briefly, pcDNA5-FRT-TO expressing HTTex1-GFP constructs were co-transfected with pOG44 plasmid (Invitrogen), which

constitutively expresses the Flp recombinase. Stable Flp-In expression cell lines were selected for hygromycin resistance. HTTex1-

GFP was induced using doxycycline (150ng/mL).

Arsenite-induced Stress Granule Formation and Immunofluorescence
Cells were plated on glass coverslips coated with poly-D-Lysine. 24h after induction of 97QP-GFP, stress granule assembly was

stimulated by addition of 0.5 mM of sodium arsenite for 45 min at 37�C, 5% CO2. After stress, cells were washed three times with

PBS and fixed with 4% PFA in PBS for 10 min at room temperature, permeabilized with 0.5% Triton in PBS for 5 min at room tem-

perature, washedwith PBS and incubated with blocking buffer (4%BSA in PBS) for 1h at room temperature. Primary antibodies were

diluted in blocking buffer and incubated for 1 h at room temperature. To monitor stress granule formation, goat anti-TIA-1 (Santa-

Cruz, Dallas, TX; SC-1751; 1/100) and mouse anti-G3BP (BD Biosciences, Franklin Lakes, NJ; #611126; 1/1000) were used. After

washing with 0.1% Tween in PBS, cells were incubated with IgG (H+L) secondary antibodies donkey anti-goat Alexa 647 or donkey

anti-mouse Cy3 (Thermo Fisher Scientific, 1/500) for 45 min. Coverslips were mounted in Prolong Gold Antifade mounting medium

(Thermo Fisher Scientific).
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Time-lapse Experiments
HEK293 cells were initially plated and transfected in 35 mm glass-bottomed dishes No. 1.5 (MatTek; Ashland, MA) coated with poly-

D-lysine. To begin induction, the medium was switched to FluoroBrite DMEM (Thermo Fisher Scientific), supplemented with 10%

FCS containing doxycycline (150 ng/mL). Cells were allowed to incubate for 2 hr then transferred to an incubator microscope

(described below). Cells were maintained at 37�C, 5% CO2 and imaged for 24-48 hr. Typically, we imaged around 10 positions of

a dish with a frame rate of �3 mins.

Incubator Microscope
A custom-built automated epifluorescence microscope was built inside a standard CO2 incubator (Thermo Fisher Scientific; Heraeus

BL20) that maintained the temperature at 37�C and in a 5%CO2 atmosphere. Themicroscope comprised a high performancemotor-

ized stage (Prior Scientific, Cambridge, UK; Proscan III, H117E2IX), with a motorised focus controller (Prior; FB201 and PS3H122R)

and a 9.1MP CCD camera (FLIR, Wilsonville, OR; Point Grey GS3-U3-91S6M). Brightfield illumination was provided using a green

LED (Thorlabs, Newton, NJ; M520L3, 520 nm). Fluorescence illumination in two channels, GFP and mCherry/RFP, was via a blue

(Thorlabs; M470L3, 470 nm) or yellow (Thorlabs; M565L3, 565 nm) LED respectively. These were combined using a dichroic beams-

plitter (Semrock, Rochester, NY), and focused onto the back focal plane of a 20x air objective (Olympus 20x, 0.4NA) in an epifluor-

escence configuration. The camera and the LEDs were synchronized using TTL pulses from an external D/A converter (Data Trans-

lation,Marlborough,MA; DT9834). A custom built humidified chambermaintained the humidity around the sample andwas fittedwith

a thermocouple and humidity sensor to continuously monitor the environment.

