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SUMMARY

Correlated variability in cortical activity is ubiqui-
tously quenched following stimulus onset, in a stim-
ulus-dependent manner. These modulations have
been attributed to circuit dynamics involving either
multiple stable states (‘‘attractors’’) or chaotic
activity. Here we show that a qualitatively different
dynamical regime, involving fluctuations about a sin-
gle, stimulus-driven attractor in a loosely balanced
excitatory-inhibitory network (the stochastic ‘‘stabi-
lized supralinear network’’), best explains these
modulations. Given the supralinear input/output
functions of cortical neurons, increased stimulus
drive strengthens effective network connectivity.
This shifts the balance from interactions that
amplify variability to suppressive inhibitory feed-
back, quenching correlated variability around more
strongly driven steady states. Comparing to previ-
ously published and original data analyses, we
show that this mechanism, unlike previous pro-
posals, uniquely accounts for the spatial patterns
and fast temporal dynamics of variability suppres-
sion. Specifying the cortical operating regime is
key to understanding the computations underlying
perception.

INTRODUCTION

Neuronal activity throughout cerebral cortex is variable, both

temporally during epochs of stationary dynamics and across

repeated trials despite constant stimulus or task conditions
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(Softky and Koch, 1993; Churchland et al., 2010). Moreover, vari-

ability is modulated by a variety of factors, most notably by

external sensory stimuli (Churchland et al., 2010; Kohn and

Smith, 2005; Ponce-Alvarez et al., 2013), planning and execution

of limbmovements (Churchland et al., 2006, 2010), and attention

(Cohen and Maunsell, 2009; Mitchell et al., 2009). Modulation of

variability occurs at the level of single-neuron activity, e.g., mem-

brane potentials or spike counts (Finn et al., 2007; Poulet and Pe-

tersen, 2008; Cardin et al., 2008; Gentet et al., 2010; Churchland

et al., 2010; Tan et al., 2014), as well as in the patterns of joint ac-

tivity across populations, as seen in multiunit activity or the local

field potential (LFP) (Tan et al., 2014; Chen et al., 2014; Lin et al.,

2015). Variability modulation shows stereotypical patterns. First,

the onset of a stimulus quenches variability overall and, in partic-

ular, correlated variability in firing rates that is ‘‘shared’’ across

many neurons (Lin et al., 2015; Goris et al., 2014; Ecker et al.,

2014, 2016; Churchland et al., 2010). Moreover, the degree of

variability reduction can depend systematically on the tuning of

individual cells. For example, in area MT, variability is quenched

more strongly in cells that respond best to the stimulus, and cor-

relations decrease more among neurons with similar stimulus

preferences (Ponce-Alvarez et al., 2013; Lombardo et al.,

2015). Although these patterned modulations of variability are

increasingly included in quantitative analyses of neural record-

ings (Renart and Machens, 2014; Orbán et al., 2016), it is still

unclear what they imply about the dynamical regime in which

the cortex operates.

There have been two dynamical mechanisms proposed to

explain selected aspects of the modulation of cortical variability

by stimuli. In ‘‘multi-attractor’’ models, the network operates

in a multi-stable regime in the absence of a stimulus, such

that it noisily wanders among multiple possible stable states

(‘‘attractors’’). This wandering among attractors occurs in a

concerted way across the population, resulting in substantial

shared variability (Figure 1A, top). Stimuli then suppress this
hed by Elsevier Inc.
commons.org/licenses/by/4.0/).
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A B C Figure 1. Three Different Dynamical Re-

gimes that Could Explain Variability Modu-

lation by Stimuli

(A–C) Two schematic neural trajectories (red and

green) corresponding to two separate trials are

plotted for each dynamical regime, before (top)

and after (bottom) stimulus onset. Spontaneous

activity is redrawn in gray beneath evoked activity

to allow comparison of variability. Dotted ellipses

outline activity covariances around the fixed

point(s) of the dynamics (if any exist).

(A) Multi-attractor dynamics: spontaneous activity

wanders stochastically between a set of attractor

states (three shown), resulting in large trial-by-trial

variability (top). Stimulus onset constrains fluctu-

ations to the vicinity of a single attractor, reducing

variability across both time and trials (bottom).

(B) Chaos suppression: chaos yields large across-trial variability in spontaneous dynamics (top), which is suppressed by the stimulus, leading to a reduction of

variability across trials but not necessarily across time (bottom).

(C) Stochastic SSN: both spontaneous and evoked dynamics are stable with a single fixed point, but the stimulus can shrink the effective size of the basin of

attraction of the fixed point (as well as shifting its location), resulting in a reduction of both across-time and across-trial variability.
shared variability by pinning fluctuations to the vicinity of one

particular attractor (Figure 1A, bottom; Blumenfeld et al., 2006;

Litwin-Kumar and Doiron, 2012; Deco and Hugues, 2012; Burak

and Fiete, 2012; Ponce-Alvarez et al., 2013; Doiron and Litwin-

Kumar, 2014; Mochol et al., 2015). In chaotic network models

(Sompolinsky et al., 1988), firing rates exhibit strong chaotic fluc-

tuations, and certain types of stimuli can suppress chaos by

forcing the dynamical state of the network to follow a specific tra-

jectory, thus quenching across-trial variability (Figure 1B;Molge-

dey et al., 1992; Bertschinger and Natschl€ager, 2004; Sussillo

and Abbott, 2009; Rajan et al., 2010).While both themulti-attrac-

tor and the chaotic mechanisms can explain the general phe-

nomenon of stimulus-induced reduction of variability, only the

former has been proposed to explain the stimulus-tuning of

variability reduction. However, even in that case, a considerable

fine-tuning of parameters or very strong noise was needed to

keep the network in the regime with multiple attractors, such

that the system stays near attractors, yet noise can move the

system between them (Ponce-Alvarez et al., 2013).

Here, we explore a qualitatively different regime of cortical dy-

namics. We describe activity fluctuations as being driven by

noise but shaped by nonlinear, recurrent interactions. In contrast

to previous models, our network operates around a single stable

point that depends on the stimulus (Figure 1C). Crucially, individ-

ual neurons have supralinear (expansive) input/output functions.

This causes the gains of neurons, and thus the effective synaptic

strengths in the network, to increase with network activation.

This is a stochastic generalization of the stabilized supralinear

network (SSN) model that has successfully accounted for a

range of phenomena related to the stimulus dependence of

trial-averaged responses in visual cortex (Ahmadian et al.,

2013; Rubin et al., 2015). Introducing stochasticity allows us

to model the variability of responses and thus use data on neural

variability to identify hallmarks of this regime and distinguish it

from previous proposals.

In our network, stimulus-dependent changes in effective con-

nectivity shape the magnitude and structure of activity fluctua-

tions in the network. Specifically, stimuli change the balance of
two opposing effects of recurrent network dynamics on vari-

ability: hidden feedforward interactions (‘‘balanced amplifica-

tion’’; Murphy and Miller, 2009; Hennequin et al., 2014) and

recurrent excitation, which amplify variability and dominate for

very weak (spontaneous) inputs; and stabilizing inhibitory feed-

back, which quenches variability (Renart et al., 2010; Tetzlaff

et al., 2012) and dominates for stronger inputs.

By studying this network mechanism in a progression of

recurrent architectures with increasingly detailed structure, we

find that it naturally and robustly explains the modulation of

shared cortical variability by stimuli, including its tuning depen-

dence. We first analyze variability in the simplest instantiation

of the model, with two unstructured populations of excitatory

(E) and inhibitory (I) cells, and find that an external stimulus

can strongly modulate the variability of population activities. In

particular, the model predicts stimulus-induced quenching of

variability, as well as a reduction of the low-temporal-frequency

coherence between local population activity and single-cell re-

sponses, as found experimentally (Poulet and Petersen, 2008;

Churchland et al., 2010; Chen et al., 2014; Tan et al., 2014).

Next, we extend our analysis to a more detailed architecture

with structured connectivity to account for the tuning-depen-

dent modulations of Fano factors and noise correlations by

stimuli. Critically, these results reveal robust qualitative differ-

ences between the predictions of our model and those of previ-

ously proposed network mechanisms, based on multi-attractor

or chaotic dynamics, for both the spatial patterns and temporal

dynamics of variability suppression. We tested these predic-

tions against experimental data and found the SSN model to

be the most consistent with previously analyzed data from

primary visual cortex (V1) and MT (Churchland et al., 2010;

Ponce-Alvarez et al., 2013) as well as with our novel analyses

of published V1 recordings in the awake monkey (Ecker et al.,

2010). Such comparisons of different models are crucial for

guiding future experiments that can make targeted measure-

ments to fully resolve the dynamical regime in which the cortex

operates—a key first step in identifying the computational stra-

tegies underlying perception.
Neuron 98, 846–860, May 16, 2018 847
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Figure 2. Activity Variability in a Reduced, Two-Population

Stochastic SSN

(A) The network is composed of two recurrently connected units, summarizing

the activity of two populations of excitatory (red) and inhibitory (blue) neurons.

Both units receive private input noise and a common constant input h.

(B) Threshold-quadratic neural input/output function determining the rela-

tionship between membrane potential and momentary firing rate of model

neurons (Equation 2).

(C) Sample VE=I traces for the two units (top), as the input is increased in steps

from h= 0 to 2 mV to 15 mV (bottom).

(D) Dependence of population activity statistics on stimulus strength h. Top:

mean E (red) and I (blue) firing rates; middle: mean VE=I ; bottom: standard

deviation of VE=I fluctuations. The comparison with a purely feedforward

network ðW= 0Þ receiving the same input h is shown in gray. Dots are based on

numerical simulations of 500 trials. Solid lines show analytical approximations

(Hennequin and Lengyel, 2016).
RESULTS

We used a standard model to study the dynamical evolution of

momentary firing rates in a recurrently coupled network of excit-

atory and inhibitory neurons (Figure 2A; Dayan and Abbott, 2001;

see also STAR Methods). In this model, neurons integrate their

external and recurrent inputs linearly in their membrane poten-

tials, Vm, but their output firing rates, r, are a nonlinear function

of the voltage: r = fðVmÞ (Figure 2B). Crucially, we studied vari-

ants of this model in which the nonlinearity f is an expansive

(supralinear) function (Figure 2B) and in which inhibition was

both sufficiently fast and strong and appropriately structured

to stabilize the network in the face of recurrent excitation and

the supralinear input/output function. This is the stabilized supra-

linear network (SSN) model (Ahmadian et al., 2013). In order to

study response variability, we added to this model a stochastic

component (slow noise) in the membrane potential dynamics

of all cells. Stabilization meant that the network operated around

a single steady state, albeit a stimulus-dependent one.
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Real neurons, of course, have an input/output function that ul-

timately saturates. We focus on an expansive, non-saturating

input/output function because V1 cortical neurons show such a

relationship between mean voltage and firing rate across their

full dynamic range, without saturation even for the strongest vi-

sual stimuli (Priebe and Ferster, 2008). Thus, saturation does

not appear to play a role in stabilizing cortical activity, a fact

that we capture by using a non-saturating input/output function.

Such an expansive input/output function arises in spiking neu-

rons when their firing is driven by voltage fluctuations, with the

mean voltage sub- or peri-threshold (Hansel and van Vreeswijk,

2002; Miller and Troyer, 2002), a firing regime that produces the

highly variable spiking seen in cortical neurons (Troyer andMiller,

1997; Amit and Brunel, 1997). We assume that the voltage fluc-

tuations giving rise to the expansive input/output function are

fast compared to the timescales of variability studied here and

do not explicitly model them.

We focused on analyzing how the intrinsic dynamics of

the network shaped fixed input noise to give rise to stimulus-

dependent patterns of response variability. We studied a pro-

gression of connectivity architectures of increasing complexity,

all involving two separate populations of excitatory and inhibitory

neurons. We also validated our results in large-scale simulations

of spiking neuronal networks.

Variability of Population Activity: Modulation by
External Input
We first considered a simple circuit motif: an excitatory (E) unit

and an inhibitory (I) unit, recurrently coupled and receiving the

same mean external input h as well as their own independent

noise (Figure 2A). In this reduced model, the two units represent

two randomly connected populations of E and I neurons, a

canonical model of cortical networks (Amit and Brunel, 1997;

Vogels et al., 2005). Thus, their time-varying activity, VEðtÞ
and VIðtÞ, represents the momentary population-average mem-

brane potential of all the E and I cells, respectively. Despite its

simplicity, this architecture accounted well for the overall popu-

lation response properties in the larger networks, with more

detailed connectivity patterns, that we analyzed later.

Activity in the network exhibited temporal variability due to the

stochastic component of the dynamics. We found that this

(correlated) variability of VE and VI fluctuations, together with

their means, VE=I, was strongly modulated by the external steady

input h (Figures 2C and 2D). When h = 0, there was no input to

drive the network, and VE and VI both hovered around

Vrest = � 70 mV, fluctuating virtually independently, with stan-

dard deviations essentially matching those that would arise

without recurrent connections (gray line in Figure 2D, bottom).

For a somewhat larger input, h= 2 mV, both E and I populations

fired atmoderate rates (3–4 Hz) (Figure 2D, top), but now also ex-

hibited large and synchronous population Vm fluctuations (Fig-

ure 2C, black circle mark). For yet larger inputs (h= 15 mV), fluc-

tuations remained highly correlated, but their magnitude was

strongly quenched (Figure 2C, green circle mark).

