
Neuron, Volume 98
Supplemental Information
The Dynamical Regime of Sensory Cortex: Stable

Dynamics around a Single Stimulus-Tuned Attractor

Account for Patterns of Noise Variability

Guillaume Hennequin, Yashar Ahmadian, Daniel B. Rubin, Máté Lengyel, and Kenneth D.
Miller



The dynamical regime of sensory cortex:
stable dynamics around a single stimulus-tuned a�ractor

account for pa�erns of noise variability
— Supplemental Methods —

Guillaume Hennequin, Yashar Ahmadian?, Daniel B. Rubin?,
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Methods S1 Model setup

We consider the stochastic and nonlinear rate model of Equations 2 and 3 of the main text. To simplify
notation, we assume Vrest = 0 mV without loss of generality as it can be absorbed in the external input,
and rewrite:

τE T
dV
dt

= −V(t) + k W bV(t)cn+ + h(t) + η(t) (S1)

with n > 1 (n = 2 throughout the main text). In Equation S1, bxcn+ denotes the pointwise application
of the threshold power-law nonlinearity to the vector x, that is, bxcn+ is the vector whose ith element is
xni if xi > 0, or 0 otherwise; T is a diagonal matrix of relative membrane time constants measured in
units of τE; W is a matrix of synaptic connections, consisting of NE positive columns (corresponding
to excitatory presynaptic neurons) and NI negative columns (inhibitory neurons) for a total size of
N = NE + NI; h(t) is a possibly time-varying but deterministic external input to neuron i; and η is a
multivariate Ornstein-Uhlenbeck process with separable spatiotemporal correlations given by

〈η(t)η(t + τ )〉t = e−|τ |/τη Ση (S2)

where Ση is the covariance matrix of the input noise and τη is its correlation time. In particular, we
are going to study how τη and correlations in Ση a�ect network variability. We adopt the following
notations for relative time constants:

τ̄I ≡
τI

τE
and τ̄η ≡

τη
τE

(S3)

In general, recurrent processing in the network is prone to instabilities due to the expansive, non-
saturating Vm-rate relationship in single neurons. However, there are generous portions of parameter
space in which inhibition dynamically stabilizes the network. We refer to this case as the “stabilized
supralinear network”, or SSN (Ahmadian et al., 2013; Rubin et al., 2015).

Methods S2 Mean responses in the stabilized supralinear regime

2.1 Input-dependence of mean responses

Our analysis of the stochastic SSN developed in Methods S3 will show that the modulation of vari-
ability relies on the nonlinear behavior of mean responses to varying inputs (Figure 2D of the main
text), which in turn were studied previously (Ahmadian et al., 2013). We repeat these analyses here for
completeness focusing in particular on the transition from superlinear integration of small inputs to
sublinear responses to larger inputs. Note that here we have wri�en the circuit dynamics in voltage
form (Equation S1), while Ahmadian et al., 2013 chose a slightly di�erent rate form; accordingly, the
equations we now derive di�er from the original equations in their form, but not in their nature (in
fact, steady state solutions studied in Ahmadian et al., 2013 are mathematically equivalent in the two
formulations, and moreover when T is proportional to the identity matrix, dynamic solutions are also
exactly equivalent; see Miller and Fumarola, 2012).

As this section is devoted to mean responses, we neglect the input noise η for now. We thus write the
deterministic dynamics of the mean potentials V i as

τE T
dV
dt

= −V + k W bVcn+ + hg (S4)

and ask how neurons collectively respond to a constant external stimulus h fed to them through a
vector g ∼ O(1) of feedforward weights. A�er some transient, and assuming the network is stable (see
below), the network se�les in a steady state V which must obey the following fixed point equation,
obtained by se�ing the l.h.s. of Equation S4 to zero:

V = hg + k W bVcn+ (S5)
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As in the main text, we focus on the case of a threshold-quadratic nonlinearity, n = 2, though the
following derivations can be extended to arbitrary n > 1. Following Ahmadian et al. (2013), we begin
by defining J ≡W/ψ where ψ = ‖W‖ for some matrix norm ‖ · · · ‖, so that the dimensionless vector
J has ‖J‖ = 1. We also define dimensionless mean voltage and input respectively as

y ≡ 2 k ψ V (S6)

α ≡ 2 k ψ h (S7)

(note that the definition of α di�ers from that in Ahmadian et al., 2013 by a factor of 2). With these
definitions, and n = 2, the fixed point equation for the mean potentials, Equation S5, becomes

y = α g +
1
2

J byc2+ (S8)

Network responses to small inputs When α is small (i.e. h is small, given fixed connectivity
strength ψ), it is easy to see that

y ≈ α g +O(α2) (S9)

In essence, the fixed point Equation S8 is already the first-order Taylor expansion of y for small α
(indeed, the recurrent term J byc2+ is O(α2), self-consistently). Thus, for small input α, membrane
potentials scale linearly with α, and firing rates are quadratic in α, merely reflecting the single-neuron
nonlinearity. In other words, the network behaves mostly as a relay of its feedforward inputs, with
only minor corrections due to recurrent interactions.

More generally, by repeatedly substituting the right side of Equation S8 for y into Equation S8, we
arrive at the expansion

y = α g +
1
2

J

⌊
α g +

1
2

J
⌊
α g +

1
2

J b· · · c2+
⌋2

+

⌋2

+

(S10)

The net result involves a series of terms of order α, α2, α4 . . . , which can be expected to converge for
small α (α� 1).

Network responses to larger inputs For large α (α � 1), the expansion of Equation S10 will
not converge and so cannot describe responses. Physically this tends to correspond to the excitatory
subnetwork becoming unstable by itself. At the level of the fixed point Equation S8, recurrent process-
ing involves squaring V, passing it through the recurrent connectivity, adding the feedforward input,
squaring the result again, . . . , which for large enough input and purely excitatory connectivity would
yield activity that grows arbitrarily large. A finite-activity solution is achieved through stabilization by
inhibitory feedback. Mathematically, for this to occur, the recurrent term J byc2+ must cancel the linear
dependence of y on α in Equation S8 (since any linear dependence would be squared by the right side
of Equation S8, then squared again, . . . , to yield an explosive series as in Equation S10). That is, we
must have

1
2

J byc2+ = −α g +O(
√
α) (S11)

such that (again from Equation S8)
y ∼ O(

√
α) (S12)

at most. This means that membrane potentials scale at most as
√
α, i.e. firing rates scale at most

linearly in α. However, in many cases, firing rates too will be sublinear in α. This is best exemplified
in the context of our two-population E/I model, by following Ahmadian et al. (2013) and introducing
the notation:

ΩE ≡
(
−J−1 g

)
E Det J = JII gE − JEI gI (S13)

ΩI ≡
(
−J−1 g

)
I Det J = JIE gE − JEE gI (S14)
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(note that we only consider networks in which Det J > 0, as it must for stabilization to occur for all
input levels α; Ahmadian et al., 2013). Equation S11 can then be rewri�en as

byc2+ =
2α

Det J

(
ΩE

ΩI

)
+O(
√
α) (S15)

Now, depending on the choice of parameters (recurrent weights J and feedforward weights g), ΩE in
particular can be negative. Since byEc2+ is positive, it must be that the sublinear termO(

√
α) dominates

over the (negative) linear term 2ΩE α/Det J, at least over some range of α over which the E firing rate
is non-zero. In this case, byEc2+ behaves roughly as

√
α over some range1 before it gets pushed to zero,

and accordingly yE must be approximately
√√

α over the same range, i.e. the E unit responds strongly
sublinearly. Ahmadian et al. (2013) referred to this regime of eventual decrease of yE with increasing
stimulus strength as “supersaturation”, and showed that it occurs for physiologically plausible param-
eter regimes. Our choice of parameters for the two-population model of the main text falls within this
class of strongly sublinear E responses (ΩE < 0), but we will show in Methods S3 that the SSN displays
the same input modulation of variability irrespective of the sign of ΩE.

In summary, the SSN responds superlinearly to small inputs, and sublinearly to larger inputs. Firing
rates become at most linear (but will be sublinear if ΩE < 0) with large inputs. Accordingly, membrane
potentials show a transition from linear to (potentially strongly) sublinear responses to increasing
inputs. Moreover, this transition occurs for α ∼ O(1).

2.2 The behavior of typical networks: numerical simulations

In the context of the reduced two-population model of the main text, we now complement the above
theoretical arguments with a numerical analysis of the SSN’s responses across a wide range of pa-
rameters, in order to form a picture of the “typical” behavior of the SSN in physiologically realistic
regimes. We will later (Methods S3) reuse these numerical explorations to show that the modulation
of variability by external input in the SSN is robust to changes of parameters.