Single Cell Tracking
Computational cell tracking was performed as previously described (Bove et al., 2017), using the time-lapse movies that were

collected on the incubator microscope described above. Briefly, we trained a deep convolutional neural network (CNN) to segment

cells frommovie frames based on a training dataset of�500 manually segmented cells. The only input to the network was the bright-

field transmission channel. To increase the number of training examples, we augmented the examples by introducing random trans-

formations, rotations, and flips. Training was performed using a momentum optimizer with an exponentially decaying learning rate

until convergence. We used dropout (50% while training) to prevent over-fitting. The CNN was implemented using Tensorflow

(https://www.tensorflow.org) (Abadi et al., 2016). Next, the centroids of each segmented cell were tracked using a Bayesian tracking

method (https://github.com/quantumjot/BayesianTracker). The tracking procedure resulted in trajectories of single cells over time.

Well-tracked cells were then selected and a custom Python (https://www.python.org) script was used to generate the time-resolved

histograms of fluorescence intensity, using the segmentation output as a mask. These were further analyzed and plotted using R

(https://www.r-project.org).

Hexanediol Experiments
Yeast cells were grown in the appropriate selection media and expression of HTTex1 constructs was induced with galactose (see

yeast methods) until assemblies formed. Yeast cells were adhered to concanavalin A (Sigma) coated chamber slides (m-Slide

VI0.4; Ibidi, Germany) and unbound cells were removed by washing. Slides were mounted on a custom-built TIRF microscope

(see Total Internal Reflection Fluorescence (TIRF) Microscopy) set up in a wide-field fluorescence configuration, with the temperature

maintained at 30�C. Time-lapse movies with a frame rate of 5 s were acquired as solutions of either 10% 1,6-hexanediol (Sigma) +

10 mg/mL digitonin (Sigma), or digitonin alone, in yeast growth medium, were injected into the chambers. Hexanediol removal was

done by injecting excess fresh yeast growth medium back into the chambers. Movies were analyzed in Fiji (Schindelin et al.,

2012). Bleach correction was carried out with the Bleach Correction plugin (https://imagej.net/Bleach_Correction), using the simple

ratio method and making use of cells that did not contain assemblies. Kymographs were generated using the Fiji ‘‘reslice’’ command

and the change in fluorescence was quantified over time and plotted using R.

FRAP Methods
FRAP was performed using a Leica TCS SP5 microscope equipped with an HCX Plan-Apochromat lambda blue 63x oil-immersion

objective (NA 1.4). Intracellular assemblies were bleached in a circular 0.28 m2 region of interest using a 0.2 s pulse of the 488 nm laser

line at full power. Recovery was monitored every 0.116 s for 400 frames. The recovery curves were analyzed using the jython script,

http://fiji.sc/Analyze_FRAP_movies_with_a_Jython_script, in Fiji. Plotting and error calculations were done in R, and curve fitting was

carried out in MATLAB. For yeast FRAP, analysis was performed using the FRAP Profiler plugin in Fiji (http://worms.zoology.wisc.

edu/research/4d/4d.html#frap), which normalizes for overall bleaching and therefore avoids inaccurate estimation of mobile/immo-

bile fractions in small cells, where bleaching can result in a significant reduction in total cellular fluorescence. For in vitro half-bleach-

ing (Brangwynne et al., 2009) of 25QP-GFP droplets, an area corresponding to half of a droplet was bleached and recovery wasmoni-

tored every 0.2 s for 15 s. See also Tables S1 and S2.
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Intensity and Circularity Ratios
Intensity ratios for individual cells were calculated in Fiji from confocal slices through assemblies, by measuring the mean fluores-

cence intensity in circular areas of 1 m2 in the assembly and in the cytosol, and dividing the two values:

IR=
Iassembly

Icytosol

Further statistical analysis was performed in R.

The circularity ratio (CR) of an object is a measurement of how circular it appears: the ratio of the area of the object to the area of a

perfect circle with the same perimeter as the object, given by

CR= 4p

�
Area

Perimeter2

�

where a perfectly circular object has a CR of 1 and decreasing circularity tends toward a CR of 0. CRs of assemblies were measured

from images of confocal slices through assemblies which were cropped and auto-thresholded in Fiji using the Huangmethod (Huang

and Wang, 1995). The area and perimeter of the thresholded assemblies was measured and imported into R where the CRs were

calculated.