Figure 2D shows how the temporal (or, equivalently, the

across-trial) mean and variability of activities varied over a broad

range of input strengths. We observed that population mean Vm

increasedmonotonically with growing external input, first linearly



or supralinearly for small inputs, but strongly sublinearly for larger

inputs, with V I growing faster than VE (Figure 2D, middle; Ahma-

dian et al., 2013; Rubin et al., 2015). In contrast, variability in both

VE andVI typically increased for small inputs, peaking around this

transition between supralinear and sublinear growth, and then

decreasedwith increasing input (Figure 2D, bottom). Importantly,

inputmodulation of variability required recurrent network interac-

tions. This was revealed by comparing our network to a purely

feedforward circuit that exhibited qualitatively different behavior

(Figure 2D, gray). In the feedforward circuit, mean Vm remained

linear in h, so that mean rates rose quadratically with Vm or h (re-

flecting the input/output nonlinearity; Figure 2B), and fluctuations

in Vm no longer depended on the input strength.

Variability Suppression with a Single Stable State Is a
Robust Phenomenon
In order to demonstrate that the overall dynamical regime of the

stabilized supralinear network, rather than just a particular

instantiation of our model, underlies variability modulation, we

used a combination of numerical simulations and analytical re-

sults to confirm the robustness of our findings.

We simulated 1,000 model networks with random parameter

values within wide brackets. We found that variability suppres-

sion was robust over a broad range of network parameters

(connection weights, input strengths and correlations, and the

exponent and scale of the firing-rate nonlinearity), as long as

they ensured dynamical stability even for strong inputs (Figures

S1 and S2). Although the precise amplitude and position of the

peak of Vm variance depended on network parameters, the over-

all non-monotonic shape of variability modulation was largely

conserved. In particular, we could show analytically that vari-

ability suppression occurs earlier (for smaller input h) in networks

with strong connections or, for fixed overall connection strength,

in networks that are more dominated by feedback inhibition

(Methods S3). More generally, we found that the firing rates at

the peak of variability are typically low (2.5 Hz on average over

a thousand randomly parameterized stable networks and below

6 Hz for 90% of them; cf. Methods S2). As these rates are com-

parable to cortical spontaneous firing rates, this predicts that

increased sensory drive should generally result in variability

quenching in cortical LFPs.

In order to better understand the robustness of variability sup-

pression in the model, we took advantage of the fact that our

network was characterized by a single attractor at each level of

the input, h, and analyzed the dynamics of small activity fluctua-

tions, dV, around this stable state (such thatV = VðhÞ + dV,where

VðhÞ is the mean activity in the stable state; STAR Methods).

These dynamics are governed by a set of effective connection

weights, Weff, that quantify the impact of a small momentary

change in the Vm of the presynaptic neuron on the total input to

its postsynaptic partner. The dependence of the effective

connection weights on the stable state and thus on the external

input, h, that determines the stable state is simply given by:

Weff
ij ðhÞfWij f

0�
VjðhÞ

�
(Equation 1)

where Wij is the strength of the ‘‘biophysical’’ connection from

unit j to unit i, and f
0
is the slope of the single-neuron firing-rate
nonlinearity at the stable state. Importantly, f
0
increases with

increasing VðhÞ, because f is an expansive, convex nonlinearity

(Figure 2B). Thus, in general, effective connectivity increases

with increasing h, reflecting the growth of VðhÞ (Figure 2D,

middle).

An increase in effective connectivity can have conflicting ef-

fects: it can increase excitatory or driving effects that amplify

fluctuations and increase variability (Murphy and Miller, 2009;

Hennequin et al., 2014), but it can also increase inhibitory feed-

back, suppressing fluctuations and decreasing variability (Re-

nart et al., 2010; Tetzlaff et al., 2012). Thus, understanding how

changes in effective connectivity translate into changes in vari-

ability required further analysis (Methods S3). We found that

the net behavior of the network indeed included a combination

of both effects (Figure S3). As the input grew from zero, variability

first rapidly increased, due primarily to the growth of effective

feedforward weights (‘‘balanced amplification’’; Murphy and

Miller, 2009) but also of recurrent excitatory loops. Then, begin-

ning at firing rates comparable to spontaneous activity as

described above, variability steadily decreased with increasing

stimulus strength due to increasingly strong inhibitory feedback

(Figure 2D, bottom).

Crucially, we were able to show analytically that variability

quenching effects must ultimately dominate, leading to progres-

sively stronger quenching of variability as the input increases.

This is due to the faster growth of I activity relative to E activity

in the network, which is a robust outcome of dynamic stabiliza-

tion by feedback inhibition (Figure S1; Ahmadian et al., 2013; Ru-

bin et al., 2015) and which has been observed in rodent S1 (Shao

et al., 2013) and V1 (Adesnik, 2017). We also found that ignoring

the variability-increasing effects, which are characteristic of

excitatory-inhibitory dynamics (Kriener et al., 2008; Murphy

and Miller, 2009) and thus largely absent from models that do

not include separate excitatory and inhibitory populations, can

fail to capture the full extent of variability modulation and lead

to an underestimation of the level of spontaneous variability ob-

tained at zero-to-weak input levels (Figure S4).

Variability Quenching and Synchronization in Single
Neurons
In order to study variability in single neurons and at the level of

spike counts, we implemented the two-population architecture

of Figure 2A in a network of spiking neurons (Figure 3; STAR

Methods). The network consisted of 4,000 E neurons and

1,000 I neurons, randomly connected with low probability and

with synaptic weights chosen such that the overall connectivity

matched that of the reduced model. Each neuron emitted action

potentials stochastically with an instantaneous rate given by

Equation 3 (this additional stochasticity accounted for the effects

of unmodelled fluctuations in synaptic inputs that occur on time-

scales faster than the 30 ms effective time resolution of our

model; Methods S4). The external input to the network again

included a constant term, h, and a noise term that was tempo-

rally correlated on a 50 ms timescale with uniform spatial corre-

lations of strength 0.2.

At the population level, the network behaved as predicted by

the reduced model. Neurons fired irregularly (Figure 3A, top),

with firing rates that grew superlinearly with small input h but
Neuron 98, 846–860, May 16, 2018 849



BA Figure 3. Modulation of Variability in

a Randomly Connected Stochastic Spi-

king SSN

(A) Top: raster plot of spiking activity, for 40 (out of

4,000) excitatory neurons (red) and 10 (out of 1,000)

inhibitoryneurons (blue). Uppermiddle:momentary

E and I population firing rates. Lower middle: LFP

(momentary population-averaged Vm). Bottom: Vm

of two randomly chosen excitatory neurons. The

dashed vertical line marks the onset of stimulus,

when h switches from 2 mV to 15 mV. Population

firing rates, LFP,andVm traceswere smoothedwith

a Gaussian kernel of 50 ms width.

(B) Top, normalized LFP power in spontaneous

(black) and evoked (green) conditions; bottom,

average ( ± SEM) spectral coherence between

single-cell Vm and the LFP; left, model; right, data

from V1 of the awake monkey, reproduced from

Tan et al. (2014).
sublinearly with stronger input (Figure S5). Moreover, fluctua-

tions in E and I population activities were strongly synchronized

(Figure 3A, upper middle), and LFP variability decreased with

increasing h (Figure 3A, lower middle). Importantly, variability

quenching also occurred at the level of individual neurons’ Vm,

accompanied by a reduction of pairwise correlations (Figure 3A,

bottom; these required that single neurons shared part of their

input noise; Methods S3).

The model primarily suppressed shared rather than private (to

individual neurons) variability (Figure S5), as in experiments

(Churchland et al., 2010). This was because the spatially uniform

average connectivity of the networkmeant that its dynamicswere

only significantly coupled to patterns of uniform activity across E

or across I cells. These patterns were thus the ones affected by

stimulus-induced changes in effective connectivity (Figure S3).

Correlated noise drove such uniform patterns so that they carried

significant variability. Thus, these shared excitatory and inhibitory

activity patterns behaved as the activity of the individual units of

the previous reduced two-population model, and so variability

suppression in the reduced model implied the suppression spe-

cifically of shared variability in this more detailed model.

Our model also accounted for the stimulus-induced modula-

tion of the power spectrum and cross-coherence of LFP and sin-

gle-cell Vm fluctuations, as observed in V1 of the awake monkey

(Figure 3B; Tan et al., 2014). Strong external input reduced the

LFP power at low frequencies, due to enhanced effects of feed-

back inhibition; increased it at intermediate frequencies, due to

the faster timescales associated with relatively enhanced inhibi-

tion; and also increased it at high frequencies, due to the larger

firing rates, which contributed additional, high-frequency fluctu-

ations in synaptic drive (Figure 3B, top left). This asymmetric

modulation of LFP power at low and high frequencies is

also seen in experiments (Figure 3B, top right). Moreover, as

increasing inputs suppressed variability at the population

level, the private noise in the activity of each neuron had a pro-

portionately larger contribution to its overall variability, leading

to a drop in pairwise correlations (Figure 3A) and Vm-LFP

coherence specifically at low frequencies where the suppres-

sion of population variability occurred, as seen in experiments

(Figure 3B, bottom).
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Stimulus-Tuning of Variability Suppression in V1
Neuronal recordings in visual areas have shown that Fano fac-

tors drop at the onset of the stimulus (drifting gratings or plaids)

in almost every neuron, which was well accounted for by the

randomly connected network we studied above. However, in

the experiments, variability did not drop uniformly across cells,

but exhibited systematic dependencies on stimulus tuning

(Ponce-Alvarez et al., 2013; Lombardo et al., 2015; Lin et al.,

2015). This could not be explained by randomly connected

architectures, so we extended our model to include tuning

dependence in connectivity and input noise correlations.

We studied an architecture in which the preferred stimulus of

E/I neuron pairs varied systematically around a ‘‘ring’’ represent-

ing an angular stimulus variable, such as stimulus orientation in

V1 or motion direction in MT (Figure 4A; STAR Methods). We

describe the case in which the variable is orientation, which

ranges from 0 to 180o; identical results describe direction if all

angles are doubled. The average input to a cell (either E or I)

was composed of a constant baseline, which drove sponta-

neous activity in the network, and a term that depended on the

angular distance between the stimulus orientation and the

preferred orientation (PO) of the cell, and that scaled with image

contrast, c (Figure 4C). Input noise correlations depended on

tuning differences (STAR Methods): cells with more similar tun-

ing received more strongly correlated inputs. The strength of

recurrent connections depended on the difference in preferred

orientation between pre- and postsynaptic neurons and whether

they were excitatory or inhibitory (Figure 4B).

The bump of stimulus-driven input drove a similar, but nar-

rower, bump of network response (Figures 4D and 4G). Although

this architecture appears similar to a form of multi-attractor

model that has a continuum of attractors—a bump of activity

that (in the absence of stimuli) can be centered at any location

(the so-called ‘‘ring attractor model’’; Goldberg et al., 2004;

Ben-Yishai et al., 1995; Ponce-Alvarez et al., 2013)—our model

was actually quite different. While multi-attractor networks

show a bump of sustained activity even once the stimulus is

removed (leaving only non-specific background excitation), in

our network the bump of activity depends on the similar bump

of stimulus-driven input. When the stimulus is removed, our
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Figure 4. Modulation of Variability in a Sto-

chastic SSN with a Ring Architecture

(A) Schematics of the ring architecture. Excitatory

(red) and inhibitory neurons (blue) are arranged on

a ring, their angular position indicating their

preferred stimulus (expressed here as preferred

stimulus orientation, PO). The stimulus is pre-

sented at 0+.

(B) Synaptic connectivities all follow the same

circular Gaussian profiles with peak strengths that

depend on the type of pre- and post-synaptic

populations (excitatory, E, or inhibitory, I).

(C) Each neuron receives a constant input with a

baseline (black line, 0% contrast), which drives

spontaneous activity, and a tuned component with

a bell-shaped dependence on the neuron’s

preferred orientation and proportional to contrast,

c (dark and light green, 50% and 100% contrast,

respectively). Neurons also receive spatially and

temporally correlated noise, with spatial correla-

tions that decrease with tuning difference (see

Figure 5D).

(D) Single-trial network activity (E cells), before and

after the onset of the stimulus (100% contrast).

Neurons are arranged on the y axis according to

their preferred stimuli.

(E) Reduction in membrane potential variability across trials: membrane potential traces in 5 independent trials (top) and Fano factors (bottom) for an E cell tuned

to the stimulus orientation (left) or tuned to the orthogonal orientation (right). For Vm, orange and brown lines and shading show (analytical approximation of)

across-trial mean ± SD.

(F) Reduction of average spike count Fano factor in the population following stimulus onset in the model (top) and experimental data (bottom). Spikes were

counted in 100 ms time windows centered on the corresponding time points.

(G) Mean firing rates (top), Fano factors (middle), and std. of voltage fluctuations (bottom) at different contrast levels as a function of the neuron’s preferred

stimulus in the model (left) and, for rate and Fano factor, experimental data (right, averaged across 99 neurons). Colors indicate different contrast levels (model:

colors as in C; data: black, spontaneous, green, 100% contrast).