The dynamics of the trial-averaged dimensionless “population voltages” are given by

τE ẏE = −yE +
1
2

(
JEE byEc

2
+ − JEI by Ic

2
+
)

+ α gE (S16)

τIẏ I = −y I +
1
2

(
JIE byEc

2
+ − JII by Ic

2
+
)

+ α gI

It is di�icult to get good estimates of the values of the 6 free parameters (feedforward weights and
recurrent weights) directly from biology. Therefore, our approach is to construct a large number of
networks by randomly sampling these parameters within broad intervals, and rejecting those networks
that produce unphysiological responses according to conservative criteria that we detail below. We
then examine the behavior of each of these networks and perform statistics on the various kinds of
responses that have been identified in the theoretical analysis of 2.1.

We thus constructed 1000 networks by sampling both feedforward weights {gα} and recurrent weights
{Jαβ} (for α,β ∈ {E, I}) uniformly from the interval [0.1; 1], and subsequently normalizing their (vec-
tor) L∞-norm such that max(gα) = max(Jαβ) = 1. We then sampled the overall connectivity strength ψ
(cf. 2.1) from the interval [0.1; 10]. This interval was based on rough estimates of the average number of
input connections from the local network per neuron (between 200 and 1000), average PSP amplitude
(between 0.1 mV and 0.5 mV) and decay time constants (5 to 20 ms), giving a range of connectivity
strengths – which in our model is the product of these three quantities – between 0.1 and 10 mV/Hz.

Instead of choosing a range of α and simulating the dynamics of Equation S16 to compute mean
voltages, we observed that y I increases monotonically with α and for each network we chose a range

1Arguments about how yE scales with large α actually become invalid when ΩE < 0 precisely because for large enough α
the E unit stops firing; but the point here is that because yE must decrease at some point, it will necessarily become strongly
sublinear in α over some range before it starts to decrease.
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of y I corresponding to mean I firing rates ((y I/2ψ)2/k) in the 0–200 Hz range, thus assuming that mean
I responses above 200 Hz would be unphysiological. For each y I in this discretized range we solved for
yE analytically by noting that the input α can be eliminated from the pair of fixed-point equations
(Equation S16 with l.h.s. set to zero), yielding a fixed-point curve in the (yE, y I) plane:

ΩI yE
2 + 2 gI yE = ΩE y I

2 + 2 gE y I (S17)

Given y I it is easy to solve this quadratic equation for yE. We rejected those parameters sets for which
we encountered either i) complex solutions for yE, or ii) real but unstable solutions, as assessed by the
stability conditions TrJ < 0 and DetJ > 0.01 (with the Jacobian matrix J defined in Equations S19
and S22), or iii) stable solutions that involved E firing rates ((yE/2ψ)2/k) either greater than 200 Hz,
or smaller than 1 Hz for the largest value of y I. Finally, for each fixed point (yE, y I), we computed the
corresponding α from either of the two fixed-point equations (Equation S16 with l.h.s. set to zero),
e.g. α =

[
yE − (JEE yE

2 − JEI y I
2)/2

]
/gE. This procedure was numerically much more e�icient than

simulating the dynamics of Equation S16 until convergence to steady-state.

The parameters of the retained networks spanned a large chunk of the intervals in which they were
sampled (Figure S1A and B). Because stability for large α requires Det J > 0, i.e. JEI JIE > JEE JII, the
largest of all sampled Jαβ ’s was o�en either JEI or JIE which then, due to the L∞-norm normalization,
assumed a value of one (Figure S1A). We also observed that the input weight gE was o�en larger than
gI (Figure S1B). About 90% of the sampled networks had ΩE > 0, implying ∼

√
α scaling of yE and y I

for large α (example in Figure S1D, top). In these networks, E and I rates were linear in α for α large
enough, and so were also linear in each other when large enough (Figure S1E, black). The rest of the
networks (10%) had ΩE < 0 and therefore showed supersaturation of the E firing rate for large input
(Figure S1D, bo�om) and E responses that were sublinear in I responses (Figure S1E, orange).

It is worth noting that for networks with small overall connectivity strengthψ, the proportion ofΩE < 0
and ΩE > 0 cases tend to even out (Figure S1C). This is because, for supersaturating networks, the
peak E firing rate is inversely proportional to ψ2 (Ahmadian et al., 2013), so for large ψ the peak firing
rate is low and therefore the final value of rE reached for r I = 200 Hz likely falls below our threshold
of 1 Hz, resulting in a rejection of the parameter set.

In sum, the nonlinear properties of the SSN’s responses to growing inputs, summarized in 2.1, are ro-
bust to changes in parameters so long as these keep the network in a regime “not too unphysiological”
in a conservative sense. Using the same collection of sampled networks, we will show below that the
modulation of variability with input described in the main text is equally robust to parameter changes.

Methods S3 Membrane potential variability in the two-population SSN
model

In this section, we derive the theoretical results regarding activity variability in the two-population
model of the main text. We use these analytical results to demonstrate robustness of our results to
changes in parameters, which we also verify numerically using the collection of networks with ran-
domly sampled parameters introduced in 2.2.

3.1 Linearization of the dynamics

We now consider the noisy dynamics of the two-population model of the main text in which the E and
I units represent the average activity of large E and I populations. To study variability analytically, we
linearize Equation S1 around the mean, thus examining the local behavior of small fluctuations δV:

τE T
dδV
dt

= A(α) δV(t) + η(t) (S18)

with A(α) ≡ −I + We�(α) (S19)
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The e�ective connectivity We� depends on the (dimensionless) input α through its dependence on
mean responses, following

W e�
ij (α) = n k Wij bV j(α)cn−1

+ for i, j ∈ {E, I} (S20)

For n = 2, Equation S20 can also be wri�en using the definition of the dimensionless voltage y and
dimensionless connections J introduced in 2.1 as

W e�
ij (α) = Jij by j(α)c+ (S21)

With our notations, the Jacobian matrix

J (α) ≡ T−1 A(α) (S22)

is unitless, so that, e.g., the interpretation of a real negative eigenvalue λ ofJ is that the corresponding
eigenmode decays asymptotically with time constant τE/|λ| as a result of the recurrent dynamics. We
parameterize the input noise covariance as

〈
η(t) η(t + τ )T

〉
=
(

1 +
1
τ̄η

)
e−|τ |/τη

(
c2

E cEI

cEI c2
I

)
with cEI ≡ ρEI cE cI (S23)

such that, in the limit of small α – in which the network is e�ectively unconnected, because byc in
Equation S20 is small – the E unit has variance c2

E; the I unit then has variance 1+τ̄η
τ̄I+τ̄η

c2
I . The parameter

ρEI determines the correlation between input noise to the E and I units.

3.2 General result

The full output covariance matrix Σ ≡ 〈δVδVT〉 can be calculated by solving a set of linear equations2,
which yields:

Σ =
(1 + τ̄η)(1− τ̄η TrJ )

−TrJ Det A (τ̄I − τ̄I τ̄η TrJ + τ̄ 2
η Det A)

(
Σ?EE Σ?EI
Σ?EI Σ?II

)
(S26)

with

Σ?EE = c2
E

(
τ̄I Det A

1− τ̄η TrJ
+ A2

II

)
+ c2

I A
2
EI − 2 cEI AEI AII (S27)

Σ?II = c2
I

(
τ̄−1

I Det A
1− τ̄η TrJ

+ A2
EE

)
+ c2

E A
2
IE − 2 cEI AIE AEE (S28)

Σ?EI = c2
E AIE AII + c2

I AEI AEE − 2 cEI

(
AEE AII −

τ̄η TrJ Det A
2 (1− τ̄η TrJ )

)
(S29)

2 Since the spatial and temporal correlations in the noise term η in Equation S18 are separable, we can augment the state
space with two noise units and write their (linear) Langevin dynamics as

τE d
(
δV
η

)
=
(

A(h) I
0 − τE

τη
I

)(
δV
η

)
dt +

(
0 0

0 τE

√
2
τη

B

)
dξ (S24)

where dξ is a unit-variance, spherical Wiener process, and B is the Cholesky factor of the desired noise covariance matrix,
that is, Ση = BBT (the τE

√
2/τη factor is such that this equality holds). Then, from multivariate Ornstein-Uhlenbeck process

theory (e.g. Hennequin et al., 2014), we know that the covariance matrix of the compound process satisfies the following
Lyapunov equation:(

A I
0 − τE

τη
I

)(
Σ Λ
ΛT Ση

)
+
(

Σ Λ
ΛT Ση

)(
AT 0
I − τE

τη
I

)
= −

(
0 0
0 2 τE

τη
BBT

)
(S25)

where Σ is the covariance we are trying to compute. By vectorizing Equation S25, neglecting the bo�om right quadrant
(which by itself only confirms Ση = BBT as promised above), and taking into account the symmetry, one ends up with
a system of 7 coupled but linear equations to solve for the 3 unknowns of Σ and the 4 unknowns of Λ. This can be done
by hand using some patience, or automatically using a symbolic solver such as Mathematica, and yields the expression in
Equation S26.