EM Sample Preparation
Yeast cells were pelleted by centrifugation (3000 g, 10 min) and re-suspended in growth medium to produce a wet slurry. High-pres-

sure freezing and freeze-substitution was performed as previously described (O’Driscoll et al., 2015).

Mammalian cells were gently re-suspended then pelleted by centrifugation (300 g, 3 min). 3-5 mL aliquots of the loose pellet were

immediately transferred to Leica Cu-Au specimen carriers (Type A, 0.2 mm cavity; Type B, flat side) and high-pressure frozen with an

EM HPM100 (Leica). Subsequent freeze-substitution, ultramicrotomy, and post-staining procedures were carried out as for yeast.

Correlative Light and Electron Microscopy
HM20 resin-embedded cell sections were mounted on glow-discharged S160-H2H carbon-coated copper finder grids (Agar Scien-

tific; Essex, UK). The grids were wet-mounted as previously described (Kukulski et al., 2011) and mapped by light microscopy using

the fluorescence and DIC channels of the axioscope A1 microscope described in the ‘sequence effects experiment’ section. After

mapping, grids were stained (see EM sample preparation) and imaged by EM. Correlation between fluorescence and low-magnifi-

cation EM images was performed in Fiji using an affine transformation between corners of the grid square (TurboReg plugin: http://

bigwww.epfl.ch/thevenaz/turboreg/; Thévenaz et al., 1998). Fluorescence images were then transformed onto EM images and a se-

ries of transformations was calculated through an EMmagnification series up to themagnification of the tilt series, using internal sam-

ple fiducial markers.

Electron Tomography Data Collection and Processing
Grids were mounted on a Model 2040 dual-axis tomography holder (Fischione Instruments; Export, PA) and imaged using a Tecnai

T12 microscope (FEI; Hillsboro, OR) operated at full voltage and equipped with a Ultrascan US4000 4k CCD camera (Gatan; Abing-

don, UK). Acquisition of dual-axis tilt series was controlled using SerialEM software (Mastronarde, 2005). Tilt-series were typically

collected over a tilt range of ±60� with 2� increments, at calibrated unbinned pixel sizes of 0.456 nm (26kx magnification) or

0.514 nm (21kxmagnification), with a defocus of 0.8 mm. Tomogramswere reconstructed from tilt series byweighted back-projection

using the IMOD package, version 4.9 (Kremer et al., 1996).

Sequence Effects Experiment
To study the effect of HTTex1 sequence on assembly formation, [rnq-] yeast cells transformed with 25Q-GFP, 25QP-GFP, 43Q-GFP,

43QP-GFP, 97Q-GFP or 97QP-GFP plasmids were grown in parallel to exponential phase, then induced with galactose (see yeast

methods). Thereafter, cells were examined by wet-mount on poly-lysine slides (VWR International LLC) at 4, 8, 12 and 24 hr post-

induction, using an Axioscope A1 epifluorescence microscope (Carl Zeiss; Oberkochen, Germany), equipped with an X-Cite Series

120Q lamp and an Orca R2 CCD camera (Hamamatsu Photonics; Hamamatsu City, Japan), with a 63x Plan-Apochromat oil-immer-

sion objective (NA 1.4). Fluorescence images were taken using the 470/40 nm and 525/50 nm excitation and emission filters. DIC

images were also taken. Cells containing a) LAs b) SAs or c) diffuse fluorescence were manually counted for each time point and

construct, and the data were plotted using R.

Protein Purification
The filtered lysate (see Experimental Model and Subject Details: Bacterial Culture) was loaded onto a 5 mL Ni HisTrap column (GE

Healthcare; Chicago, IL). The protein was eluted with a linear imidazole gradient (5 – 250 mM imidazole), concentrated and loaded

onto a HiLoad 16/60 Superdex 200 size exclusion chromatography column (GE Healthcare) that had been equilibrated with 150 mM

NaCl, 50 mM Na2HPO4/NaH2PO4 (pH 7.4). Fractions containing 25QP-GFP were pooled and dialysed overnight with TEV

protease to remove the tag. The tag was separated from 25QP-GFP by Ni affinity chromatography with a 5 mL Ni HisTrap column
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(GE Healthcare). Pure, concentrated 25QP-GFP was flash frozen in liquid nitrogen and stored at �80�C until use. 43QP-GFP was

purified in the same way as 25QP-GFP except that an MBPTrap (GE Healthcare) chromatography step was added at the end to

ensure complete removal of the cleaved tag.