(H) Shared variability in normalized spike counts, as estimated via factor analysis (STARMethods; Churchland et al., 2010), before (spontaneous, black) and after

stimulus onset (evoked, green) in the model (left) and experimental data (right). Dots in (F) and (G) are based on numerical simulations of 500 trials. For the model,

colored lines and shaded areas in (E) and solid lines in (F) and (G) show analytical approximations (Hennequin and Lengyel, 2016). Experimental data analyzed in

(F)–(H) are from awake monkey V1 (Ecker et al., 2010), with error bars denoting 95% CI.
network returns within a single membrane time constant to a

homogeneous level of baseline activity, driven by the homo-

geneous baseline input (Figure 4D). As we show below, this

dynamical regime is also characterized by fundamentally

different patterns of response variability than multi-attractor

dynamics.

We applied this model to study the stimulus dependence of

variability quenching in V1 and compared our results to a new

analysis we performed of previously published recordings in V1

of the awakemonkey (Ecker et al., 2010). In the absence of visual

input (0% contrast), the network exhibited spatially patterned

fluctuations inmomentary firing rates around a fewHz (Figure 4D)

with large across-trial variability in single-cell Vm (Figure 4E). In

evoked conditions, the input drove a hill of network activity

around the stimulus orientation as in the data (Figures 4D and

4G), resulting in approximately contrast-invariant tuning curves

(Priebe and Ferster, 2008). At stimulus offset, activity rapidly

decayed back to spontaneous levels with the cellular time con-

stant (Figure 4D), as observed in cortex when thalamic input is

silenced (Reinhold et al., 2015; Guo et al., 2017).

The fluctuating firing rates in spontaneous activity implied su-

per-Poisson variability in spike counts—Fano factors greater

than 1 (Figure 4F, top)—given the stochastic spiking mechanism

described above (Figure 3). This was consistent with the high
level of spontaneous variability in the data (Figure 4F, bottom).

Both the model and the data exhibited a pronounced drop in

Fano factor following stimulus onset (Figure 4F) and displayed

a U-shaped tuning of variability suppression with stimulus orien-

tation (Figure 4G, middle), such that variability suppression was

stronger for cells whose preferred orientation was close to the

stimulus. The model made similar predictions for variability in

membrane potentials: a U-shaped profile of Vm variance sup-

pression in stimulus-evoked conditions relative to spontaneous

fluctuations (Figure 4G, bottom).

Notably, for similar reasons as in the randomly connected

network (Figure 3; Figure S5), it was primarily the shared and

not the private part of variability that was quenched by stimuli

in the model (Figure 4H, left), and this required some degree

of spatial correlations in the input noise (Figure S6). This was

because the spatially smooth nature of the connectivity meant

that only spatially smooth patterns of activity were strongly

coupled to the network dynamics. A substantial suppression of

shared variability at stimulus onset has been observed across

many cortical areas (Churchland et al., 2010) as well as in our

analysis of the V1 data (Figure 4H, right; Ecker et al., 2010; see

also Lombardo et al., 2015).

We again explored a broad range of parameters to show that

the tuning of variability suppression was a robust outcome of the
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Figure 5. Low-Dimensional Bump Kinetics

Explain Noise Variability in the Ring SSN

(A) Sample of Vm fluctuations across the

network in the evoked condition (left, ‘‘true

activity,’’ 100% contrast), to which we fitted

a circular-Gaussian function (bump) ViðtÞ=
aðtÞ exp½ðcosðqi � mðtÞÞ � 1Þ=s2ðtÞ� across the

excitatory population in each time step (center),

parametrized by its location, m, and width, s. The

amplitude of the bump, a, was chosen in each time

step so as to keep total population firing rate

constant. Fluctuations in location and width were

independent, and the fit captured 87% of the

variability in Vm (right).

(B) The two principal modes of bump kinetics:

small changes (red arrows) in location (top) and

width (bottom) of the activity bump result in the hill

of network activity deviating from the prototypical

bump (gray shadings). Plots on the right show how

the activity of each neuron changes due to these

modes of bump kinetics.

(C) Time series of m and s extracted from the fit.

(D) Ongoing fluctuations in each bump parameter

contribute a template matrix of Vm covariances

(color maps show covariances between cells with

preferred orientation [PO] indicated on the axes of the ‘‘full’’ matrix, bottom right), obtained from (the outer product of) the differential patterns on the right of (B).

Insets show Vm covariance implied by each template for pairs of identically tuned cells (orange, PO difference x0+) and orthogonally tuned cells (gray, PO

difference = 90+), as a function of stimulus orientation relative to the average PO of the two cells. The two templates sum up to a total covariance matrix (‘‘bump

kinetics’’), which captures the key qualitative features of the full Vm covariance matrix (‘‘full’’). The covariance matrix of the input noise (‘‘input’’) is also shown

above for reference. The stimulus is at 0+ throughout.
model. We found that Fano factor and Vm variance were always

most strongly suppressed in the neurons that weremost strongly

driven by the stimulus (the ‘‘dip’’ of the U shape) consistent with

the V1 data (see above). Interestingly, there were some cases

when neurons tuned to the opposite stimulus also showed a

strong reduction of Fano factor (though not of membrane poten-

tial variance; Figure S7)—consistent with recent findings of an

M-shaped modulation of Fano factors (and spike count correla-

tions of similarly tuned cells) in area MT of the awake macaque

(Figure S7; Ponce-Alvarez et al., 2013). However, while such

anM-shaped modulation was previously attributed to marginally

stable multi-attractor dynamics (Ben-Yishai et al., 1995; Ponce-

Alvarez et al., 2013), our model still produced this with a single

stable attractor: the spike count variability of oppositely tuned

cells dropped when input tuning in the model was as narrow

as, or narrower than, the tuning of recurrent connections. In

this configuration, oppositely tuned cells received so small a

net input on average that their membrane potential fluctuations

barely crossed the threshold of the firing rate nonlinearity, thus

producing very little spiking variability. In turn, this loss of firing

rate variance even overcame the effect of dividing by very small

firing rates in computing Fano factors for these neurons. Under

the same conditions, a similar M shape was apparent for spike

count correlations between similarly tuned neurons, as a func-

tion of their (common) preferred orientation (Figure S7).

Patterns of Noise Variability Arise from
Low-Dimensional Bump Kinetics
Next, we analyzed the origin andmechanism of the stimulus-tun-

ing of noise variability in the ring architecture. As mentioned
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above, for a fixed stimulus, the most prominent feature of popu-

lation activity was a ‘‘bump’’ of high Vm in the cells with preferred

orientations near the stimulus orientation and a lower baseline of

activity in the surround (Figure 5A, left and middle). In general,

variability in the bump and the baseline capturedmost of the net-

work’s variance and its suppression with increasing stimulus

strength (Figure S8). Here and in the next section we specifically

focus on the structure of the quenched noise variability after

stimulus onset.

After stimulus onset, most of the shared variability (87%; Fig-

ure S8) arose from variability in the location, m, and width, s, of

the bump of activity (Figure 5A, middle and right). Notably, fluctu-

ations in bump amplitude and width scaled inversely with one

another, as the nonlinear interactions among neurons in our

network resulted in strong normalization (Ahmadian et al.,

2013;Rubin et al., 2015), preserving overall activity. Each of these

small transformations resulted in a characteristic pattern of

momentary deviation of network activity from the mean bump

(Figure 5B). In turn, these two patterns of momentary fluctuations

(Figure 5C) contributed two distinct spatial covariance templates

(Figure 5D). For example, sideways motion of the bump

increased the firing rates of all the cells with preferred orienta-

tions on one side of the stimulus orientation and decreased firing

rates for all cells on the other side (Figure 5B, top). This resulted in

positive covariances between cells with preferred orientations on

the same side of the stimulus orientation and negative covari-

ances for cells on opposite sides (Figure 5D, top: m-template;

Moreno-Bote et al., 2014). Conversely, an increase in bumpwidth

(and thus a decrease in amplitude) increased the activities of cells

on the flanks of the bump, tuned away from the stimulus, while
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Figure 6. Stimulus Tuning of Spike Count Correlations in the Ring

SSN versus the Multi-attractor Ring Model
(A) Spike count correlation matrix in the ring SSN during evoked activity (100%

contrast). Color map shows correlations between cells with preferred orien-

tation (PO) indicated on the axes, relative to stimulus orientation at 0+. Arrows

indicate axes along which cell pairs are similarly (orange) or orthogonally tuned

(gray). Spike count correlations along the diagonal show correlation for iden-

tically tuned cells, rather than for identical cells, and are thus less than one due

to private spiking noise.

(B) Average spike count correlations in the SSN, for pairs of similarly tuned

cells (orange, PO difference less than 45+) and orthogonally tuned cells (gray,

PO difference greater than 45+), as a function of stimulus orientation relative to

the average PO of the two cells.

(C and D) Same as (A) and (B), for the multi-attractor ring network.

(E) Same as (B) and (D), for data from awake monkey V1 (Ecker et al., 2010).

Data were symmetrized for negative and positive stimulus orientations.

Shaded regions denote 95% CI. SSN simulations in this figure used the same

parameters as in Figures 4 and 5.
decreasing the activity of cells near the peak, tuned for the stim-

ulus (Figure 5B, bottom). This generated positive covariances

within each of these groups and negative covariances between

the two groups (Figure 5D, bottom: s-template).

Taken together, the ongoing jitter in bump location and width

contributed a highly structured pattern of response covariances,

which accounted for most of the structure in the full covariance

matrix of the network (Figure 5D, compare ‘‘bump kinetics’’

with ‘‘full’’). In particular, bump kinetics correctly predicted the

Vm variances of cells (given by the diagonal of the full covariance

matrix indicated by the filled arrow in Figure 5D), showing less

variance for cells tuned to the stimulus orientation of 0o than

for cells tuned to orthogonal orientations (see Figure 4G, bottom,

green), and hence explained the U-shaped modulation of Fano

factors (Figure 4G, middle, green). Moreover, the recurrent dy-

namics generated negative correlations in the Vm fluctuations

of cells with orthogonal tuning, despite such pairs receiving

positively correlated inputs (Figure 5D, ‘‘input’’ versus ‘‘bump

kinetics,’’ secondary diagonal with open arrow).

Experimental Predictions: Stimulus Tuning
For a direct comparison of the dynamical regime of the SSN with

previously proposed mechanisms for variability modulation,

based on marginally stable or chaotic dynamics, we first studied
the predictions of the models for the spatial patterns of spike

count noise correlations. Chaotic models have not (Rajan

et al., 2010), and probably can not, predict the tuning of mean re-

sponses, let alone that of variability suppression, so we focused

on a comparison with a multi-attractor ring model. This model

has been suggested to account for stimulus-modulated changes

in variability in areaMT (Ponce-Alvarez et al., 2013). Wematched

it to our model such that it produced similar tuning curves and

overall levels of variability (Figure S9).

While there were several differences apparent in the detailed

correlations predicted by the two models (Figures 6A and 6C),

many of these could be explained away by trivial factors that

neither model captured fully. For example, the average correla-

tion was substantially larger in the SSN than in the attractor

network—but this difference could be eliminated by invoking,

in the attractor model, an additional (potentially extrinsic) mech-

anism that adds a single source of shared variability across

neurons, resulting in a uniform (possibly stimulus strength-

dependent) positive offset to all correlations (Lin et al., 2015).

As another example, the attractor network always exhibited

an M-shaped modulation of correlations, whereas, just as for

Fano factors (see above), the SSN mostly showed a U-shaped

modulation but could show anM shape for particular parameters

(Figure S7).

Therefore, we focused on distinctions that were robust to

model details and followed from a fundamental difference of

bump kinetics in the two models: in contrast to the richer pat-

terns of variability generated by the SSN, multi-attractor dy-

namics showed a more limited repertoire, dominated by side-

ways motion of the bump with barely any fluctuations in bump

width (Figure S9; Burak and Fiete, 2012). As fluctuations in

bump location and width had opposite effects on the correla-

tions between orthogonally tuned cells in the SSN model (Fig-

ure 5D insets, gray), their cancellation made these correlations

only very weakly modulated by the stimulus (Figure 6A, gray

arrow; Figure 6B, gray). In particular, this modulation was

much shallower than that for similarly tuned cells (Figure 6A, or-

ange arrow; Figure 6B, orange), for which variability in bump

location and width had congruent effects (Figure 5D insets, or-

ange) that added to rather than cancelled each other. In contrast,

in the attractor model, there was no such cancellation even for

orthogonally tuned cells due to the absence of fluctuations in

bump width (Figure S9). This meant that correlations between

orthogonally tuned cells were just as deeply modulated as those

between similarly tuned cells (Figures 6C and 6D).

Previous reports on the stimulus-tuning of noise correlations

examined only similarly tuned cells and reported mostly

M-shaped modulation, which does not distinguish between the

models. Therefore, we conducted our own analyses of a previ-

ously published dataset of V1 responses in the awake monkey

(Ecker et al., 2010) (Figure 6E). The modulation of these correla-

tions by the stimulus could only be accounted for by the SSN.

First, we found that correlations between similarly tuned cells

were significantly modulated by the stimulus (Figure 6E, orange;

repeated-measures ANOVA Fð2;274Þ = 5:29, p = 0:006), and

this modulation had a U rather than an M shape. More critically,

also in agreement with the predictions of the SSN but not of the

attractor model, correlations between orthogonally tuned cells
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were unaffected by the stimulus (Figure 6E, gray; repeated-mea-

sures ANOVA Fð2; 274Þ = 0:04, p = 0:961). While the magnitude

of correlations in either model was overall larger than in the data,

this simply reflected the relatively small number of neurons in the

models (model correlations could be decreased without

affecting the shape and extent of their stimulus tuning by

substituting each model unit by several neurons with indepen-

dent spiking noise).