6



In Equations S26 to S29, each term that depends on A or J depends implicitly on the (dimensionless)
constant input α delivered to both E and I populations, because A (and J ) depends on mean voltages
(through Equation S20) which themselves depend on α. Note also that, for the network to be stable at
a given input level α, the Jacobian matrix J (α) should obey TrJ < 0 and DetJ > 0 (with the la�er
equivalent to Det A > 0).

Among other things, we will analyze the behaviour of the total variance, i.e. the trace of Σ given by

Tr(Σ) = (1 + τ̄η)
β(A) (1− τ̄ηTrJ ) + Det A (τ̄I c2

E + τ̄−1
I c2

I )
−TrJ Det A

(
τ̄I − τ̄I τ̄η TrJ + τ̄ 2

η Det A
) (S30)

with A defined in Equation S19 and

β(A) ≡ (A2
IE + A2

II) c
2
E + (A2

EI + A2
EE) c2

I − 2 (AIE AEE + AEI AII) cEI (S31)

3.3 Analysis in simplified scenarios

In order to understand what Equation S30 tells us about the modulation of variability with the input
α, we make a couple of assumptions that greatly simplify the expression for the total variance with
li�le loss of generality. First, we consider the limit of slow3 input noise which we find empirically is
approached rather fast, with τη = 50 ms already giving a close approximation given τE = 20 ms and
τI = 10 ms. Next, we assume that

cE =
cI

κ
≡ c (S32)

and ρEI = 0 (implying cEI = 0), i.e. the E and I units have uncorrelated input fluctuations of equal
amplitude (the impact of positive input correlations, ρEI > 0, will be discussed in 3.4). With these two
assumptions, the total variance simplifies into

Tr(Σ) = c2 β0(A)
Det A2 = c2 A2

IE + A2
II + A2

EI + A2
EE

(AEE AII − AEI AIE)2 (S33)

where we defined β0(A) ≡ β(A)/c2.

There are two ways to understand how total variance scales with inputs. First, somewhat loosely and
indirectly, via its scaling with mean responses. As mean voltage responses increase with the stimulus,
so do the e�ective weights, which – for a large enough input and a general threshold-powerlaw in-
put/output nonlinearity with exponent n – are proportional to yn−1 (Equation S20). As the numerator
of Equation S33 is quadratic in A and thus also in the e�ective weights in the large input limit, while
the denominator is quartic, the overall scaling is going to be inverse quadratic in the e�ective weights,
yielding a total voltage variance which scales with mean responses approximately as

Tr(Σ) ∝ 1/y2(n−1) (S34)

Second, for the special case of a threshold-quadratic nonlinearity (n = 2), we can also understand the
scaling of the total variance directly with the input strength, α, in more precise terms. The typical
behavior of β0(A)1/2 and Det A is shown in Figure S2A. Both can be expressed as functions of mean
responses using Equations S19 and S20:

β0(A) = κ2 (JEE yE − 1)2 + κ2 (JEI y I)
2 + (JIE yE)2 + (1 + JII y I)

2 (S35)

Det A2 =
[
(JIE yE) (JEI y I) + (1− JEE yE) (1 + JII y I)

]2 (S36)

3The other limit (fast noise, τη → 0) also greatly simplifies Equation S30, but would not make much sense in the context of
this study, since Equation S1 is meant to model the dynamics of the voltage on a timescale≥ 30 ms, which is the timescale on
which a threshold power-law relationship between voltage and rate has been measured in cat V1. Therefore, the input noise
that we explicitly model here is meant to capture the slowly fluctuating components of external inputs, the fast components
having been “absorbed” into the threshold power-law gain function.
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Note that to simplify notations we have dropped the b·c+ that should surround every y . Based on
these expressions, we now examine the behavior of variability in the small and large α limits and show
that the total variance should typically grow and then decay with increasing α, and therefore should
exhibit a maximum which empirically we find occurs for α ∼ 1.

Behavior of the total variance for small α Using Equations S33, S35 and S36, we find the slope
of the total variance at α = 0 to be

d
dα

Tr(Σ)
∣∣∣∣
α=0

= 2 c2 (gE JEE − κ2 gI JII
)

(S37)

Thus, when the noise power fed to inhibitory cells is su�iciently small, κ = cI/cE will be small enough
that the expression in Equation S37 will stay positive, and therefore total variability will grow with
small increasing α. Indeed, we find that this happens for most (>90%) of the randomly sampled net-
works of 2.2 with κ as large as 1/2 (Figure S2A, bo�om). Moreover, restricting the analysis to the E unit
gives dΣEE/dα|α=0 = 2 c2 gE JEE which is always positive, independently of κ. Thus, for slow enough
input noise, the variability in the E unit always increases with small α.

We can extend this argument to slightly larger values of α by further inspecting the numerator and
denominator in Equation S33. Although the first term in the numerator, (JEE yE−1)2, originally decays
with α as yE grows from 0 to 1/JEE, the other three terms always grow with α as long as mean voltages
do, and thus we expect the numerator to typically grow. This is indeed what we find in all sampled
networks (Figure S2A). On the other hand, the denominator (Equation S36) is the square of the sum of
two terms, the first one initially small and growing, and the second one initially large and decaying.
Indeed, the second term starts at 1 for α = 0, because the y terms are all zero, and then decays to
zero as the network enters the inhibition-stabilized (ISN) regime and the e�ective excitatory feedback
gain JEE yE becomes larger than one4 (Tsodyks et al., 1997; Ozeki et al., 2009). Thus, due to this partial
cancellation of growing and decaying terms, we expect the denominator to either decrease, or grow
very slowly, with increasing α (Figure S2A), until it starts growing faster (see arguments below for
the large α case) in the very rough neighborhood of the ISN transition. All in all, the ratio of a fast
growing numerator to a slower growing denominator suggests that the total variance should robustly
grow with small increasing α (Figure S2A, bo�om).

Behavior of the total variance for large α As the input grows, so do the mean (dimensionless)
voltages yE and y I at least over some range of α. Therefore, we expect both the numerator and the
denominator that make up the total variance in Equation S33 to grow with large enough and increasing
α. However, loosely speaking, the numerator grows as y2 while the denominator grows as y4, which
can be seen by inspecting Equations S35 and S36. Thus, their ratio should decrease roughly as

Tr(Σ) ∝ 1
y2 (S38)

which is just a special case for n = 2 of the generic result in Equation S34 for arbitrary n.

However, here (for n = 2) this argument can be made more rigorous in the case of ΩE > 0, i.e. when
the E unit does not supersaturate. In this case, from Equation S15 we have yE ≈

√
2ΩE α/Det J and

y I ≈
√

2ΩI α/Det J forα large enough. Therefore, in the largeα limit, the numerator and denominator
of Equation S33 respectively behave as

β0(A) ≈ 2
Det J

[
(J2

IE + κ2 J2
EE)ΩE + (J2

II + κ2 J2
EI)ΩI

]
α (S39)

Det A2 ≈ 4ΩE ΩI α
2 (S40)

4In this regime, JEE yE > 1 ⇔ AEE > 0 implies instability of the excitatory subnetwork in isolation, and therefore the
need for dynamic, stabilizing feedback inhibition (hence the name “inhibition-stabilized network”).
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therefore the total variance (their ratio) decreases as 1/α. For ΩE < 0, the large α limit is irrelevant
strictly speaking, as in this limit byEc+ and rE go to zero. In this case the total variance does not decrease
asymptotically but reaches a finite limit of c2

[
1 + (τ̄I JEI/JII)2

]
. However, we find empirically that the

peak of variability always occurs well before the onset of supersaturation, in a regime where both yE
and y I are still growing with α while remaining roughly proportional to each other (Figure S1E), so
that the argument made above can be repeated: the total variance decreases as 1/y2 for a while a�er
having peaked.