In vitro Experiments
Phase separation of 25QP-GFP was induced bymolecular crowding (Patel et al., 2015), by mixing the purified protein (150mMNaCl,

50mMNa2HPO4/NaH2PO4, pH 7.4) with 20%dextran (64 – 76 kDa; Sigma), 150mMNaCl, 50mMNa2HPO4/NaH2PO4, pH 7.4 in a 1:1

volume ratio in a PCR tube at room temperature. For imaging, the mixture was allowed to equilibrate for 3 mins, then transferred to

glass slides that had been treated with 30 mg/ml BSA (Sigma) for 30 mins.

Phase Diagrams
20%dextran buffers, with different salt or hexanediol concentrations weremade up andmixedwith different dilutions of 25QP-GFP in

a 1:1 volume ratio, to give the desired protein, salt, and hexanediol concentrations. Droplet formation was assessed by fluorescence

and DIC microscopy (see in vitro experiments) on the A1 axioscope microscope described above (sequence effects experiment).

Each condition was tested at least twice.

Total Internal Reflection Fluorescence (TIRF) Microscopy
TIRFmicroscopywas performed using a custombuilt microscope, based on anOlympus IX81 frame (Olympus, Japan) with a high NA

oil objective (Olympus 100x UPON TIRF 1.49 N.A. oil). An air-cooled EMCCD camera (Andor, Belfast, UK; iXon Ultra DU-897U-CS0-

#BV) or sCMOS camera (Hamamatsu; Orca Flash4.0V2) was coupled to the camera port of the microscope via a magnifying relay to

achieve an effective pixel size of �100 nm. Appropriate bandpass filters were placed in front of the camera to filter the fluorescence

emission. A fiber-coupled CW laser (Toptica, Munich, Germany; iChrome HP, 488, 561, and 640 nm) was expanded using a colli-

mating lens and relayed via the camera port of the microscope via a fast steering mirror (Newport, Irvine, CA; FSM-100) positioned

at a conjugate image plane. The fast-steering mirror is steered at the critical TIRF angle and around the back focal plane of the objec-

tive at high speed to yield improved illumination homogeneity. The camera and FSMwere synchronized using a TTL pulse and analog

signal from an external D/A converter (Data Translation; DT9834). A quarter-wave plate was used to circularly polarize the beam

before it was injected into the microscope. The beam was directed to the objective lens via a multi-edge dichroic filter (Semrock;

Di01-R405/488/561/635-25x36). An objective heater and heated sample chamber (Okolab; Pozzuoli, Italy) were used to maintain

sample temperature.

Liquid to Solid Conversion Experiment
After droplet formation, an aliquot of the reaction mixture (200 mM 25QP-GFP in 10% dextran, 150 mM NaCl, 50 mM Na2HPO4/

NaH2PO4, pH 7.4) was added to a glass-bottomed dish (35mm dish, 14mm glass diameter; MatTek) that had been treated with

30 mg/mL BSA (Sigma) for 30 mins. The dish was sealed to prevent evaporation and the droplets were imaged by time-lapse fluo-

rescencemicroscopy using the custom-built TIRFmicroscope described above (Total Internal Reflection Fluorescence (TIRF) Micro-

scopy), set up in a configurationwith the fast steeringmirror angled to improve signal-to-noise ratio. Imageswere collected every 10 s

for 1 – 2 hr until the droplets had converted. The laser was operated at 0.1% power (�0.1mW) and was further reduced in power by

placing a half-wave plate and polarizing beam splitter (Thorlabs) in the beam path. Experiments were carried out at room tempera-

ture (21�C).
The circularity of the droplets over time was measured by applying automatic local thresholding to each frame using the Otsu

method (Otsu, 1979) in Fiji to create a binary image of the droplets, then measuring the areas and perimeters. CRs were calculated

as described (Intensity and circularity ratios) in R and the mean CR in the field of view was plotted over time.