Experimental Predictions: Temporal Dynamics of
Variability Modulation
We hypothesized that the fundamentally different mechanisms

responsible for variability modulation in the SSN, the multi-

attractor, and the chaotic dynamical regimes (Figure 1) should

be revealed in the dynamics of variability suppression at stimulus

onset and of variability recovery at stimulus offset. In order to test

this, we used the same models for the SSN and multi-attractor

models as above, and we implemented the classical chaotic

model of Rajan et al. (2010) (STAR Methods), in which variability

suppression had previously been shown to occur. We then

measured the across-trial variability (averaged across neurons)

following the onset and offset of a step stimulus in each model

(Figures 7A–7C, shaded areas), as we parametrically varied the

amplitude of the stimulus and therefore the degree of variability

suppression (Figures 7A–7C, dark to light colors).

In the SSN, the timescales on which both suppression and re-

covery of variability occurred were nearly as fast as the single-

neuron time constant (20 ms in these simulations; Figures 7D

and 7E, green). In contrast, in chaotic networks, both these time-

scales were several (4–15) times longer than the single-neuron

membrane time constant (Figures 7D and 7E, blue). More impor-

tantly, recovery times were much longer than suppression times

in the chaotic network and increased with increasing stimulus

strength and thus increasing amount of variability suppression

during the stimulus period, neither of which was the case in the

SSN. In the multi-attractor network, both the dynamics of the

network activity and those of variability were much slower than

in the SSN (Figures 7D and 7E, red). Moreover, we found that, un-

like in the SSN or the chaotic model, variability increased tran-

siently immediately following stimulus onset (before eventually

decreasing to its new steady state; Figure 7C). The cause of

this behavior was the slow rotation of the activity bump from

its random position at the time of stimulus onset to the location

where cells’ preferred orientation matched the stimulus orienta-

tion (Figure S10). Thus, we expect this behavior to be generic at

least to the subclass ofmulti-attractor models that have a contin-

uous ring of attractors and thus show such rotational response,

which likely include those that can address the orientation- or di-

rection-tuning of variability reduction in V1 and MT.

The timescales of variability suppression and recovery found

experimentally in anaesthetized cat V1 and awake monkey MT

(Figures 7D and 7E, open square and circle; Churchland et al.,

2010) and by our own analysis of awakemonkey V1 data (Figures

7D and 7E, dotted square; Ecker et al., 2010) were short and

nearly identical. Moreover, recovery times showed little depen-

dence on the amount of variability suppression (comparing

across areas), and there was no transient increase in variability

at stimulus onset (Figure 4F; Churchland et al., 2010). These re-
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sults confirm the predictions of the SSN and are at odds with the

dynamics of variability modulation as predicted by the multi-

attractor and chaotic regimes.

DISCUSSION

We studied themodulation of variability in a stochastic, nonlinear

model of cortical circuit dynamics. We focused on a simple cir-

cuit motif that captured the essence of cortical networks: noisy

excitatory and inhibitory populations interacting in a recurrent

but stable way despite expansive single-neuron nonlinearities.

This stochastic stabilized supralinear network (SSN) reproduced

key aspects of variability in the cortex. During spontaneous ac-

tivity, i.e., for weak external inputs, model neurons showed large

and relatively slow synchronous fluctuations in their membrane

potentials. These fluctuations were considerably amplified by

the network relative to that expected from the input alone and

were quickly quenched and decorrelated by stimuli. The model

thus explains and unifies a large body of experimental observa-

tionsmade in diverse systems under various conditions (Church-

land et al., 2006, 2010; Finn et al., 2007; Poulet and Petersen,

2008; Gentet et al., 2010; Poulet et al., 2012; Tan et al., 2014;

Chen et al., 2014). Moreover, the drop in variability was tuned

to specific stimulus features in a model of V1/MT, also capturing

recent experimental findings (Ponce-Alvarez et al., 2013; Lin

et al., 2015; Lombardo et al., 2015) as well as our own analyses

of a previously published dataset (Ecker et al., 2010).

The main insight of our analysis was that in a network of

nonlinear neurons with an expansive firing rate nonlinearity,

increasing the input increases the effective connection strengths

of the network, which in turn modulates the variability of re-

sponses. We identified two opposing effects of increasing effec-

tive connectivity on variability: the amplification of variability by

excitatory-inhibitory interactions (balanced amplification), which

dominates at very low (spontaneous) levels of input, and the

quenching of variability by increased inhibitory feedback, which

dominates for stimulus-driven input. Critically, these network ef-

fects preferentially act on smooth patterns of activity that are

aligned with the anatomical connectivity of the network, so that

it is the shared component of variability that is suppressed and

modulated by stimuli. Taken together, we showed that these

mechanisms robustly produced experimentally observed spatial

and temporal patterns of variability quenching and modulation,

whereas the dynamics of the network always remained in

the vicinity of a single attractor state, unlike previously proposed

mechanisms based on multi-attractor or chaotic dynamical

regimes.

Sources and Effects of Stochasticity
We focused on how the network shapes variability and assumed

that the variability originates in correlated noise input to the

network; such input correlations could arise due to upstream

areas already exhibiting noise correlations (e.g., thalamic input

to V1, Sadagopan and Ferster, 2012) and/or because of feedfor-

ward connectivity implying shared inputs (e.g., Kanitscheider

et al., 2015). In contrast, other models have focused on how cir-

cuits intrinsically generate slow correlated variability (Litwin-Ku-

mar and Doiron, 2012; Stringer et al., 2016). Nevertheless, our
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Figure 7. Temporal Dynamics of Variability

Modulation in the SSN versus Other Models

(A) Time course of variability reduction and re-

covery in the ring SSN in response to a step input

(shaded area, 500 ms duration) of increasing

amplitude (dark to light). Variability is quantified by

the population-averaged across-trial Vm variance.

(B) Same as (A), for chaotic network dynamics

(Rajan et al., 2010).

(C) Same as (A), for a continuous, multi-attractor

network (Ponce-Alvarez et al., 2013). The stimulus

is twice as long as in (A) and (B), so that variability

suppression can be observed following the char-

acteristic transient increase.

(D) Timescale of variability suppression (time to

reach half of the total suppression) as a function

of the percentage of variance suppression in the

three models, extracted from their corresponding

variability trajectories (colors as in A–C).

(E) Same as (D), for recovery timescales (time to

recover half of the total suppression). In both (D)

and (E), open yellow squares indicate V1 data from

anesthetized cat (estimated from Figure S4 in

Churchland et al., 2010); yellow circles show data

from anesthetized monkey MT (Figure S4 in Churchland et al., 2010); dotted yellow circles show our analysis of the awake monkey V1 data of Ecker et al., 2010.

Variability refers to the above-Poisson part of spike count variability (i.e., population-averaged Fano factor minus one), and time constants discard latencies in

data. In the data of Ecker et al., 2010, the Fano factor dropped below one, effectively resulting in >100% variance suppression with our definition (right-pointing

arrows). All results regarding the SSN and the multi-attractor model shown in this figure were obtained by using the same parameters as in previous figures

(Figures 4, 5, and 6).
model also points to an important mechanism for creating

shared variability, namely the strong amplification of the input

noise by balanced amplification (see also Kriener et al., 2008;

Murphy and Miller, 2009; Hennequin et al., 2014).

Although most of our analyses were based on rates, rather

than spikes, the effect of fast fluctuations resulting from spiking

noise were not ignored, but were incorporated implicitly in the

power-law input/output nonlinearity of neurons in the model

(Equation 3) and in the stochastic spike-generation mechanism

used in our spiking network simulations (Figure 3, STAR

Methods). Theoretical work (Miller and Troyer, 2002; Hansel

and van Vreeswijk, 2002) shows that these fast fluctuations are

the key factor causing momentary firing rates (on the 30–50 ms

timescale of Vm fluctuations considered here) to be a supralinear,

power-law function of mean voltages, a critical feature of our

model. As experiments, as well as our model, show that only

the shared but not the private part of variability is modulated

by stimuli (Churchland et al., 2010), we expect our assumption

that the exponent of the threshold power-law nonlinearity can

be considered constant (implying that fast private spiking fluctu-

ations are not affected by stimuli) to be valid to a good approxi-

mation. We also expect that a more detailed model explicitly

including these fast fluctuations would allow a more systematic

study of the effects of stimuli on high-frequency (gamma) oscil-

lations (Ray and Maunsell, 2010), which our current model could

only partially account for (Figure 3B).

Tight versus Loose E-I Balance
While we focused on the sources and modulation of slower,

correlated fluctuations, a classical model of cortical variability,

the ‘‘balanced network’’ (van Vreeswijk and Sompolinsky,
1998), focused on the origin of fast fluctuations from spiking

noise. In that model, very large external and recurrent inputs

cancel or ‘‘balance’’ to yield amuch smaller net input. Thismech-

anism can self-consistently generate the voltage variability to

generate irregular spiking. However, the very strong, very fast

inhibitory feedback in the balanced network suppresses corre-

lated rate fluctuations away from the stable state (van Vreeswijk

and Sompolinsky, 1998; Renart et al., 2010; Tetzlaff et al., 2012),

leaving only fast, private variability due to irregular spiking

(though ‘‘breaking balance’’ can restore correlated variability;

Litwin-Kumar and Doiron, 2012; Rosenbaum et al., 2017).

Because the shared variability is already eliminated, stimuli

cannot modulate that variability.

As opposed to the ‘‘tight balance’’ between excitation and in-

hibition in the classical balanced network model, the SSN in the

stimulus-driven regime is ‘‘loosely balanced’’: the same mathe-

matical cancellation of external and recurrent input occurs, but

in a regime in which inputs are not large and the net input after

cancellation is comparable in size to the factors that cancel (Ah-

madian et al., 2013). This regime is supported by observations

that external input is comparable to, rather than very much larger

than, the net input received by cortical cells (Ferster et al., 1996;

Chung and Ferster, 1998; Lien and Scanziani, 2013; Li et al.,

2013). This loose balance allows correlated variability to persist

and be modulated by stimuli. Variability quenching in the sto-

chastic SSN robustly occurred as the input pushed the dynamics

to stronger and stronger inhibitory dominance. Consistent with

this, with increasing strength of external input, the ratio of inhibi-

tion to recurrent excitation received by neurons in the network in-

creases (Rubin et al., 2015), as observed in layers 2/3 of mouse

S1 (Shao et al., 2013) and V1 (Adesnik, 2017). In the balanced
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network, the ratio of inhibitory to excitatory activity would be

fixed regardless of the strength of activation. The balanced

network also only yields responses that are linear functions of

the input (though see Mongillo et al., 2012), whereas the loosely

balanced regime replicates many nonlinear cortical response

properties (Rubin et al., 2015), including the profound depen-

dence of correlated variability on stimuli. Although our model

does not focus on the origins of fast spiking variability, spiking

models in the loosely balanced SSN regime can, given noisy in-

puts (e.g., Sadagopan and Ferster, 2012), yield the irregular

spiking characteristic of cortex (unpublished data).

Further Factors Modulating Variability
We analyzed variability modulation solely as arising from intrinsic

network interactions, but other factors may also contribute

(Doiron et al., 2016). External inputs may be modulated; for

example, the drop with contrast in Fano factors in the lateral

geniculate nucleus (LGN) has been argued to underlie Vm vari-

ability decreases in V1 simple cells (Sadagopan and Ferster,

2012; but see Malina et al., 2016). However, since high-contrast

stimuli also cause firing rates to increase in LGN, the total vari-

ance of LGN-to-V1 inputs (scaling with the product of the LGN

Fano factor and mean rate) is modulated far less by contrast.

This provides some justification for our model choice that input

variance did not scale with contrast. Changes in input correla-

tions have also been suggested as a potential mechanism under-

lying variability modulation (Bujan et al., 2015). However, the pro-

posed mechanism would require a stimulus to specifically

increase the correlations of the different inputs onto individual

cells (and this increase should be tuned to the stimulus) while

leaving the correlation of inputs between cells unchanged. This

seems difficult to achieve in cortex, where nearby cells are likely

to share a significant amount of input and correlations are gener-

ally observed to decrease, rather than increase, with stimulus

strength (Churchland et al., 2010).

One particular form of external input modulation, that involving

changes in brain state, has been proposed to directly contribute

to correlated variability in both awake (Poulet and Petersen,

2008; Ecker et al., 2016) and anesthetized cortex (Ecker et al.,

2014; Goris et al., 2014; Lin et al., 2015; Mochol et al., 2015),

so that a reduction of state switching would underlie the reduc-

tion of shared variability (Mochol et al., 2015; Ecker et al., 2016).

To the extent that correlated noise in the input to our model is

aligned with a uniform activity pattern, this input can also be re-

garded as having a single scalar ‘‘brain state’’-like component

that is changing in time. However, our analysis suggests that

the variability of this component needs not bemodulated directly

by the stimulus to account for variability quenching in network re-

sponses. Instead, our network used its intrinsic mechanisms to

quench variability in response to a stimulus. Importantly, these

intrinsic mechanisms not only quenched this uniform component

of variability (Figure S8), but also produced more complex pat-

terns of variability modulation via ‘‘bump’’ kinetics that a single

brain state-dependent mechanism could not account for.