Where does variability peak? The above arguments, derived for slow noise τη → ∞, show that
growing inputs typically increase, and then suppress, total variability in the two-population SSN. Thus,
total variability (and even more certainly, variability in the E unit) typically exhibits a maximum for
some intermediate value of α. We find empirically that, even for finite τη , the location of this variance
peak is well approximated by its location in the limit of fast inhibition, τ̄I → 0, which we can estimate
analytically. Indeed, in this limit, the I cell responds instantaneously to changes in E activity and input
noise, such that

δVI(t) =
JIE yE δVE(t) + ηI(t)

1 + JII y I
(S41)

Consequently, δVE now obeys one-dimensional dynamics given by

τE δV̇E = −λ δVE(t) + ηe�(t) (S42)

where

λ = 1 +
yE (Det J y I − JEE)

1 + JII y I
(S43)

and ηe� is a noise process (a linear combination of ηE and ηI) with temporal correlation length τη and
a variance that is empirically irrelevant for the arguments below5. In this case, the variance of δVE

is inversely proportional to λ ( 1
τ̄η

+ λ), and therefore should be maximum at the input level α that
minimizes λ. Observing from Figure S1E that yE and y I are roughly proportional over a large range of
α (for ΩE < 0), if not the entire range (for ΩE > 0), we can make the following approximation:

λ− 1 ∝ y I (Det J y I − JEE)
1 + JII y I

(S44)

whose minimum is straightforward to calculate and is a�ained for

y I =
1
JII

(√
JEI JIE
Det J

− 1

)
(S45)

We find that the α of maximum variance in the E unit is indeed very well approximated by the α at
which y I reaches the threshold value of Equation S45, especially in the absence of input correlations
(ρEI = 0, Figure S2B, le�). For correlated noisy inputs, the criterion of Equation S45 deteriorates slightly
but still consistently provides an upper bound on the α of maximum E variance (Figure S2B, right).

Interestingly, the criterion for maximum variance in Equation S45 is equivalent to a criterion about the
e�ective I→I connection, given by W e�

II ≡ 2 k bV Ic+WII (cf. Equation 1 in main text). Specifically, at
the peak of variance we expect to have

W e�
II =

√
1

1− β
− 1 with β ≡ WEE WII

WEI WIE
(S46)

where β < 1 is in some sense the ratio of what contributes positively to the activity of the E cell
(product of self-excitation WEE with disinhibition WII) to what contributes negatively to it (the product

5The variance of the e�ective noise process is proportional to 1 + J2IE y I
2

(1+JII y I)
2 , and so has some dependence on α especially

for small α before y I grows large. However, empirically, the quality of the approximation in Equation S44 – which is derived
under the assumption of constant e�ective noise variance – suggests that we can neglect this e�ect.
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WIE WEI quantifying the strength of the E→ I→ E inhibitory feedback loop). Thus, in networks with
inhibition-dominated connectivity, i.e. ones in which β � 1, we expect W e�

II to reach the criterion of
Equation S46 earlier as the input grows (this argument implictly assumes that the rate of growth of
W e�

II itself doesn’t depend too much on β, which we could confirm numerically).

Finally, we note that since variability peaks for α ∼ O(1) and y ∼ O(1), networks with stronger
connectivity (large ψ) will exhibit a peak of variance for smaller external input h (because α ∝ ψ h) –
and this peak will occur for lower voltages/firing rates (because V ∝ y/ψ).

3.4 E�ects of input correlations

To see the e�ect of input correlations on variability, we return to the expression forΣEE in Equation S30,
assume again that τη →∞ and cE = cI

κ = c, but now with ρEI 6= 0. We thus obtain:

ΣEE = c2 A
2
II + κ2 A2

EI

Det A2 − 2 c2 ρEI
κAII AEI

Det A2 (S47)

Thus, total E variability is equal to that without input correlation (the first term), minus a positive
term proportional to ρEI. Thus, positive input correlations always decrease variability in the E unit
(and, in particular, its peak; Figure S2C, right), while negative correlations increase it. Moreover, the
subtracted term has the same large-α behavior as the first term, because the two terms share the
same denominator and for large alpha both numerators are O(y I

2). Thus, input correlations should
not a�ect the qualitative, decreasing behaviour of E variance for large increasing inputs. For small α
and large ρEI, however, we expect A2

II +κ
2 A2

EI−2 ρEI κAII AEI to grow much more slowly than A2
II +κ

2 A2
EI;

and indeed, in the extreme case ρEI = 1, the total numerator becomes (1 + (JII − κ JEI) y I)
2, which can

even decrease transiently with increasing α if κ JEI > JII (this occurs in about half of our thousand
networks). This, in e�ect, shi�s the peak of E variability to smaller values of α (Figure S2C, le�).

The situation for the I unit is a bit di�erent, as input correlations a�ect the I variance di�erently
depending on whether the network has already made the transition to the ISN regime. Indeed, under
the same assumptions as above, the I variance is given by

ΣII = c2 κ
2 A2

EE + A2
IE

Det A2 − 2 c2 ρEI
κAEE AIE

Det A2 (S48)

In the ISN regime, AEE > 0, so that input correlations decrease I variability, just as they do for E
variability as seen above. For small enough inputs, however, the network is not yet an ISN (AEE < 0),
so that the e�ect of correlations is reversed: larger input correlations increase I variability.

In sum, input correlations modify the fine details of how large the variance grows and how early
it peaks with increasing inputs, but they do not modify the qualitative aspects – in particular, the
non-monotonic behavior – of variability modulation with external inputs in this two-population SSN
model.

3.5 Mechanisms of variability modulation: Schur decomposition

We now unpack the mechanistic aspects of variability modulation in the SSN, by decomposing the
e�ects of e�ective connectivity into two qualitatively di�erent flow fields that shape the covariance of
activities in the network in distinct ways (Figure S3): “shear” and “restoring” fields. To do this, we focus
on the linearized dynamics of Equation S18 and perform a Schur decomposition of the Jacobian matrix
in Equation S22 (which includes both the single-neuron leak and the e�ective connectivity; Murphy
and Miller, 2009):

J (α) = U(α) TSchur(α) U(α)? with TSchur(α) ≡
(

λs wFF

0 λd

)
(S49)
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where ·? denotes the conjugate transpose, λs and λd are the two (either real or complex-conjugate6)
eigenvalues of J (α), the columns of U are the (orthonormal) Schur vectors such that U U? = U? U = I,
and wFF is the feedforward weight coupling the dynamics of the Schur vectors. Expressing the E and
I voltage fluctuations in the Schur basis as z ≡ U? δV, their dynamics become

τE
dz
dt

= TSchur z + U? T−1 η (S50)

In the case of the 2-population E/I architecture considered here (W given by Equation 8 of the main
text), the first Schur vector is a “sum mode” in the generalized sense (Murphy and Miller, 2009), i.e. its
excitatory and inhibitory components have the same sign7. This corresponds to pa�erns of network
activity in which the excitatory and inhibitory units are simultaneously either more active or less active
than average. The second Schur mode is a generalized “di�erence mode” in that its excitatory and
inhibitory components have opposive signs. (Hence the notations λs and λd.) In theory, U depends
on the input α, because J does. However, we find that past a relatively small value of α, the Schur
vectors do not change much and are indeed sum-like and di�erence-like across all thousand networks
studied in Methods S2 and Methods S3 (Figure S2E).

The Schur decomposition reveals through TSchur(α) a feedforward structure hidden in the e�ective,
recurrent connectivity J (α). The di�erence mode feeds the sum mode with an e�ective feedforward
weight wFF (also a complex number if the eigenvalues have an imaginary component), given by the
upper right element of the triangular matrix TSchur – graphically, this corresponds to the “shear” flow
field in Figure S3. On top of this, both pa�erns inhibit themselves with the corresponding negative
weight λd or λs – the “restoring” flow field in Figure S3. Note that the sum of squared moduli (squared
Frobenius norm ‖ · ‖2

F) is preserved by the unitary transformation J 7→ U? J U ≡ TSchur, such that
‖J ‖2

F = ‖TSchur‖2
F, i.e.

|wFF| =
√
‖J ‖2

F − (|λs|2 + |λd|2) (S52)

The calculation of the network covariance matrix (Equation S30) can also be performed in the Schur
basis, and doing this sheds further light on the roles of λd, λs and wFF in shaping variability. We begin
by observing that

Tr (Σ) = Tr
(
〈δV δVT〉

)
= Tr (〈U z z? U?〉

)
= Tr (U〈 z z? 〉U?

)
= Tr (〈z z?〉

)
(S53)

(the last step following from U U? = I). Thus, the total variance is preserved in the Schur basis. Next,
taking the Fourier transform of Equation S50 and rearranging term yields

ẑ(ω) = (i ω I− TSchur)
−1 U? T−1 η̂(ω) (S54)

6The eigenvalues remain real over the entire input range for about half of the 1000 random networks studied throughout
(all with τ̄I = 1/2). In the second half, they go from real to complex-conjugate and then sometimes to real again.