Droplet Dissolution using Hexanediol
Droplets were prepared and imaged by time-lapse fluorescence microscopy as described above (see liquid to solid conversion

experiment). Droplet conversion was allowed to progress for 20 mins then an aliquot of dissolution buffer (10% hexanediol,

150 mMNaCl, 50 mMNa2HPO4/NaH2PO4, pH 7.4) was added to the conversion reaction in a 1:2 ratio of dissolution buffer: reaction,

by volume.

Selected frames, before and after droplet dissolution, were median filter background subtracted in Fiji for display purposes. To

quantify the positions of the solid component in droplets that had not yet grown spikes, linescans of individual droplets before

and after hexanediol addition were used to calculate the radial shift in maximum fluorescence intensity i.e., the location of the solid

component relative to the center of the droplet.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance and the methods used to determine it are described in the figure legends of the relevant experiments. No

methods were used to determine sample size, or strategies for randomization. No data were excluded.
Molecular Cell 70, 588–601.e1–e6, May 17, 2018 e6



Molecular Cell, Volume 70
Supplemental Information
A Liquid to Solid Phase Transition Underlying

Pathological Huntingtin Exon1 Aggregation

Thomas R. Peskett, Frédérique Rau, Jonathan O'Driscoll, Rickie Patani, Alan R.
Lowe, and Helen R. Saibil





Figure S1, related to Figure 1. 

(A) Quantification of aggregation trajectories in single cells. Cells were 

computationally tracked and their fluorescence intensity distributions plotted as time-

resolved histograms. t = 0 is defined as the point at which a bright assembly begins 

to form. Formation of bright assemblies corresponds with a rapid increase (~1hr) in 

intensities of a small subset of pixels. As bright assemblies form, highly populated 

intensities (diffuse fluorescence) reduce to zero in agreement with sequestration of 

cytoplasmic HTTex1 into the forming assembly. Dim assemblies result in a subset of 

pixels occupying slightly higher intensities than the diffuse background fluorescence. 

In contrast to bright assemblies, they do not cause a loss of the cytoplasmic 

fluorescence. (B) Additional examples of single-cell aggregation trajectories. (C) 

Time-lapse fluorescence microscopy of merging 25QP-GFP assemblies. Scale bar, 

10 µm. (D) 25QP-GFP forms dim assemblies but not bright assemblies. Cells were 

fixed at 12, 24 and 48 hrs after inducing expression of the constructs indicated. 

Bright and dim assemblies are highlighted with orange and blue arrows, respectively. 

Scale bar, 10 µm. (E) Quantification of fluorescent features in HEK293 Flp-In stable 

cell lines expressing 25QP-GFP or 97QP-GFP. Cells were fixed and imaged at 12, 

24 and 48 hrs post-induction. (F) Quantification of mean intensities of bright and dim 

assemblies in 43QP-GFP and 97QP-GFP transfected HEK293 cells determined from 

confocal slices at 24 hr and 48 hr time points post-induction. The mean intensities of 

bright assemblies (orange) and dim assemblies (blue) cluster and do not overlap (p 

< 0.0015, Welch’s two-sample t-test). Ratios of bright and dim intensities do not vary 

significantly (p > 0.24) between experiments. Assemblies depicted were acquired 

with the same settings but were not used for quantification due to pixel saturation in 

the bright example. Quantification was done using images acquired with a lower 

laser power. Scale bar, 5 µm. (G) Maximum intensity projections of confocal stacks 

through bright and dim assemblies. Compare the spiky, irregular edges of the bright 

assemblies to the smooth edges of the dim assemblies. The images of the dim 

assemblies have been linearly scaled for clarity. Related to Movie 2. Scale bar, 5 

µm. 