Cellular factors may also modulate variability. For example,

inhibitory reversal potential or spike threshold may set bound-

aries limiting voltage fluctuations, which would more strongly

limit voltage fluctuations in more hyperpolarized or more depo-
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larized states, respectively; conductance increases will reduce

voltage fluctuations; and dendritic spikes may contribute more

to voltage fluctuations in some states than others (Stuart and

Spruston, 2015). A joint treatment of external input, cellular,

and recurrent effects may be needed to explain, for example,

why Vm variability appears strongest near the preferred stimulus

in anaesthetized cat V1 (Finn et al., 2007) or why overall Vm vari-

ability grows with visual stimulation in some neurons of awake

macaque V1 (Tan et al., 2014).

Cellular properties may themselves be subject to change

over time, thereby causing changes in variability. For example,

various mechanisms (e.g., attention, intrinsic and synaptic plas-

ticity, neuromodulators, anesthetics) can change the input/

output gain of single neurons and the synaptic efficacies of the

network. As all these changes eventually lead to changes in

effective connectivity, our work offers a principled approach to

study their effects on variability and is thus complementary to

previous studies that focused on the consequences of different

anatomical connectivity patterns on correlations (Kriener et al.,

2008; Tetzlaff et al., 2012; Ostojic, 2014; Hennequin et al., 2014).

Effects of Normalization on Variability
The nonlinear response properties of our network were crucial

for the modulation of variability by stimuli. These nonlinearities

had been shown to capture ubiquitous phenomena involving

nonlinear response summation to multiple stimuli, including

normalization, surround suppression, and their dependencies

on stimulus contrast (Rubin et al., 2015; Ahmadian et al.,

2013). As such, the SSN reproduces much of the phenomenol-

ogy of the ‘‘normalization model’’ of cortical responses (Caran-

dini and Heeger, 2011) and provides a circuit substrate for it.

However, while response normalization has previously been

studied for deterministic steady-state responses, our results

can be interpreted as showing that it also plays a role in the sup-

pression of ongoing variability by stimuli, as well as shaping the

structure of stimulus-evoked noise correlations. Specifically, in

the deterministic SSN, steady-state responses tomultiple stimuli

add sublinearly, and as one stimulus becomes stronger than

another, the response to their simultaneous presentation be-

comes ‘‘winner take all,’’ i.e., dominated by the response to

the stronger stimulus alone (Rubin et al., 2015). This provides

an alternative conceptual explanation of why, in the stochastic

SSN, a stronger mean input drive relative to the noise input leads

to greater suppression of the noise’s contribution to the total

network response, thus quenching variability.

Our results go beyond what could be predicted based on this

simple qualitative link between steady-state normalization and

variability quenching. First, we found a specific quantitative

form of normalization in our network: an approximate conserva-

tion of the integrated activity across a bump of activity that forms

around cells tuned to the stimulus orientation, despite fluctua-

tions in its width. In turn, this predicted a specific pattern of noise

correlations that we found contributed substantially to noise

variability in V1 of the awake monkey (Figure 6). Second, we

were able to study the dynamics with which variability was

suppressed following stimulus onset and recovered following

stimulus offset and found a good match to experimental data

(Figure 7).



The Origin and Role of Inhibitory Dominance
We found that an increase in inhibitory dominancewas necessary

for the suppression of variability and correlations in the SSN. In

line with that, Stringer et al. (2016) studied rodent A1 and V1 in

various awake and anesthetized brain states and found that de-

synchronized states with weaker correlations were accompanied

by enhanced activity of putative fast-spiking inhibitory neurons.

By fitting a recurrent spiking E-I network model to the data,

they found that enhanced inhibitory feedback was the key

factor capturing the suppression of correlations. However, the

enhanceddominanceof inhibitionwith increasingnetworkactiva-

tion, which suppresses correlations, was artificially incorporated

into themodel bymaking the inhibitory conductance an exponen-

tial function of the inhibitory spike count. In contrast, our model

provides a dynamical mechanism by which inhibition becomes

increasingly dominant with increasing network activation.

Kanashiro et al. (2017) proposed a mechanism similar to ours

for the top-down suppression of correlated variability by atten-

tion, rather than bottom-up suppression by a stimulus. They

also proposed that this arises fromenhanced inhibitory feedback

resulting from increased effective connectivity due to expan-

sive input/output functions. However, their conclusions differed

significantly from ours. They found that, for attention to suppress

variability, attentional input had to be directed dominantly

to inhibitory cells, while for attention to increase the gain of

response to stimuli, stimuli had to give input dominantly to excit-

atory cells. Note that this implies that stimuli would not suppress

variability. We have found that neither of these conditions are

necessary (Methods S4) and that stimuli robustly suppress vari-

ability. In particular, increasing input strength decreased vari-

ability across a wide range of relative strengths of input to excit-

atory versus inhibitory cells (Figure S2). The main reason for

these differences in conclusions is the special, non-generic

parametrization of the model studied by Kanashiro et al. (2017)

in which a neuron’s projections to excitatory and to inhibitory

neurons were statistically identical, which precluded the SSN

regime (Methods S2).

The Dynamical Regime of Cortical Activity
Two proposals have been made previously to explain quenching

of variability by a stimulus: a stimulusmay quenchmulti-attractor

dynamics to create single-attractor dynamics (Blumenfeld et al.,

2006; Litwin-Kumar and Doiron, 2012; Deco and Hugues, 2012;

Ponce-Alvarez et al., 2013; Doiron and Litwin-Kumar, 2014; Mo-

chol et al., 2015), and a stimulus may quench chaotic dynamics

to produce non-chaotic dynamics (Molgedey et al., 1992; Bert-

schinger and Natschl€ager, 2004; Sussillo and Abbott, 2009;

Rajan et al., 2010; Laje and Buonomano, 2013). Our results pro-

pose a very different dynamical regime underlying variability

quenching, which can be distinguished from the multi-attractor

or chaos-suppression models.

Conceptually, the stochastic SSN differs from previous models

of stimulus-driven quenching of shared variability in exhibiting a

single stable state in all conditions—spontaneous, weakly driven,

strongly driven—whereas the others show this only when strongly

driven. Furthermore, quenching of variability and correlations in

the SSN is highly robust, arising from two basic properties of

cortical circuits: inhibitory stabilization of strong excitatory feed-
back (Tsodyks et al., 1997; Ozeki et al., 2009) and supralinear

input/output functions in single neurons (Priebe and Ferster,

2008). In contrast, models of multi-attractor or chaotic dynamics

can either account only for the modulation of average pairwise

correlations (Mochol et al., 2015) or else require considerable

fine tuning of connections (Litwin-Kumar and Doiron, 2012;

Ponce-Alvarez et al., 2013) to account for more detailed correla-

tion patterns. Moreover, as studied thus far (Rajan et al., 2010;

Ponce-Alvarez et al., 2013; Mochol et al., 2015; but see Harish

and Hansel, 2015; Kadmon and Sompolinsky, 2015; Mastrogiu-

seppe andOstojic, 2017), they typically ignoreDale’s law (the sep-

aration of E and I neurons) and its consequences for variability,

e.g., balanced amplification. These differences between the SSN

andpreviousmodelsalso lead to twomainexperimentally testable

features that we used to distinguish their respective dynamical

regimes: the tuning and the timing of variability modulation.

With respect to the stimulus tuning of spike count Fano factors

and noise correlations, we found that multi-attractor networks

could only predict an M-shaped modulation while the SSN could

produce either M- or U-shaped modulations depending on the

tuning width of inputs relative to that of connectivity. Indeed,

while most types of stimuli in MT were found to result in an

M-shaped modulation (Ponce-Alvarez et al., 2013), coherent

plaids (Ponce-Alvarez et al., 2013) and random moving dots

(Lombardo et al., 2015) in the macaque as well as moving dot

fields and drifting gratings in the marmoset (Selina Solomon,

personal communication; Solomon et al., 2015) result in a pro-

nounced U-shaped modulation of Fano factors in MT, and our

own analyses of V1 data also revealed a U-shaped modulation.

Interestingly, our results also suggested that irrespective of the

precise shape of the modulation of spike count statistics, mem-

brane potential variability in the SSN should always exhibit a

U-shaped profile (Figure 4), which could be tested in future ex-

periments. Critically, we also identified a rarely analyzed aspect

of spatial correlation patterns that could most clearly distinguish

between different models: the modulation of correlations be-

tween orthogonally tuned cells. The SSN predicted only very

weak modulation for such cell pairs, while multi-attractor dy-

namics resulted in modulations that were as deep as for pairs

of similarly tuned cells. We found that data from awakemacaque

V1 supported the SSN.

Another distinctive feature of the SSN regime is the speed of

its dynamics, and in particular the speed with which variability

is modulated as the stimulus is changed. In contrast to multi-at-

tractor and chaotic dynamics, in which variability modulation

happens on timescales that are considerably slower than the

single neuron time constant, the SSN produces fast variability

modulation on a timescale comparable to the neural time

constant. The timescales of variability modulation we extracted

from data recorded in monkey visual cortical areas (Churchland

et al., 2010; Ecker et al., 2010) were fast, on the order of

20–50 ms, providing further support to the SSN.

In summary, the SSN robustly captures multiple aspects of

stimulus modulation of correlated variability and suggests a

dynamical regime that uniquely captures a wide array of behav-

iors of sensory cortex. In turn, our work suggests a principled

approach to use data on cortical variability to identify the dynam-

ical regime in which the cortex operates.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Awake monkey V1 dataset Ecker et al., 2010 http://bethgelab.org/datasets/v1gratings

Software and Algorithms

OCaml (for all simulations) Open source http://www.ocaml.org

Sqlite3 (for V1 data analysis) Sqlite Consortium https://sqlite.org/index.html

Mathematica Wolfram https://www.wolfram.com/mathematica
CONTACT FOR REAGENT AND RESOURCE SHARING

As Lead Contact, Guillaume Hennequin is responsible for all reagent and resource requests. Please contact Guillaume Hennequin

at g.hennequin@eng.cam.ac.uk with requests and inquiries.

METHOD DETAILS

The values of all the parameters mentioned below are listed in the tables below. All differential equations detailed below were

integrated using a simple Euler scheme with time step 0.1 ms.

Gnuplot Open source http://www.gnuplot.info
Parameters Used in the SSN Simulations

Symbol Figure 2 Figure 3 Figures 4, 5, 6, and 7 Unit Description

NE 1 4,000 50 – Number of excitatory units

NI 1 1,000 50 – Number of inhibitory units

tE 20 ms Membrane time constant (E neurons)

tI 10 ms Membrane time constant (I neurons)

Vrest �70 mV Resting membrane potential

V0 �70 mV Rectification threshold potential

k 0.3 mV�n , s�1 Nonlinearity gain

n 2 – Nonlinearity exponent

WEE 1.25 mV , s E/E connection weight (or sum thereof)

WIE 1.2 mV , s E/I connection weight (or sum thereof)

WEI 0.65 mV , s I/E connection weight (or sum thereof)

WII 0.5 mV , s I/I connection weight (or sum thereof)

tnoise 50 ms Noise correlation time constant

s0,E 0.2 1 mV Noise standard deviation (E neurons)

s0,I 0.1 0.5 mV Noise standard deviation (I neurons)

pE – 0.1 – – Outgoing connection probability (E neurons)

pI – 0.4 – – Outgoing connection probability (I neurons)

tsyn – 2 – ms Synaptic time constants

D – 0.5 – ms Axonal delay

[syn – 45 deg. Connectivity length scale

[noise – 60 deg. Noise correlation length scale

[stim – 60 deg. Stimulus tuning length scale of the input

b – 2 mV Input baseline

Amax – 20 mV Maximum input modulation (100% contrast)

qstim – 0 deg. Stimulus direction
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Parameters Used in the Multi-attractor Network Simulations

Symbol Figures 6 and 7 Unit Description

N 100 – Number of units

tm 10 ms Membrane time constant

k 0.1 mV�1 Nonlinearity gain

gmax 100 ms�1 , mV�1 Maximal firing rate

W �40/gmax mV , s Average connection weight

WD 33/gmax mV , s Tuning-dependent modulation of connection weight

tnoise 50 ms Noise correlation time constant

s0 0.15 mV Noise standard deviation

[noise 60 deg. Noise correlation length scale

[stim 60 deg. Stimulus tuning length scale of the input

b 2 mV Input baseline

A 0.1 mV Depth of input tuning

qstim 0 deg. Stimulus direction

Parameters Used in the Chaotic Network Simulations

Symbol Figure 7 Unit Description

N 2,000 – Number of units

tm 10 ms Membrane time constant

sW 2 – Standard deviation of connection weights
SSN model
Our rate-based networks contained NE excitatory and NI inhibitory units, yielding a total N=NE +NI units. The circuit dynamics were

governed by (see also Methods S1):

ti
dVi

dt
= � Vi +Vrest + hiðtÞ+ hiðtÞ+

X
j˛E cells

Wij rðVjÞ �
X

j˛I cells

Wij rðVjÞ; (Equation 2)

where Vi denotes the Vm of neuron i, ti is its membrane time constant, Vrest is a resting potential,Wij is the (positive or zero) strength

of the synaptic connection from neuron j to neuron i, and hiðtÞ is the potentially time-varying but deterministic component (the mean)

of external input to which a noise term hiðtÞ is added (see below, ‘‘Input noise’’). The momentary firing rate of cell j was given by a

threshold-powerlaw function of its membrane potential:

rðVjÞ= k
�
Vj � V0

�n
+
: (Equation 3)

Experiments support Equation 3 when both membrane potentials and spike counts are averaged in 30 ms time bins (Priebe and

Ferster, 2008). Accordingly, Vi in Equation 2 can be understood as the coarse-grained (low-pass filtered) version of the raw somatic

membrane potential; in particular it does not incorporate the action potentials themselves. Thus the effective time resolution of our

model was around 30 ms which allowed studying the effects of inputs that did not change significantly on timescales shorter than

that. Accordingly, in Equation 2 we assumed that external noise had a time constant tnoise = 50 ms, in line with membrane potential

and spike count autocorrelation timescales found across the cortex (Azouz and Gray, 1999; Berkes et al., 2011; Murray et al., 2014).