7 This holds when the eigenvalues of A are real. When they are complex conjugate, one can still perform a real Schur
decomposition by orthogonalizing the imaginary part of the eigenvector against the real part, which yields

TSchur =
(

Re(λ) a+

a− Re(λ)

)
a± ≡

wFF ±
√

wFF
2 + 4 Im(λ)2

2
(S51)

and the two Schur vectors in this case are also sum-like and di�erence-like, in this order. At this point (anticipating to some
extent what follows this footnote), we note that in the imaginary case, there is a small feedback term proportional to a−
from the sum-mode to the di�erence-mode. Thus, the picture of the flow fields drawn in Figure S3 is incomplete. However,
we will see that in the slow-noise limit (which gives a very good approximation to the output covariance as seen in 3.3), the
purely feedforward picture remains exact provided one replaces wFF, λd and λs by their moduli.
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where ·̂ denotes the Fourier transform and ω ≡ 2π f τE is a dimensionless frequency. Moreover, ac-
cording to Parseval’s theorem we have

Tr (〈z z?〉
)

=
1

2π τE

∫ +∞

−∞
Tr (ẑ ẑ?

)
dω (S55)

Thus, combining Equations S53 to S55 we get

Tr(Σ) =
2 τ̄η
π

∫ +∞

−∞

Tr
[
(i ω I− TSchur)−1 U? Σ̃η U (i ω I− TSchur)−?

]
1 + (τ̄η ω)2 dω (S56)

where Σ̃η ≡ T−1 Ση T−1. To simplify the calculation we now assume uncorrelated input noise terms,
with the power of noise input to E and I balanced such that κ = τ̄I and Σ̃η = c2 (1 + 1/τ̄η) I, leading to:

Tr(Σ) =
(1 + τ̄η) c2

π

∫ +∞

−∞

Tr
(
(i ω I− TSchur)−1(i ω I− TSchur)−?

)
1 + (τ̄η ω)2 dω (S57)

=
(1 + τ̄η) c2

π

∫ +∞

−∞

1
1 + (τ̄η ω)2

(
1

|i ω − λd|2
+

1
|i ω − λs|2

+
|wFF|2

|i ω − λd|2|i ω − λs|2

)
dω

where the second equality comes from having inverted the upper-triangular matrix i ω I− TSchur ana-
lytically and taken its squared Frobenius norm. Carrying out the integral gives

Tr(Σ) = (1 + τ̄η) c2
(

1− τ̄η λr
s

−λr
s (1− 2 τ̄η λr

s + τ̄ 2
η |λs|2)

+
1− τ̄η λr

d

−λr
d (1− 2 τ̄η λr

d + τ̄ 2
η |λd|2)

(S58)

+
|wFF|2

[
1− τ̄η (λs + λd)

]
−(λs + λd) |λs| |λd|

[
1− τ̄η (λs + λd) + τ̄ 2

η |λs| |λd|
]) (S59)

where λr
s and λr

d stand for the real parts of λs and λd respectively (they must both be negative for the
dynamics to be stable).

This expression simplifies in the slow noise limit, τ̄η →∞:8

Tr(Σ)
τ̄η→∞−→ c2

(
1
|λs|2

+
1
|λd|2

+
|wFF|2

|λs|2 |λd|2

)
(S60)

In this limit, the simplified picture of the flow fields drawn in a plane of sum and di�erence activity
(Figure S3) which assumed that they were real quantities, becomes accurate even when the eigenvalues
of J are complex-conjugate (in which case, as mentioned above in Footnote 7, the sum-like mode
feeds back onto the di�erence mode, although this interaction is much weaker than the opposite one).
Indeed, in Equation S60, the elements of TSchur are reduced to their moduli, so even when they are
complex one can still interpret Equation S60 as the total variance in a system with the same real Schur
vectors, real eigenvalues equal to −|λd| and −|λs| respectively, and a real feedforward weight equal
to |wFF|.

Equation S60 shows in more detail how the shear and restoring flows contribute to variability. In loose
terms, the total variance is a sum of two contributions: one that does not depend on wFF and decreases
with 1/|λ|2, and one that grows with |wFF|2 but is also divided by a term of order λ4 (where λ is a
loose notation to denote the overall magnitude of the eigenvalues). Thus, as the input grows, the e�ect
of the eigenvalues on variability becomes much stronger than that of balanced amplification. Such a

8More generally, for arbitrary τ̄I, κ and ρEI, in the limit τ̄η →∞, Equation S60 still holds, in precisely the same form, but

in terms of the eigenvalues and feedforward Schur weight of B(α) ≡ cΣ
− 1

2
η A(α) rather than of J (α). This is because, in

that limit, Tr(Σ) = c2 ‖B−1‖2
F. Note that τ̄I cannot a�ect the result in the limit τη → ∞; and that when κ = τ̄I and ρEI = 0,

then J (α) = B(α) and hence Equation S60 holds. To see why Tr(Σ) = c2 ‖B−1‖2
F in this limit: most simply, in the slow noise

limit, one can think of the noise η(t) in Equation S18 as a constant input and solve for its steady state δV = −A−1 η, then
form Σ =

〈
δV δVT

〉
.
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dominance can also be understood from the structure of the flow fields that negative self-couplings and
balanced amplification induce. Restoring flows are proportional to the distance from the origin: the
stronger the momentary Vm deviation from the mean in any direction, the stronger the pull towards
the origin in the same direction (Figure S3C, green arrows). In contrast, the shear flow grow along the
di�erence axis while pointing in the orthogonal, sum direction, such that larger deviations in the sum
do not imply larger shear flow (Figure S3C, orange arrows). Thus, self-inhibition leads to exponential
temporal decay of activity fluctuations, whereas balanced amplification gives only linear growth. This
explains why, for large enough input, Vm variability decreases with increasing input even when all flow
fields grow in magnitude at the same rate (Figure S2A).

Equation S60 also shows that if one of the eigenvalues transiently weakens with increasing input,
then variability should transiently grow. This explains a large part of the variability peak observed in
the network of the main text, and indeed, it also predicts variability growth in most of the thousand
networks investigated here. However, there are cases where variability transiently grows, without any
weakening of eigenvalues (Figure S4A). In those cases, se�ing wFF to 0 in Equation S60 wrongly predicts
purely decaying variability (compare dashed and solid black lines in Figure S4A, bo�om). Thus, in
general, initial variability growth results from the combined e�ects of weaker inhibitory self-couplings
and strong balanced amplification.

3.6 How do shear and restoring flow fields depend on the input?

The input dependence of the shear (|wFF|) and restoring (|λs|, |λs|) flows can be understood from the
input dependence of mean responses (yE and y I), which was examined previously in Methods S2. First,
at α = 0 (no input) the e�ective connectivity is zero, thus J = diag(−1,−τ̄−1

I ) and therefore the two
eigenvalues are −1 and −1/τ̄I. To see how the eigenvalues change with the input, let us note that for
a 2 × 2 matrix, the sum of the eigenvalues is equal to the trace of the matrix while their product is
equal to its determinant. Thus, when both eigenvalues are real (which they are for small enough α),
both the arithmetic and geometric mean of |λs| and |λd| can be related to the elements of J , which
themselves depend directly on yE and y I. This yields:

|λs| + |λd| = τ̄−1
I

[
1 + τ̄I +

(
JII y I − τ̄I JEE yE

)]
(S61)

and (S62)

|λs| |λd| = τ̄−1
I

[
1 + Det J yE y I +

(
JII y I − JEE yE

)]
(S63)

We see that, by both measures, the overall restoring flow tends to grow with increasing input α, be-
cause i) mean responses grow too, and therefore so does the product term in Equation S63, and ii) y I
tends to grow larger than yE (Figure S1E), so that the weighted di�erence terms inside round brackets
in both Equations S61 and S63 increase, at least for large enough α. However, when gE JEE > gI JII, the
di�erence term in Equation S63 will initially grow negative with increasing – but small – α, before it
increases again for larger α. This means that at least one of the eigenvalues will decrease. In such a
case, whether or not both eigenvalues decrease transiently depends on the behavior of the di�erence
term in Equation S61. The requirement for this di�erence term to decrease initially is τ̄I gE JEE > gI JII
which is harder to satisfy especially when inhibition is fast (τ̄I is small). Thus, we typically expect
that one eigenvalue should decrease (or, at least, its growth should be delayed) before growing again
(Figure S2A).