  





 

Figure S2, related to Figure 1. 

(A) Images from a time-lapse fluorescence microscopy experiment (top) showing a 

43QP-GFP dim assembly (blue arrows) converting to a bright assembly (orange 

arrows). Note the appearance of the bright assembly at the edge of the dim 

assembly, and sequestration of cytoplasmic fluorescence by the bright assembly. 

The timeline (below) shows the relative positions of the frames in time, with manually 

traced outlines of the dim (blue) and bright (orange) assemblies. Large panels 

(bottom) show, from left to right: fluorescence of a bright assembly in a 120 nm 

section through a cell on an electron microscopy grid; an overlay of the fluorescence 

with the electron micrograph of the same assembly; the electron micrograph without 

the fluorescence overlay. Probable dim and bright assemblies are indicated with blue 

and orange asterisks, respectively. Scale bars, 5 µm. (B) Electron tomography of 

dim assemblies (blue dashes). Images show individual slices through tomograms. 

Fibres can be seen making direct contact with the edges of the dim assemblies 

(orange arrows). Related to Figure 1I. Scale bar, 500 nm. (C) Examples of coexisting 

97QP-GFP dim assemblies and arsenite-induced stress granules (immunolabelled 

for G3BP1 and TIA1). Yellow arrows indicate dim assemblies that do not co-localise 

with stress granules. Red arrows indicate dim assemblies that do co-localise with 

stress granules. Images are of maximum intensity projections of confocal stacks. 

Scale bar = 10 µm. Graph shows Pearson coefficients for co-localisation of the 

proteins indicated. Pearson coefficients were calculated using the unmodified 

confocal stacks. 

  





 

Figure S3, related to Figures 2 and 3. 

(A) Yeast cells in the [rnq-] background expressing 97QP-mEOS3.1 were induced for 

4 hrs and the resulting assemblies were probed by FRAP. Example FRAP curves 

show the two distinct assembly types. Note that the bleached area of the liquid-like 

assembly recovers rapidly and that the mobile fraction is under-represented due to 

the significant bleaching of the total cellular fluorescence. See also Table S1. (B) 

Fluorescence microscopy of 25QP-GFP and 43QP-GFP HTTex1 assemblies before (-

) and after (+) addition of hexanediol. Controls were performed by permeabilising 

cells in the absence of hexanediol. White dotted outlines indicate positions of cells. 

Colours indicate the Rnq1 prion status and, in the case of [rnq-] cells, the type of 

assembly. Note that 25QP-GFP did not form SAs (panels labelled ‘NA’). Scale bar, 3 

µm. (C) [RNQ+] yeast cells were cured of the prion form of Rnq1 by four passages 

over 5 mM Gd-HCl plates (Cox et al., 1988; see materials and methods), to generate 

a [rnq-] strain. Prion curing was confirmed by expressing Rnq1-GFP in both strains 

and visualising the distribution of Rnq1-GFP using widefield fluorescence 

microscopy: in the [RNQ+] strain, Rnq1-GFP formed puncta whereas in the [rnq-] 

strain it had a diffuse distribution. Scale bar, 5 µm. 

  





 

Figure S4, related to Figure 4. 

Slice through a tomogram of a 25QP-GFP liquid-like assembly (outlined in blue) 

formed in a yeast cell. Scale bar, 200 nm. 

  





 

Figure S5, related to Figure 5 and STAR Methods. 

(A) Dot blots of total HTTex1 extracted from yeast cells after 4 and 24 hrs induction. 