Equations 2 and 3 together define the stabilized supralinear networkmodel studied in Ahmadian et al. (2013) andRubin et al. (2015),

but formulated with voltages rather than rates as the dynamical variables (the two formulations are mathematically equivalent when

all neurons have the same time constant, Miller and Fumarola, 2012) and with the crucial addition of noise that enables us to study

variability. In all the figures of the main text, the exponent of the power-law nonlinearity was set to n= 2 (but see Figure S2 for n > 2).

Methods S2 explores more general scenarios.

Mean external input

In the reduced rate model of Figure 2, each unit received the same constant mean input h. In the ringmodel, the mean input to neuron

i was the sum of two components,

hiðqstimÞ=b+ c,Amax,exp

 
cosðqi � qstimÞ � 1

[2stim

!
: (Equation 4)
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The first term b= 2 mV is a constant baseline which drives spontaneous activity. The second term models the presence of a

stimulus with orientation qstim in the visual field as a circular-Gaussian input bump of ‘‘half width’’ [stim centered around qstim and

scaled by a factor c (increasing c represents increasing stimulus contrast), taking values from 0 to 1, times a maximum amplitude

Amax. We assumed for simplicity that E and I cells are driven equally strongly by the stimulus, though this could be relaxed.

Input noise

The input noise term hiðtÞ in Equation 2 was modeled as a multivariate Ornstein-Uhlenbeck process:

tnoisedh= � hdt +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tnoiseS

noise

q
dx; (Equation 5)

where dx is a collection of N independent Wiener processes and Snoise is an N3N input covariance matrix (see below). Note that

Equation 5 implies hhiðtÞ hjðt + tÞit = Snoise
ij e�jt j =tnoise .

In the reduced two-population model (Figure 2), noise terms were chosen to be uncorrelated, i.e., Snoise
ij = s2

aðiÞdij (where dij = 1 if i = j

and 0 otherwise), aðiÞ˛fE; Ig is the E/I type of neuron i, and s2a is the variance of noise fed to population a (see Equation 7 below). In the

spiking two-population model (Figure 3), input noise covariance was uniform, such that Snoise
ij = s2noise½dij ð1� rÞ + r�, with the pair-

wise correlation coefficient set to r= 0:2 (see Figure S5 for the dependence of our results on r). In the ring model (Figures 4, 5, 6,

and 7), the noise had spatial structure, with correlations among neurons decreasing with the difference in their preferred directions

following a circular-Gaussian:

Snoise
ij = saðiÞ saðjÞ exp

 
cosðqi � qjÞ � 1

[2noise

!
; (Equation 6)

where qi and qj are the preferred orientations of neurons i and j (exc. or inh.), and [noise is the correlation length (see table ‘‘Parameters

Used in the SSN Simulations’’). The noise amplitude has the natural scaling

sa = s0;a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

ta
tnoise

r
ða˛fE; IgÞ (Equation 7)

such that, in the absence of recurrent connectivity ðW = 0Þ, the input noise alone would drive Vm fluctuations of standard deviation

s0;E or s0;I, measured in mV, in the E or I cells, respectively. We chose values of s0;E that yielded spontaneous Fano factors

in the range 1.3-1.5 where appropriate, and chose s0;I = s0;E=2 to make up for the difference in membrane time constants

between E and I cells (see table ‘‘Parameters Used in the SSN Simulations’’).

Connectivity

The synaptic weight matrix in the reduced model was given by

W=

�
WEE �WEI

WIE �WII

�
; (Equation 8)

whereWAB is the magnitude of the connection from the unit of type B (E or I) to that of type A (see table ‘‘Parameters Used in the SSN

Simulations’’ for parameter values). In the ring model, connectivity fell off with angular distance on the ring, following a circular-

Gaussian profile:

Wijfexp

 
cosðqi � qjÞ � 1

[2syn

!
; (Equation 9)

where qi and qj are the preferred orientations of neurons i and j (exc. or inh.), and [syn sets the length scale over which synaptic weights

decay (see table ‘‘Parameters Used in the SSN Simulations’’). The connectivity matrixWwas further rescaled in each row and in each

quadrant, such that the sum of incoming E and I weights onto each E and I neuron (4 cases) matched the values of WEE, WIE, �WEI

and �WII in the reduced model. Thus, all connectivity matrices used in the SSN model obeyed Dale’s law.

Simulated spike counts

To relate the firing rate model to spiking data in Figures 4 and 6, we assumed that action potentials were emitted as inhomogeneous

(doubly stochastic) Poisson processes with time-varying rate rðVmÞ given by Equation 3. Unlike in the full spiking model (see below),

spikes did not ‘‘re-enter’’ the dynamics of Equation 2, according to which neurons influence each other through their firing rates.

Spikes were counted in 100 ms time bins and spike count statistics such as Fano factors and pairwise correlations were computed

as standard.
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Spiking SSN model
Dynamics

In the spiking model (Figure 3), neuron i emitted spikes stochastically with an instantaneous probability equal to dt rðViÞ, with time-

varying rate rðViÞ given by Equation 3, consistent with how (hypothetical) spikes were modeled in the rate-based case (cf. above).

Presynaptic spikes were filtered by synaptic dynamics into exponentially decaying postsynaptic currents (E or I):

daj
dt

= � aj
tsyn

+
X
tj

dðt � tj � DÞ; (Equation 10)

where the tj’s are the firing times of neuron j, tsyn = 2 ms is the synaptic time constant, and D= 0:5 ms is a small axonal transmission

delay (which enabled the distribution of the simulations onto multiple compute cores; Morrison et al., 2005). Synaptic currents then

contributed to membrane potential dynamics according to

ti
dVi

dt
= � Vi +Vrest + hiðtÞ+ hiðtÞ+

X
j˛E cells

Jij ajðtÞ �
X

j˛I cells

Jij ajðtÞ; (Equation 11)

where the synaptic efficacies Jij are described below, and the noise term hi was modeled exactly as described above.

Connectivity

For each neuron i, we drew pENE excitatory and pINI inhibitory presynaptic partners, uniformly at random. Connection probabilities

were set to pE = 0:1 and pI = 0:4 respectively. The corresponding synaptic weights took on values Jij =Wab=ðtsyn pb NbÞ where

fa; bg˛fE; Ig denote the populations to which neuron i and j belong respectively, andWab are the connections in the reduced model

(see table ‘‘Parameters Used in the SSN Simulations’’). This choice was such that, for a given set of mean firing rates in the E and I

populations, average E and I synaptic inputs to E and I cells matched the corresponding recurrent inputs in the rate-based model.

Synapses that were not drawn were obviously set to Jij = 0.

Local field potential

As a proxy for LFP in Figure 3, we took the momentary population-averaged Vm (Mazzoni et al., 2015 simulated various proxies and,

although some proxies were more accurate, they found the average Vm to be reasonably accurate).

Multi-attractor model
We compared our ring SSNmodel to a version of the ring attractor model published by Ponce-Alvarez et al. (2013). The ring attractor

model had a single population with a similar ring topology, and—using the same notation as above—the connectivity took the form

(cf. Equation 9)

Wij =W +
WD

N
cosðqi � qjÞ; (Equation 12)

where N= 100 is the number of neurons, and W and WD are two parameters that control the average connection strength and

modulation with tuning dissimilarity, respectively. Note that, in general, this connectivity matrix could violate Dale’s law but with

the specific parameters used here it did not (see table ‘‘Parameters Used in the Multi-attractor Network Simulations’’). Instead, all

connections were inhibitory to keep the system in the marginally stable regime (as in Ponce-Alvarez et al., 2013). The dynamics of

the network obeyed a similar stochastic differential equation as for the ring SSN (Equation 2), namely

tm
dVi

dt
= � Vi + hiðtÞ+ hiðtÞ+

X
j

Wij rðVjÞ; (Equation 13)

with the momentary firing rate of cell j given by a rectified saturating firing rate nonlinearity (cf. Equation 3):

rðVjÞ=gmaxtanh
	
k
�
Vj

�
+



; (Equation 14)

and a noise process h identical to the one we used in the SSN (same spatial and temporal correlations, Equations 5 and 6), with a

variance adjusted so as to obtain Fano factors of about 1.5 during spontaneous activity (Figure S9B, black). The external input had

both a constant baseline, b, and a contrast-dependent modulated component (cf. Equation 4):

hi =b+ c,ð1� A+A cosðqi � qstimÞÞ; (Equation 15)

where A controlled the depth of the modulation, and c represents stimulus strength.

Note that although the phenomenology and dynamical regime of this model was consistent with that of Ponce-Alvarez et al. (2013)

(Figure S9), themodel differed from their original implementation in some of the details: our dynamicswerewritten in voltage form, not

in rate form, we had only one unit at each location on the ring (as opposed to small pools of neurons), and our input noise process had

spatial correlations to allow for a more direct and consistent comparison with the ring SSN.

Our analysis of variability in this ring attractor network is presented in Figure S9 in a format identical to that of Figure 5, and shows

that shared variability is entirely dominated by the fluctuations in the location of an otherwise very stable bump of activity.
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Chaos suppression model
We also implemented a chaotic rate network of size N= 2;000 with the following (deterministic) dynamics (cf. Equations 2 and 13):

tm
dVi

dt
= � Vi + hiðtÞ+

X
j

Wij rðVjÞ; (Equation 16)

with an (unrectified) saturating firing rate nonlinearity (cf. Equations 3 and 14)

rðVjÞ= tanhðVjÞ (Equation 17)

(which could thus go negative as well as positive). Elements of the synaptic weight matrix were sampled i.i.d. from a normal distri-

bution (thus violating Dale’s law, cf. Equations 9 and 12):

Wij � N �0; s2
W

�
N

; (Equation 18)

with sW = 2, which placed the network in the chaotic regime (Sompolinsky et al., 1988). The external input was a constant input vector

of the form (cf. Equations 4 and 15)

hi = c,cosðfiÞ; (Equation 19)

where fi is a phase sampled i.i.d. from a uniform distribution between 0 and 2p, and c represents stimulus strength. See table

‘‘Parameters Used in the Chaotic Network Simulations’’ for all parameter values. As shown in Rajan et al. (2010), chaos is suppressed

for large enough c.

QUANTIFICATION AND STATISTICAL ANALYSIS

Dataset
Weanalyzed neural recordings from the V1 of two awakemonkeys (Figures 4, 6, and 7). A full description of the experimental protocol

and recordings can be found in the original publication (Ecker et al., 2010). We discarded all cells that were poorly isolated (contam-

ination >5%), leaving us with 330 cells to analyze. The stimuli consisted of moving gratings of various orientations, all at 100%

contrast. We fitted orientation tuning curves (Figure S11; average firing rate in the first 500 ms following stimulus onset, as a function

of stimulus orientation) of the form fðqÞhf0 + fmexp½kðcosð2ðq� qprefÞÞ� 1Þ�, where q is the stimulus orientation (thus, we neglected

the direction of motion, which could be in either of the two directions orthogonal to the orientation of the grating). The fit was achieved

using nonlinear least-squares regression.

For each neuron, we calculated an orientation tuning index (OTI), defined based on the fitted tuning curve as

OTI=
fðqprefÞ � fðqorthÞ
fðqprefÞ+ fðqorthÞ ; (Equation 20)

where qorth = qpref + p=2. As the ring architecture we studied in Figures 4, 5, 6, and 7 only applied to neurons with well-defined tuning

curves, we excluded cells that had OTI< 0:75 as well as average evoked rates (measured during the stimulus period) below 1 spike/

sec. This left us with 99 well-tuned cells to analyze.

Our analysis of the stimulus tuning of Fano factors and pairwise spike-count correlations was based on a time window of 100 ms

starting at stimulus onset.

Factor analysis
We performed factor analysis of spike counts, either for a single stimulus condition in the model (the model had a natural rotational

symmetry), or separately for each stimulus condition (direction) in the V1 dataset, subsequently averaging the reported quantities

across conditions. We worked with normalized spike counts, defined as ~cik = cik=
ffiffiffiffiffiffiffiffiffiffihciki

p
k where cik is the spike count of neuron i in

trial k and h,ik denotes averaging across trials. Note that the variances of these normalized spike counts are exactly the Fano factors,

i.e., the usual measure of spike count variability. This prevented the normalized spike count covariance matrix ~C from being contam-

inated by a rank-1 pattern of network covariance merely reflecting the tuning of single-neuron firing rates (the ‘‘Poisson’’ part of vari-

ability, which tends to scale with themean count). Factor analysis decomposes ~C as the sumof a rank-k covariancematrix ~Cshared rep-

resenting kmodes of network covariances, and a diagonal matrix ~Cprivate. In the ratemodel, we could near-perfectly estimate the spike

count covariance matrix, so we performed factor analysis by direct eigendecomposition of ~C, thus defining ~Cshared =
Pk

i =1liviv
u
i

whereby the top k eigenvectors v1;.; vk of ~C contributed to shared variability in proportion of the corresponding eigenvalues li. For

factor analysis of the monkey V1 data, we performed direct maximization of the data likelihood (Cunningham and Ghahramani,

2015), also keeping k factors. In Figure 4, we set k = 3, but we observed quenching of shared variability irrespective of k (Figure S12).