As for the shear flow, a similarly simple expression can be obtained in the case of real eigenvalues
by noting that the sum of squared eigenvalues in 2 × 2 matrix J is equal to (TrJ )2 − 2 DetJ . This
observation yields

|wFF| =
√
‖J ‖2

F − (TrJ )2 + 2 DetJ

= τ̄−1
I

(
JIE yE + τ̄I JEI y I

)
(S64)
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i.e. the shear flow is proportional to a weighted average of mean Vm responses in the E and I units,
which, in the SSN, shows linear growth for small α and sublinear growth for larger α (cf. Methods
S2 and Figure S1D). Thus, we have a situation in which the flow that boosts variability grows faster
initially than those that quench variability, causing a transient increase in total variance for small
increasing inputs. For large α, all flows (|λs|, |λd| and wFF) grow as

√
α (Figure S2A), because J is

dominated by its Jαβ yβ components and the y terms grow as
√
α as seen in Methods S2. Thus, the

total variance in Equation S60 should decay as 1/α in this limit, consistent with what we concluded
in 3.3.

When the eigenvalues of J turn complex-conjugate, Equations S61, S63 and S64 above become more
complicated expressions, which nevertheless does not change the main insights.

Methods S4 Firing rate and spike count variability

4.1 Generic results in the SSN regime

In Equation S34, we derived a generic scaling of membrane potential variances, Σ, with mean responses
in the SSN. What does it imply for rate variances and Fano factors? Firing rate variability, Σr, is
straightforwardly related to voltage variability through a linearization of the input/output nonlinearity,
yielding the following relationship:

Σr
ij ∝ V (n−1)

i V (n−1)
j Σij ≈ O(1) (S65)

Therefore, whether Σr grows or shrinks with increasing activation will depend on parameter details.
(Note that this is valid only to the extent that mean responses keep growing with large stimuli, which
occurs when ΩE > 0 – see 3.3 above. For ΩE < 0 we observe a decline of firing rate variance with
increasing stimulus.)

Under the assumption that spikes are emi�ed according to an inhomogeneous Poisson process with
underlying rate given by a threshold-powerlaw nonlinearity, we have shown in Hennequin and Lengyel
(2016) that the above-Poisson contribution to Fano factors (FF-1), due to slow voltage variability, scales
as

FFi − 1 ∝ V n−2
i Σii (S66)

Substituting Equation S34 into this, we have that

FFi − 1 ∝ V−ni (S67)

Thus, Fano factors are generally expected to decrease (towards a Poisson lower-bound of 1) as long as
the stimulus increases mean responses.

4.2 The specific regime of Kanashiro et al. (2017)

Kanashiro et al. (2017) studied a two-population E-I model (analogous to what we analyzed in Fig. 2
of the main text) in which they analyzed conditions for a�ention to suppress variability and increase
stimulus gain. In apparently conflict with our main result that variability suppression should occur
generically, they reported very specific conditions for variability quenching. In this section, we relate
their model to ours directly to understand the sources of this apparent contradiction.

Kanashiro et al. (2017) studied mean-field dynamics for firing rates r =
(

rE
rI

)
(an ‘r-equation’) of the

form

τET
d
dt

r = −r + f (W r + c g + aµ + η(t)) (S68)
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where boldface small or Greek le�ers denote two-vectors with an E and I component, the function f(·)
represents applying the function fE(·) to the E component and fI(·) to the I component, η(t) is a zero-
mean unit-variance noise, c g represents a stimulus-driven input, of strength c, while aµ represents
an a�entional input, of strength 0 ≤ a ≤ 1.

For the input-output function f(·), Kanashiro et al. (2017) used the firing rate of an integrate-and-fire
neuron responding to a given mean and variance of input. This is an expansive function that, for a fixed
level of fast noise, can be well approximated as a power law (Hansel and van Vreeswijk, 2002) (precisely
the form of nonlinearity we used in our model (S1). Nevertheless, most of the results we derive in this
section (unless otherwise noted) hold for an arbitrary monotonically increasing, expansive f(·), and
thus wherever possible, we will express them in terms of f(·) and its slope, f′(·), rather than using our
previous approach to express the scaling of variability in terms of V and its powers, which was specific
to a powerlaw nonlinearity9.

Although in contrast to Kanashiro et al.’s r-equation, we studied an equation for voltage dynamics
(a ‘v-equation’; Equation S1), there is a simple equivalence between these two forms of model10. In
particular, linearizing Equation S68 gives the covariance matrix of rate fluctuations as Σr = FΣ F
where Σ is the covariance matrix of voltage fluctuations implied by our (linearized) voltage equation

Equation S18 with the same input noise η(t), and F =
(

f ′E 0
0 f ′I

)
(cf. Equation S65).

Like us, Kanashiro et al. (2017) analyzed variability by linearizing the dynamics about a fixed point,
and they studied the slow-noise limit; thus we shall also restrict our analysis to this limit here. They
concluded that, to reduce variability, a�entional input had to be biased toward inhibitory cells (µI >
µE); while for a�entional input to increase the gain of response to a stimulus, stimulus-driven input
had to be directed to excitatory cells (gE > gI). As we will show, these conclusions depend on the
specific, non-generic parameter choices they made, which eliminate the more generic suppression of
variability by increasing activity seen in the SSN.

In particular, Kanashiro et al. (2017) simplified the weight matrix
(

WEE −WEI

WIE −WII

)
to the special, non-

generic form
(

WE −WI

WE −WI

)
. This assumption on the weights means that Det W = 0 and ΩE = ΩI = 0,

which eliminates many SSN behaviors.11 Furthermore this means that Det A scales as (f ′)1 instead of
the generic (f ′)2 (because one of the eigenvalues of A is −1, independent of the values of the f ′’s, cf.
Footnote 9), so that A−1 scales as (f ′)0. Therefore, Σ scales as (f ′)0 instead of the generic (f ′)−2, Σr

scales as (f ′)2 instead of the generic (f ′)0 (cf. Footnote 9). To see the implications of this scaling for
Fano factors, we recall that the firing rate nonlinearity f used by Kanashiro et al. is well approximated
by a threshold powerlaw with some exponent n; thus, from the general results developed in 4.1, we
expect the above-Poisson part of the Fano factor, ∝ V n−2 Σ, to scale as (f ′)(n−2)/(n−1) instead of the
generic (f ′)−

n
n−1 . In short, this choice of parameters causes Σ and the Fano factor to lose their generic

decrease with increasing activity (and in fact, causes the Fano factor to generically increase instead),
and causesΣr to change from going to a constant for large f ′’s to generically increasing with increasing
activity. This renders any decrease in these measures of variability with increasing activity much more

9For example, it is easy to show that the scaling of e�ective connectivity, membrane potential and rate variability devel-
oped in Equations S34 and S65 can be wri�en using this more general approach as Det A ∝ (f ′)2, Σ ∝ (f ′)−2 and Σr ∝ (f ′)0,
respectively.

10When T (a diagonal matrix of relative time constants) is proportional to the identity matrix, the r-equation τ d
dt r = −r +

f (Wr + hr (t)) is equivalent to the v-equation τ d
dt v = −v+W f(v)+hv (t), under the equivalence v = Wr+hr , τ d

dt hr = −hr +hv

(Miller and Fumarola, 2012). For steady states or in the slow noise limit, the rate and voltage equations are equivalent under
the simpler relationship r = f (v), hr = hv , regardless of the structure of T.

11The SSN (Ahmadian et al., 2013) relies on a positive determinant of W to ensure stability and also to ensure that
the “loosely balanced” solution exists, which depends on W being invertible (this solution is illustrated in Equation S11-
Equation S15). The loosely balanced solution characterizes SSN dynamics for stronger input (roughly, for stimulus-driven
rather than spontaneous input). Furthermore, SSN dynamical regimes are characterized by the nonzero values of ΩE and ΩI

(Equations S13 and S14).
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dependent on specific parameter choices, including in particular the choice of relative strength of
external input to E vs. I cells (µI > µe).