Each sample is blotted as 4x 5-fold serial dilutions. (B) Yeast growth-based toxicity 

assay. Equal volumes of the indicated samples were spotted onto synthetic dropout 

agar plates lacking leucine, as 4x 5-fold serial dilutions. HTTex1 proteins were 

induced or supressed by using galactose or glucose, respectively, as the sole carbon 

source. As previously shown (Dehay and Bertolotti, 2006; Duennwald et al., 2006b), 

the proline-rich region suppresses toxicity; HTTex1 is only toxic in the [RNQ+] 

background (Meriin et al., 2002); and polyQ length correlates with toxicity in the 

[RNQ+] strains lacking the proline-rich region (Dehay and Bertolotti, 2006; 

Duennwald et al., 2006b). 

  





 

Figure S6, related to Figure 6. 

(A) Diameters of droplets, where each dot represents a single droplet. (B) Circularity 

ratios of droplets, where each dot represents a single droplet. (C) BSA does not form 

droplets under crowding conditions that induce 25QP-GFP to form droplets. Images 

were flat-field corrected against a background image acquired in the presence of the 

buffer. Scale bar, 10 µm. (D) Drops of purified 25QP-GFP and 43QP-GFP (60 µM) in 

the absence of crowding agent were placed on glass slides and imaged immediately 

at the sample edges. The 43QP-GFP sample formed micron sized assemblies with a 

variety of morphologies including rounded droplets and elongated spikes. 

  





 

Figure S7, related to Figure 7. 

The images show a 43QP-GFP LA in a yeast cell (white dotted outline), undergoing 

a conversion to an SA. FRAP was performed on the regions indicated by the blue 

and orange circles in the greyscale image. The graph (right) shows the resulting 

recovery curves, whose colours correspond to the bleach region circles. The 

pseudocolour image highlights the different fluorescence intensities in the liquid- and 

solid-like regions of the converting assembly. Scale bar, 5 µm. 

  



 

Table S1 FRAP recovery curves modelled using first and second order 

exponential functions. Related to Figures 1G, 2B, 7C and S3A. 

 
 
 
1st order exponential: ! ! = !!!(1− ! !!!! ) 
 
2nd order exponential: ! ! = !!! 1− ! !!!! + !!!(1− ! !!!! ) 
  

Sample Equation A1 A2 τ1 (s) τ2 (s) 
43QP-GFP 
mammalian 
dim 

1st order 
exponential 0.83 N/A 0.79 N/A 

43QP-GFP 
mammalian 
bright 

1st order 
exponential 0.10  N/A 0.96 N/A 

43QP-GFP 
yeast dim 

1st order 
exponential 0.86  N/A 2.41  N/A 

43QP-GFP 
yeast bright 

1st order 
exponential 0.05  N/A 1.06  N/A 

43QP-GFP 
yeast 
[RNQ+] 

1st order 
exponential 0.04 N/A 1.30 N/A 

97QP-EOS 
yeast dim 

1st order 
exponential 

0.50 
 N/A 0.45 N/A 

97QP-EOS 
yeast bright 

1st order 
exponential 0.03 N/A 11.04 N/A 

43QP-GFP 
yeast dim 
(dual 
assemblies) 

2nd order 
exponential 168.8 -0.0003 -52.88 -0.04 

25QP-GFP 
in vitro 
droplet 
middle 

1st order 
exponential 0.46 N/A 0.19 N/A 

25QP-GFP 
in vitro 
droplet 
edge 

1st order 
exponential 0.22 N/A 0.40 N/A 



 

Table S2 FRAP instantaneous rates of recovery for data in Figure 2E. 

 
Sample Equation p1 p2 
43QP-GFP intra-
assembly 

1st order 
polynomial 

116.8 6.11 

43QP-GFP inter-
assembly 

1st order 
polynomial 

2.13 115.0 

 
 
1st order polynomial: ! ! = p!! + !p! 
 
Instantaneous rates of recovery for a dim assembly due to (1) movement of 43QP-
GFP within the assembly, and (2) transfer from a second dim assembly in the same 
cell, were obtained by fitting straight lines to the first few data points immediately 
after bleaching, or 2.6s after bleaching, respectively. Movement of 43QP-GFP is 
approximately 55-fold slower between assemblies than within individual assemblies. 
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