DATA AND SOFTWARE AVAILABILITY

The code used for model simulations and data analysis is available from the Lead Contact, Dr Guillaume Hennequin, upon request.
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Methods S1 Model setup

We consider the stochastic and nonlinear rate model of Equations 2 and 3 of the main text. To simplify
notation, we assume Vrest = 0 mV without loss of generality as it can be absorbed in the external input,
and rewrite:

τE T
dV
dt

= −V(t) + k W bV(t)cn+ + h(t) + η(t) (S1)

with n > 1 (n = 2 throughout the main text). In Equation S1, bxcn+ denotes the pointwise application
of the threshold power-law nonlinearity to the vector x, that is, bxcn+ is the vector whose ith element is
xni if xi > 0, or 0 otherwise; T is a diagonal matrix of relative membrane time constants measured in
units of τE; W is a matrix of synaptic connections, consisting of NE positive columns (corresponding
to excitatory presynaptic neurons) and NI negative columns (inhibitory neurons) for a total size of
N = NE + NI; h(t) is a possibly time-varying but deterministic external input to neuron i; and η is a
multivariate Ornstein-Uhlenbeck process with separable spatiotemporal correlations given by

〈η(t)η(t + τ )〉t = e−|τ |/τη Ση (S2)

where Ση is the covariance matrix of the input noise and τη is its correlation time. In particular, we
are going to study how τη and correlations in Ση a�ect network variability. We adopt the following
notations for relative time constants:

τ̄I ≡
τI

τE
and τ̄η ≡

τη
τE

(S3)

In general, recurrent processing in the network is prone to instabilities due to the expansive, non-
saturating Vm-rate relationship in single neurons. However, there are generous portions of parameter
space in which inhibition dynamically stabilizes the network. We refer to this case as the “stabilized
supralinear network”, or SSN (Ahmadian et al., 2013; Rubin et al., 2015).

Methods S2 Mean responses in the stabilized supralinear regime

2.1 Input-dependence of mean responses

Our analysis of the stochastic SSN developed in Methods S3 will show that the modulation of vari-
ability relies on the nonlinear behavior of mean responses to varying inputs (Figure 2D of the main
text), which in turn were studied previously (Ahmadian et al., 2013). We repeat these analyses here for
completeness focusing in particular on the transition from superlinear integration of small inputs to
sublinear responses to larger inputs. Note that here we have wri�en the circuit dynamics in voltage
form (Equation S1), while Ahmadian et al., 2013 chose a slightly di�erent rate form; accordingly, the
equations we now derive di�er from the original equations in their form, but not in their nature (in
fact, steady state solutions studied in Ahmadian et al., 2013 are mathematically equivalent in the two
formulations, and moreover when T is proportional to the identity matrix, dynamic solutions are also
exactly equivalent; see Miller and Fumarola, 2012).

As this section is devoted to mean responses, we neglect the input noise η for now. We thus write the
deterministic dynamics of the mean potentials V i as

τE T
dV
dt

= −V + k W bVcn+ + hg (S4)

and ask how neurons collectively respond to a constant external stimulus h fed to them through a
vector g ∼ O(1) of feedforward weights. A�er some transient, and assuming the network is stable (see
below), the network se�les in a steady state V which must obey the following fixed point equation,
obtained by se�ing the l.h.s. of Equation S4 to zero:

V = hg + k W bVcn+ (S5)
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As in the main text, we focus on the case of a threshold-quadratic nonlinearity, n = 2, though the
following derivations can be extended to arbitrary n > 1. Following Ahmadian et al. (2013), we begin
by defining J ≡W/ψ where ψ = ‖W‖ for some matrix norm ‖ · · · ‖, so that the dimensionless vector
J has ‖J‖ = 1. We also define dimensionless mean voltage and input respectively as

y ≡ 2 k ψ V (S6)

α ≡ 2 k ψ h (S7)

(note that the definition of α di�ers from that in Ahmadian et al., 2013 by a factor of 2). With these
definitions, and n = 2, the fixed point equation for the mean potentials, Equation S5, becomes

y = α g +
1
2

J byc2+ (S8)

Network responses to small inputs When α is small (i.e. h is small, given fixed connectivity
strength ψ), it is easy to see that

y ≈ α g +O(α2) (S9)

In essence, the fixed point Equation S8 is already the first-order Taylor expansion of y for small α
(indeed, the recurrent term J byc2+ is O(α2), self-consistently). Thus, for small input α, membrane
potentials scale linearly with α, and firing rates are quadratic in α, merely reflecting the single-neuron
nonlinearity. In other words, the network behaves mostly as a relay of its feedforward inputs, with
only minor corrections due to recurrent interactions.

More generally, by repeatedly substituting the right side of Equation S8 for y into Equation S8, we
arrive at the expansion

y = α g +
1
2

J

⌊
α g +

1
2

J
⌊
α g +

1
2

J b· · · c2+
⌋2

+

⌋2

+

(S10)

The net result involves a series of terms of order α, α2, α4 . . . , which can be expected to converge for
small α (α� 1).

Network responses to larger inputs For large α (α � 1), the expansion of Equation S10 will
not converge and so cannot describe responses. Physically this tends to correspond to the excitatory
subnetwork becoming unstable by itself. At the level of the fixed point Equation S8, recurrent process-
ing involves squaring V, passing it through the recurrent connectivity, adding the feedforward input,
squaring the result again, . . . , which for large enough input and purely excitatory connectivity would
yield activity that grows arbitrarily large. A finite-activity solution is achieved through stabilization by
inhibitory feedback. Mathematically, for this to occur, the recurrent term J byc2+ must cancel the linear
dependence of y on α in Equation S8 (since any linear dependence would be squared by the right side
of Equation S8, then squared again, . . . , to yield an explosive series as in Equation S10). That is, we
must have

1
2

J byc2+ = −α g +O(
√
α) (S11)

such that (again from Equation S8)
y ∼ O(

√
α) (S12)

at most. This means that membrane potentials scale at most as
√
α, i.e. firing rates scale at most

linearly in α. However, in many cases, firing rates too will be sublinear in α. This is best exemplified
in the context of our two-population E/I model, by following Ahmadian et al. (2013) and introducing
the notation:

ΩE ≡
(
−J−1 g

)
E Det J = JII gE − JEI gI (S13)

ΩI ≡
(
−J−1 g

)
I Det J = JIE gE − JEE gI (S14)

3



(note that we only consider networks in which Det J > 0, as it must for stabilization to occur for all
input levels α; Ahmadian et al., 2013). Equation S11 can then be rewri�en as

byc2+ =
2α

Det J

(
ΩE

ΩI

)
+O(
√
α) (S15)

Now, depending on the choice of parameters (recurrent weights J and feedforward weights g), ΩE in
particular can be negative. Since byEc2+ is positive, it must be that the sublinear termO(

√
α) dominates

over the (negative) linear term 2ΩE α/Det J, at least over some range of α over which the E firing rate
is non-zero. In this case, byEc2+ behaves roughly as

√
α over some range1 before it gets pushed to zero,

and accordingly yE must be approximately
√√

α over the same range, i.e. the E unit responds strongly
sublinearly. Ahmadian et al. (2013) referred to this regime of eventual decrease of yE with increasing
stimulus strength as “supersaturation”, and showed that it occurs for physiologically plausible param-
eter regimes. Our choice of parameters for the two-population model of the main text falls within this
class of strongly sublinear E responses (ΩE < 0), but we will show in Methods S3 that the SSN displays
the same input modulation of variability irrespective of the sign of ΩE.

In summary, the SSN responds superlinearly to small inputs, and sublinearly to larger inputs. Firing
rates become at most linear (but will be sublinear if ΩE < 0) with large inputs. Accordingly, membrane
potentials show a transition from linear to (potentially strongly) sublinear responses to increasing
inputs. Moreover, this transition occurs for α ∼ O(1).

2.2 The behavior of typical networks: numerical simulations

In the context of the reduced two-population model of the main text, we now complement the above
theoretical arguments with a numerical analysis of the SSN’s responses across a wide range of pa-
rameters, in order to form a picture of the “typical” behavior of the SSN in physiologically realistic
regimes. We will later (Methods S3) reuse these numerical explorations to show that the modulation
of variability by external input in the SSN is robust to changes of parameters.

The dynamics of the trial-averaged dimensionless “population voltages” are given by

τE ẏE = −yE +
1
2

(
JEE byEc

2
+ − JEI by Ic

2
+
)

+ α gE (S16)

τIẏ I = −y I +
1
2

(
JIE byEc

2
+ − JII by Ic

2
+
)

+ α gI

It is di�icult to get good estimates of the values of the 6 free parameters (feedforward weights and
recurrent weights) directly from biology. Therefore, our approach is to construct a large number of
networks by randomly sampling these parameters within broad intervals, and rejecting those networks
that produce unphysiological responses according to conservative criteria that we detail below. We
then examine the behavior of each of these networks and perform statistics on the various kinds of
responses that have been identified in the theoretical analysis of 2.1.

We thus constructed 1000 networks by sampling both feedforward weights {gα} and recurrent weights
{Jαβ} (for α,β ∈ {E, I}) uniformly from the interval [0.1; 1], and subsequently normalizing their (vec-
tor) L∞-norm such that max(gα) = max(Jαβ) = 1. We then sampled the overall connectivity strength ψ
(cf. 2.1) from the interval [0.1; 10]. This interval was based on rough estimates of the average number of
input connections from the local network per neuron (between 200 and 1000), average PSP amplitude
(between 0.1 mV and 0.5 mV) and decay time constants (5 to 20 ms), giving a range of connectivity
strengths – which in our model is the product of these three quantities – between 0.1 and 10 mV/Hz.

Instead of choosing a range of α and simulating the dynamics of Equation S16 to compute mean
voltages, we observed that y I increases monotonically with α and for each network we chose a range

1Arguments about how yE scales with large α actually become invalid when ΩE < 0 precisely because for large enough α
the E unit stops firing; but the point here is that because yE must decrease at some point, it will necessarily become strongly
sublinear in α over some range before it starts to decrease.
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of y I corresponding to mean I firing rates ((y I/2ψ)2/k) in the 0–200 Hz range, thus assuming that mean
I responses above 200 Hz would be unphysiological. For each y I in this discretized range we solved for
yE analytically by noting that the input α can be eliminated from the pair of fixed-point equations
(Equation S16 with l.h.s. set to zero), yielding a fixed-point curve in the (yE, y I) plane:

ΩI yE
2 + 2 gI yE = ΩE y I

2 + 2 gE y I (S17)

Given y I it is easy to solve this quadratic equation for yE. We rejected those parameters sets for which
we encountered either i) complex solutions for yE, or ii) real but unstable solutions, as assessed by the
stability conditions TrJ < 0 and DetJ > 0.01 (with the Jacobian matrix J defined in Equations S19
and S22), or iii) stable solutions that involved E firing rates ((yE/2ψ)2/k) either greater than 200 Hz,
or smaller than 1 Hz for the largest value of y I. Finally, for each fixed point (yE, y I), we computed the
corresponding α from either of the two fixed-point equations (Equation S16 with l.h.s. set to zero),
e.g. α =

[
yE − (JEE yE

2 − JEI y I
2)/2

]
/gE. This procedure was numerically much more e�icient than

simulating the dynamics of Equation S16 until convergence to steady-state.

The parameters of the retained networks spanned a large chunk of the intervals in which they were
sampled (Figure S1A and B). Because stability for large α requires Det J > 0, i.e. JEI JIE > JEE JII, the
largest of all sampled Jαβ ’s was o�en either JEI or JIE which then, due to the L∞-norm normalization,
assumed a value of one (Figure S1A). We also observed that the input weight gE was o�en larger than
gI (Figure S1B). About 90% of the sampled networks had ΩE > 0, implying ∼

√
α scaling of yE and y I

for large α (example in Figure S1D, top). In these networks, E and I rates were linear in α for α large
enough, and so were also linear in each other when large enough (Figure S1E, black). The rest of the
networks (10%) had ΩE < 0 and therefore showed supersaturation of the E firing rate for large input
(Figure S1D, bo�om) and E responses that were sublinear in I responses (Figure S1E, orange).

It is worth noting that for networks with small overall connectivity strengthψ, the proportion ofΩE < 0
and ΩE > 0 cases tend to even out (Figure S1C). This is because, for supersaturating networks, the
peak E firing rate is inversely proportional to ψ2 (Ahmadian et al., 2013), so for large ψ the peak firing
rate is low and therefore the final value of rE reached for r I = 200 Hz likely falls below our threshold
of 1 Hz, resulting in a rejection of the parameter set.

In sum, the nonlinear properties of the SSN’s responses to growing inputs, summarized in 2.1, are ro-
bust to changes in parameters so long as these keep the network in a regime “not too unphysiological”
in a conservative sense. Using the same collection of sampled networks, we will show below that the
modulation of variability with input described in the main text is equally robust to parameter changes.