More specifically, Kanashiro et al. (2017) focused on the variance of rE (the EE component of Σr). In
the general case in the slow noise limit, this is (from Equation S26)

Σr
EE =

(1 + f ′I WII)((1 + f ′I WII) (f ′E cE)2 − 2 f ′2E f ′I WEI cEI) + (f ′E WEI)2 (f ′I cI)2

(Det A)2 (S69)

where Det A = 1 − f ′E WEE + f ′I WII + f ′I f
′

E Det W. In addition to the assumption on the structure of
W, Kanashiro et al. (2017) also assumed that the inhibitory and excitatory input noise were perfectly
correlated, cEI = cE cI (because they assumed a single, global noise process in Equation S68). Using
these assumptions, the excitatory rate variance instead becomes

Σr
EE|Kanashiro =

f ′2E (f ′E cE + f ′I WI f ′E cE − f ′2I WI cI)2

(Det A|Kanashiro)2 (S70)

where Det A|Kanashiro = 1 − f ′E WE + f ′I WI. The numerator of Σr
EE|Kanashiro increases with increasing

f ′E and decreases with increasing f ′I , while the opposite is true of the denominator; this is why their
increase in f ′I had to dominate the increase in f ′E for them to find a decrease in variability. For the
generic Σr

EE (Equation S69), there is no such simple monotonic dependence on f ′E or f ′I ; while results
may be parameter dependent, there is no obvious reason for this generic Σr

EE why external input must
be biased towards I cells in order for increasing activity to suppress excitatory rate variability.

Kanashiro et al. (2017) did, in one figure, consider the e�ects of a more general weight matrix. They con-
sidered the same a�ention-induced trajectory in rE and rI that decreased variability for their restricted
weight matrix, and showed that this also decreased variability for a parametric range of weights. How-
ever, they did not examine whether their conclusion that variability reduction required µI > µE held
in this more general case.

Finally, Kanashiro et al. (2017) considered the a�ention-induced change in gain of excitatory cells to

a stimulus-driven input. The excitatory stimulus gain is drSS
E
dc , where rSS

E is the E-component of the

deterministic steady-state value rSS = f
(
W rSS + c g + aµ

)
. We can compute drSS

dc = F (W drSS

dc + g),

which can be solved to give drSS

dc = (I− F W )−1 F g. The E-component is then

drSS
E

dc
=
f ′E ((1 + f ′I WII) gE − f ′I WEI gI)

Det A
(S71)

We now note that, if we write Σ∗EE for Σr
EE under the special condition of perfect correlation and equal

variances (cEI = cE cI, and cE = cI) then the numerator of Σ∗EE is f ′2E c2
E (1 + f ′I (WII −WEI))2 (the denomi-

nator remains (Det A)2). This allows us to write

drSS
E

dc
=
gE

cE

√
Σ∗EE + f ′E f

′
I WEI (gE − gI)/Det A (S72)

Note that Det A > 0 is a necessary condition for the fixed point to be stable and f ′E > 0, f ′I > 0. This
means that, if an a�entional manipulation lowers Σ∗EE, then in order for it to raise the excitatory stimu-
lus gain it must either be the case that gE > gI and the a�entional stimulus increases the second term,
by increasing f ′E f

′
I /Det A, more than the first term decreases; or gE < gI and the a�entional stimulus

decreases the magnitude of the 2nd term, by decreasing f ′E f
′

I /Det A, by more than the decrease in the
first term. However, an a�entional stimulus may raise Σ∗EE while lowering Σr

EE.

With the assumptions of Kanashiro et al. (2017), Equation S71 becomes drSS
E

dc = f ′E (gE+WI f ′I (gE−gI))
Det A|Kanashiro

and the
numerator of Σ∗EE becomes f ′2E c2

E. Kanashiro et al. (2017) restricted their analysis to the case cI = cE, so
that with their other assumptions Σr

EE = Σ∗EE, and so simply wrote

drSS
E

dc
=
gE

cE

√
Σr

EE + f ′E f
′

I WI (gE − gI)/Det A|Kanashiro (S73)
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Note that the numerator of the second term is quadratic in the increasing f ′ terms, while their denom-
inator (unlike the denominator in Equation S72) is only linear in these terms. Thus, under Kanashiro
et al., 2017’s assumptions, the second term should generically increase in magnitude with the increased
activation induced by a�ention. Perhaps on this basis, they predicted that a�ention’s observed e�ects
of lowering excitatory variability and raising excitatory stimulus gain required gE > gI.

Defining Σ∆
EE ≡ Σr

EE − Σ∗EE,12 Equation S72 can be rewri�en as

drSS
E

dc
=
gE

cE

√
Σr

EE − Σ∆
EE + f ′E f

′
I WEI (gE − gI)/Det A (S76)

Note that, with Σr
EE decreasing, the first term of drSS

E
dc can be increasing if Σ∆

EE decreases by more than
Σr

EE. Thus, for generic parameters, we conclude that a�ention can increase excitatory stimulus gain
while lowering Σr

EE by virtue of the first term of Equation S76 increasing with a�ention, which will
occur if Σ∆

EE decreases more than Σr
EE, and/or of the second term increasing with a�ention, which will

occur for gE > gI or gE < gI if f ′E f
′

I /Det A increases or decreases, respectively, with a�ention.

12With the assumptions of Kanashiro et al. (2017),

Σ∆
EE|Kanashiro =

(
f ′2E f ′I WI (cE − cI)

(
2 cE + f ′I WI (cE − cI)

))
/ (Det A|Kanashiro)2 (S74)

More generally,
Σ∆

EE =
(
f ′2E f ′I WEI

(
2 (1 + f ′I WII) (c2

E − cEI) + f ′I WEI (c2
I − c2

E)
))
/ (Det A)2 (S75)
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Figure S1. Related to Figure 2. Typical behavior of mean responses to increasing inputs in
1000 randomly sampled 2-population SSNs. (A) Dimensionless recurrent weights {Jαβ} (Equa-
tion S8); these are normalized such that the largest of the four weights is one for each network. Colors
indicate the sign of ΩE (Equation S13). (B) Distribution of feedforward weights gE and gI, also nor-
malized for each network so that their maximum is one. (C) Overall connection strength ψ (in units
of W , see table ”Parameters Used in the SSN Simulations” in STAR Methods, such that Wαβ ≡ ψ Jαβ)
vs. ΩE. (D) Example responses (dimensionless voltages yE and y I) to increasing inputs (dimensionless
α) for a network with ΩE > 0 (top) and one with ΩE < 0 showing supersaturation (bo�om). (E) Mean
E firing rate rE as a function of the mean I firing rate r I, for a subset of networks; each point on these
curves corresponds to a di�erent input level, increased from zero to a maximum value chosen such
that r I = 200 Hz.
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Figure S2. Related to Figure 2. Robustness of variability modulation to changes in network
parameters. We examined the modulation of variability by external input in the 1000 randomly pa-
rameterized, 2-population networks of Figure S1. (A) Behavior of |wFF|, |λs|, |λd|, ‖A‖F, det(A) (Equa-
tion S49) and the total variance (normalized to unit peak), as a function of the (dimensionless) input α.
The dashed green line is proportional to

√
α. Only a random subset of the thousand random networks

are shown. Following the same convention as in Figure S1, cases with ΩE > 0 are shown in black,
those with ΩE < 0 in orange. (B) Sca�er plot of the α at which the E variance reaches its maximum
(“true value”), and that given by the approximate criterion of Equation S45 (which assumes very fast
inhibition, i.e. τ̄I → 0), for uncorrelated (le�, ρEI = 0) and fully correlated (right, ρEI = 1) input noise
term to the E and I units. (C) Sca�er plot of the input α at which the E variance peaks (le�), as well as
the value of the variance peak (right), for ρEI = 0 vs. ρEI = 1. (D) Mean E (red) and I (blue) firing rates
(top) and Vm std. (bo�om) for two example networks with larger values of the power-law exponent
n; parameters were otherwise the same as in Figure 2 of the main text. (E) Orientation of the two
Schur vectors for a subset of the 1000 random networks. Their “sum-like” and “di�erence-like” nature
emerges quite rapidly for small α and then persists for larger α.
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Figure S3. Related to Figure 2. Mechanism of input-dependent modulation of variability
in the SSN. (A–C) Visualization of the influence of single-neuron leak and e�ective connectivity as
restoring and shear flow fields shaping the (co-)variability of E/I activity in the two-population SSN.
Cardinal axes (δVE and δVI) measure (in mV) the deviation of E and I membrane potentials from their
respective steady-state values (Equation S18) defined such that the origin (δV = 0 mV) corresponds to
the stationary mean population activity for the given input strength h (labels on top). Gray axes show
directions of Schur vectors (Equation S49) along which the restoring flow field acts (green triangular
arrows) and which are also coupled by the shear flow field (wFF, orange triangular arrows) such that
deviations along the “di�erence” axis give rise to deviations along the “sum” axis. Triangular arrows
are proportional in area to the contribution they make to the total flow of fluctuations. Gray traces
show example membrane potential fluctuations of the network, black covariance ellipses show contour
lines of the corresponding joint distribution of δVE and δVI at one standard deviation, dashed ellipses
in (B) and (C) reproduce covariance ellipse at h = 0 mV (A) for comparison. At h = 0 (A), the only
contributor to the flow of trajectories is the leak in each population (green flow field) acting along the
cardinal axes of E/I fluctuations – the flow is stronger (suppresses fluctuations more) along the I axis
due to the shorter membrane time constant in I cells. This flow contains the di�usion due to input
noise (cf. example trajectory in gray), resulting in uncorrelated baseline E/I fluctuations (black ellipse is
axis aligned). As the network is driven by h > 0 (B–C), the e�ective recurrent connectivity adds to the
leak to instate two types of flow fields steering fluctuations: a restoring flow field (green, generalizing
the leak in (A)) and a “shear-like” flow field (orange). The relative contributions of the two flow fields
determine the size and elongation of the E/I covariance (solid black ellipses). (D) Illustration of the
decomposition of the e�ective connectivity (for a given mean stimulus h; Equation S49) as couplings
between a di�erence-like pa�ern (le�) and a sum-like pa�ern (right; cf. rotated gray axes in B-C).
The di�erence mode feeds the sum mode with weight wFF (orange arrow), and the di�erence and
sum pa�erns inhibit themselves with negative weight λd and λs respectively (green arrows). These
three h-dependent couplings scale the corresponding flow fields in (A-C) (consistent colors). (E) Input-
dependence of wFF (top, orange) and |λd| and |λs| (bo�om, green). Black triangular marks indicate
input levels illustrated in (A-C).
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Figure S4. Related to Figure 2. Variability modulation cannot be understood based on the
restoring flows (i.e. the eigenvalues of the Jacobian of the dynamics) alone. (A) Example 2-
population network showing transient increase in variability with increasing external input h (bo�om,
black, normalized to variance at h = 0 mV), without any substantial decrease in any of the eigenvalues,
and in |λs| in particular (middle, green; cf. Figure S3E, bo�om). The dashed black curve (bo�om) shows
the predicted variability (Equation S60) assuming wFF = 0 uniformly (cf. middle, orange), i.e. taking
into account only the magnitude of the restoring flows λd and λs (middle, green). The gray curve
(bo�om) is the prediction made by assuming fully correlated input noise terms with variance g2

E and
g2
I respectively for the E and I units. Variability in this case can be read o� from the slope of the V E (top,

red) and V I curves (top, blue), because input noise becomes equivalent to fluctuations in h to which the
network has time to respond. Neither of these two predictions capture the initial growth of variability
and, consequently, both grossly underestimate the overall magnitude of variability across the whole
range of inputs. (B) Mean firing rates (top), variances of firing rate fluctuations (middle) and Fano
factors (assuming Poisson spike emission on top of rate fluctuations), in the same network as in (A)
for the E (red) and I populations (blue). Note that the overall scale of super-Poisson variability (Fano
factor minus one) is arbitrary here, and in general depends on the counting window, autocorrelation
time constants, and the variance of the input noise. Parameters: τη → ∞, gE = 0.77, gI = 1, JEE =
0.38, JEI = 0.27, JIE = 1, JII = 0.6,ψ = 2.37.
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Figure S5. Related to Figure 3. Input correlation-dependent behavior of the spiking SSN. Top
le�: mean population firing rates (top le�) as a function of input strength h, and for di�erent values
of the input correlation ρ (color coded). Triangular marks denote the values of h used in spontaneous
(black) and evoked (green) conditions in Figure 3. Top right: Fano factors (population average± std.)
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et al., 2010). Note that only the shared part of variability is quenched by increasing stimulus, and that
shared variability and its quenching both require a non-zero input correlation coe�icient ρ.
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Figure S6. Related to Figure 4. Dependence of variability reduction in the ring SSN model
on spatial and temporal correlations in the input noise. Dependence of the network-averaged
Vm std. (A-B) and Fano factor (C-D) on either the temporal correlation time constant τnoise in the
external input noise term (for fixed `noise = 60◦) (A, C), or its spatial correlation length `noise (for fixed
τnoise = 50 ms) (B, D), in the spontaneous (c = 0, black) and high-contrast (c = 20, green) input
regimes. Red arrows indicate the parameter values used in the main text (see table ”Parameters Used
in the SSN Simulations” in STAR Methods). Top panels show absolute magnitude of variability, bo�om
panels show the amount of relative variability suppression for the high contrast input, as a percentage
of spontaneous variability.
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Figure S7. Related to Figure 4. A ring SSN accounts for the stimulus dependence of across-
trial variability in area MT. (A) Vm mean (le�) and std. (center) as a function of the model neuron’s
preferred direction (PD, relative to stimulus at 0◦), for increasing values of stimulus strength c. The full
Vm covariance matrices are shown on the right for the E population, box color indicating c. (B) Mean
firing rates (le�), spike count Fano factors (center), and spike count correlations between similarly
tuned neurons (right), as a function of the neurons’ (mean) preferred direction. (C) Experimental
data (awake monkey MT) adapted from (Ponce-Alvarez et al., 2013), with average firing rates (le�),
average Fano factors (center), and average spike count correlations among similarly tuned cells (right),
as a function of the cells’ preferred direction. Data is shown for spontaneous (pre-stimulus, black)
and evoked (high-contrast stimulus, green) activity periods. Error bars denote s.e.m. Dots in panels
A–B were obtained from 400 s epochs of simulated stationary activity, and denote averages among
cells with similar tuning preferences (PD di�erence< 18◦); solid lines show analytical approximations
(Hennequin and Lengyel, 2016). In panels B-C, spikes were counted in 100 ms bins. The only parameters
that di�ered from Figure 4 of the main text were: `syn = `noise = `stim = 80◦ (see table ”Parameters Used
in the SSN simulations” in STAR Methods).
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Figure S8. Related to Figure 5. Bump kinetics capture a substantial amount of variability in
the ring SSN model. Black: total Vm variance in the ring SSN (E neurons) as a function of stimulus
contrast. This is compared to the total variance captured by the two main modes of bump kinetics
(green), and by a basis of 3 vectors formed by the same two modes + the uniform mode orthogonalized
against the other two (blue). This three-dimensional subspace is virtually identical to the subspace
spanned by the top three principal components of Vm fluctuations, at all stimulus contrasts, but yields
a more interpretable basis. Note that while a substantial fraction of variability suppression with in-
creasing stimulus contrast is due to quenched fluctuations in the uniform mode (di�erence between
blue and green curves), the two modes of bump kinetics alone capture most of the variance at high
contrast. Also note that the amount of variance captured by these linear projections is slightly smaller
than that captured by the full, nonlinear fit shown in Figure 5A.
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Figure S9. Related to Figures 5-6. Activity variability in a ring multi-a�ractor network. (A–C)
Tuning of mean firing rates, Fano factors, and Vm std. in spontaneous (c = 0, black) and evoked (c = 3,
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Figure S10. Related to Figure 7. Dynamics of variability quenching in the ring multi-a�ractor
model. (A) Sample membrane potentials (10 trials, individual lines showing Vi in Equation 13; STAR
Methods) for a neuron tuned to the stimulus direction (top), to the orthogonal direction (middle) and to
the opposite direction (bo�om). Here the stimulus, θs, and thus also the preferred stimuli of neurons, θi ,
are defined to be between−π and π. Stimulus strength is stepped up for a 1-sec duration (gray shading;
c = 2). (B) Time course of the standard-deviation across trials of the membrane potential, averaged
across neurons, for di�erent values of input strength, c (color coded). The inset shows the spatial
profile of network activity (firing rate r , Equation 14; STAR Methods) in an example trial over 400 ms
following stimulus onset (time is color coded). First, the activity bump quickly scales up and then it
slowly moves from its initial random location (here, around −3π/4) to the new position determined
by the stimulus (at θs = 0). The initial growth of bump amplitude increases variability because of the
random location of the bump across trials, while the slow movement to a location that is the same
across trials decreases variability.
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Figure S11. Related to Figures 4, 6, and 7. Tuning curves of V1 cells analysed from the data set
of Ecker et al. (2010). Only cells with an orientation tuning index (OTI) of at least 0.75 are shown here
and were included in subsequent analyses (STAR Methods). Green vertical scale bars: 2 spikes/sec.
Note that some cells were also direction selective, hence responded at two di�erent levels at some
orientations depending on the motion direction.
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Figure S12. Related to Figure 4. Parameter-dependence of shared variability suppression as
measured by factor analysis. Reduction of shared variability from spontaneous (black) to stimulus-
evoked (green) activity in the monkey V1 dataset (Ecker et al., 2010), as estimated via factor analysis
(STAR Methods). The x-axis shows the number of latent factors used. Only conditions with at least 8
simultaneously recorded well-isolated cells were analyzed (151 conditions).
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