Methods S3 Membrane potential variability in the two-population SSN
model

In this section, we derive the theoretical results regarding activity variability in the two-population
model of the main text. We use these analytical results to demonstrate robustness of our results to
changes in parameters, which we also verify numerically using the collection of networks with ran-
domly sampled parameters introduced in 2.2.

3.1 Linearization of the dynamics

We now consider the noisy dynamics of the two-population model of the main text in which the E and
I units represent the average activity of large E and I populations. To study variability analytically, we
linearize Equation S1 around the mean, thus examining the local behavior of small fluctuations δV:

τE T
dδV
dt

= A(α) δV(t) + η(t) (S18)

with A(α) ≡ −I + We�(α) (S19)
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The e�ective connectivity We� depends on the (dimensionless) input α through its dependence on
mean responses, following

W e�
ij (α) = n k Wij bV j(α)cn−1

+ for i, j ∈ {E, I} (S20)

For n = 2, Equation S20 can also be wri�en using the definition of the dimensionless voltage y and
dimensionless connections J introduced in 2.1 as

W e�
ij (α) = Jij by j(α)c+ (S21)

With our notations, the Jacobian matrix

J (α) ≡ T−1 A(α) (S22)

is unitless, so that, e.g., the interpretation of a real negative eigenvalue λ ofJ is that the corresponding
eigenmode decays asymptotically with time constant τE/|λ| as a result of the recurrent dynamics. We
parameterize the input noise covariance as

〈
η(t) η(t + τ )T

〉
=
(

1 +
1
τ̄η

)
e−|τ |/τη

(
c2

E cEI

cEI c2
I

)
with cEI ≡ ρEI cE cI (S23)

such that, in the limit of small α – in which the network is e�ectively unconnected, because byc in
Equation S20 is small – the E unit has variance c2

E; the I unit then has variance 1+τ̄η
τ̄I+τ̄η

c2
I . The parameter

ρEI determines the correlation between input noise to the E and I units.

3.2 General result

The full output covariance matrix Σ ≡ 〈δVδVT〉 can be calculated by solving a set of linear equations2,
which yields:

Σ =
(1 + τ̄η)(1− τ̄η TrJ )

−TrJ Det A (τ̄I − τ̄I τ̄η TrJ + τ̄ 2
η Det A)

(
Σ?EE Σ?EI
Σ?EI Σ?II

)
(S26)

with

Σ?EE = c2
E

(
τ̄I Det A

1− τ̄η TrJ
+ A2

II

)
+ c2

I A
2
EI − 2 cEI AEI AII (S27)

Σ?II = c2
I

(
τ̄−1

I Det A
1− τ̄η TrJ

+ A2
EE

)
+ c2

E A
2
IE − 2 cEI AIE AEE (S28)

Σ?EI = c2
E AIE AII + c2

I AEI AEE − 2 cEI

(
AEE AII −

τ̄η TrJ Det A
2 (1− τ̄η TrJ )

)
(S29)

2 Since the spatial and temporal correlations in the noise term η in Equation S18 are separable, we can augment the state
space with two noise units and write their (linear) Langevin dynamics as

τE d
(
δV
η

)
=
(

A(h) I
0 − τE

τη
I

)(
δV
η

)
dt +

(
0 0

0 τE

√
2
τη

B

)
dξ (S24)

where dξ is a unit-variance, spherical Wiener process, and B is the Cholesky factor of the desired noise covariance matrix,
that is, Ση = BBT (the τE

√
2/τη factor is such that this equality holds). Then, from multivariate Ornstein-Uhlenbeck process

theory (e.g. Hennequin et al., 2014), we know that the covariance matrix of the compound process satisfies the following
Lyapunov equation:(

A I
0 − τE

τη
I

)(
Σ Λ
ΛT Ση

)
+
(

Σ Λ
ΛT Ση

)(
AT 0
I − τE

τη
I

)
= −

(
0 0
0 2 τE

τη
BBT

)
(S25)

where Σ is the covariance we are trying to compute. By vectorizing Equation S25, neglecting the bo�om right quadrant
(which by itself only confirms Ση = BBT as promised above), and taking into account the symmetry, one ends up with
a system of 7 coupled but linear equations to solve for the 3 unknowns of Σ and the 4 unknowns of Λ. This can be done
by hand using some patience, or automatically using a symbolic solver such as Mathematica, and yields the expression in
Equation S26.
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In Equations S26 to S29, each term that depends on A or J depends implicitly on the (dimensionless)
constant input α delivered to both E and I populations, because A (and J ) depends on mean voltages
(through Equation S20) which themselves depend on α. Note also that, for the network to be stable at
a given input level α, the Jacobian matrix J (α) should obey TrJ < 0 and DetJ > 0 (with the la�er
equivalent to Det A > 0).

Among other things, we will analyze the behaviour of the total variance, i.e. the trace of Σ given by

Tr(Σ) = (1 + τ̄η)
β(A) (1− τ̄ηTrJ ) + Det A (τ̄I c2

E + τ̄−1
I c2

I )
−TrJ Det A

(
τ̄I − τ̄I τ̄η TrJ + τ̄ 2

η Det A
) (S30)

with A defined in Equation S19 and

β(A) ≡ (A2
IE + A2

II) c
2
E + (A2

EI + A2
EE) c2

I − 2 (AIE AEE + AEI AII) cEI (S31)

3.3 Analysis in simplified scenarios

In order to understand what Equation S30 tells us about the modulation of variability with the input
α, we make a couple of assumptions that greatly simplify the expression for the total variance with
li�le loss of generality. First, we consider the limit of slow3 input noise which we find empirically is
approached rather fast, with τη = 50 ms already giving a close approximation given τE = 20 ms and
τI = 10 ms. Next, we assume that

cE =
cI

κ
≡ c (S32)

and ρEI = 0 (implying cEI = 0), i.e. the E and I units have uncorrelated input fluctuations of equal
amplitude (the impact of positive input correlations, ρEI > 0, will be discussed in 3.4). With these two
assumptions, the total variance simplifies into

Tr(Σ) = c2 β0(A)
Det A2 = c2 A2

IE + A2
II + A2

EI + A2
EE

(AEE AII − AEI AIE)2 (S33)

where we defined β0(A) ≡ β(A)/c2.

There are two ways to understand how total variance scales with inputs. First, somewhat loosely and
indirectly, via its scaling with mean responses. As mean voltage responses increase with the stimulus,
so do the e�ective weights, which – for a large enough input and a general threshold-powerlaw in-
put/output nonlinearity with exponent n – are proportional to yn−1 (Equation S20). As the numerator
of Equation S33 is quadratic in A and thus also in the e�ective weights in the large input limit, while
the denominator is quartic, the overall scaling is going to be inverse quadratic in the e�ective weights,
yielding a total voltage variance which scales with mean responses approximately as

Tr(Σ) ∝ 1/y2(n−1) (S34)

Second, for the special case of a threshold-quadratic nonlinearity (n = 2), we can also understand the
scaling of the total variance directly with the input strength, α, in more precise terms. The typical
behavior of β0(A)1/2 and Det A is shown in Figure S2A. Both can be expressed as functions of mean
responses using Equations S19 and S20:

β0(A) = κ2 (JEE yE − 1)2 + κ2 (JEI y I)
2 + (JIE yE)2 + (1 + JII y I)

2 (S35)

Det A2 =
[
(JIE yE) (JEI y I) + (1− JEE yE) (1 + JII y I)

]2 (S36)

3The other limit (fast noise, τη → 0) also greatly simplifies Equation S30, but would not make much sense in the context of
this study, since Equation S1 is meant to model the dynamics of the voltage on a timescale≥ 30 ms, which is the timescale on
which a threshold power-law relationship between voltage and rate has been measured in cat V1. Therefore, the input noise
that we explicitly model here is meant to capture the slowly fluctuating components of external inputs, the fast components
having been “absorbed” into the threshold power-law gain function.
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Note that to simplify notations we have dropped the b·c+ that should surround every y . Based on
these expressions, we now examine the behavior of variability in the small and large α limits and show
that the total variance should typically grow and then decay with increasing α, and therefore should
exhibit a maximum which empirically we find occurs for α ∼ 1.

Behavior of the total variance for small α Using Equations S33, S35 and S36, we find the slope
of the total variance at α = 0 to be

d
dα

Tr(Σ)
∣∣∣∣
α=0

= 2 c2 (gE JEE − κ2 gI JII
)

(S37)

Thus, when the noise power fed to inhibitory cells is su�iciently small, κ = cI/cE will be small enough
that the expression in Equation S37 will stay positive, and therefore total variability will grow with
small increasing α. Indeed, we find that this happens for most (>90%) of the randomly sampled net-
works of 2.2 with κ as large as 1/2 (Figure S2A, bo�om). Moreover, restricting the analysis to the E unit
gives dΣEE/dα|α=0 = 2 c2 gE JEE which is always positive, independently of κ. Thus, for slow enough
input noise, the variability in the E unit always increases with small α.

We can extend this argument to slightly larger values of α by further inspecting the numerator and
denominator in Equation S33. Although the first term in the numerator, (JEE yE−1)2, originally decays
with α as yE grows from 0 to 1/JEE, the other three terms always grow with α as long as mean voltages
do, and thus we expect the numerator to typically grow. This is indeed what we find in all sampled
networks (Figure S2A). On the other hand, the denominator (Equation S36) is the square of the sum of
two terms, the first one initially small and growing, and the second one initially large and decaying.
Indeed, the second term starts at 1 for α = 0, because the y terms are all zero, and then decays to
zero as the network enters the inhibition-stabilized (ISN) regime and the e�ective excitatory feedback
gain JEE yE becomes larger than one4 (Tsodyks et al., 1997; Ozeki et al., 2009). Thus, due to this partial
cancellation of growing and decaying terms, we expect the denominator to either decrease, or grow
very slowly, with increasing α (Figure S2A), until it starts growing faster (see arguments below for
the large α case) in the very rough neighborhood of the ISN transition. All in all, the ratio of a fast
growing numerator to a slower growing denominator suggests that the total variance should robustly
grow with small increasing α (Figure S2A, bo�om).

Behavior of the total variance for large α As the input grows, so do the mean (dimensionless)
voltages yE and y I at least over some range of α. Therefore, we expect both the numerator and the
denominator that make up the total variance in Equation S33 to grow with large enough and increasing
α. However, loosely speaking, the numerator grows as y2 while the denominator grows as y4, which
can be seen by inspecting Equations S35 and S36. Thus, their ratio should decrease roughly as

Tr(Σ) ∝ 1
y2 (S38)

which is just a special case for n = 2 of the generic result in Equation S34 for arbitrary n.

However, here (for n = 2) this argument can be made more rigorous in the case of ΩE > 0, i.e. when
the E unit does not supersaturate. In this case, from Equation S15 we have yE ≈

√
2ΩE α/Det J and

y I ≈
√

2ΩI α/Det J forα large enough. Therefore, in the largeα limit, the numerator and denominator
of Equation S33 respectively behave as

β0(A) ≈ 2
Det J

[
(J2

IE + κ2 J2
EE)ΩE + (J2

II + κ2 J2
EI)ΩI

]
α (S39)

Det A2 ≈ 4ΩE ΩI α
2 (S40)

4In this regime, JEE yE > 1 ⇔ AEE > 0 implies instability of the excitatory subnetwork in isolation, and therefore the
need for dynamic, stabilizing feedback inhibition (hence the name “inhibition-stabilized network”).
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therefore the total variance (their ratio) decreases as 1/α. For ΩE < 0, the large α limit is irrelevant
strictly speaking, as in this limit byEc+ and rE go to zero. In this case the total variance does not decrease
asymptotically but reaches a finite limit of c2

[
1 + (τ̄I JEI/JII)2

]
. However, we find empirically that the

peak of variability always occurs well before the onset of supersaturation, in a regime where both yE
and y I are still growing with α while remaining roughly proportional to each other (Figure S1E), so
that the argument made above can be repeated: the total variance decreases as 1/y2 for a while a�er
having peaked.

Where does variability peak? The above arguments, derived for slow noise τη → ∞, show that
growing inputs typically increase, and then suppress, total variability in the two-population SSN. Thus,
total variability (and even more certainly, variability in the E unit) typically exhibits a maximum for
some intermediate value of α. We find empirically that, even for finite τη , the location of this variance
peak is well approximated by its location in the limit of fast inhibition, τ̄I → 0, which we can estimate
analytically. Indeed, in this limit, the I cell responds instantaneously to changes in E activity and input
noise, such that

δVI(t) =
JIE yE δVE(t) + ηI(t)

1 + JII y I
(S41)

Consequently, δVE now obeys one-dimensional dynamics given by

τE δV̇E = −λ δVE(t) + ηe�(t) (S42)

where

λ = 1 +
yE (Det J y I − JEE)

1 + JII y I
(S43)

and ηe� is a noise process (a linear combination of ηE and ηI) with temporal correlation length τη and
a variance that is empirically irrelevant for the arguments below5. In this case, the variance of δVE

is inversely proportional to λ ( 1
τ̄η

+ λ), and therefore should be maximum at the input level α that
minimizes λ. Observing from Figure S1E that yE and y I are roughly proportional over a large range of
α (for ΩE < 0), if not the entire range (for ΩE > 0), we can make the following approximation:

λ− 1 ∝ y I (Det J y I − JEE)
1 + JII y I

(S44)

whose minimum is straightforward to calculate and is a�ained for

y I =
1
JII

(√
JEI JIE
Det J

− 1

)
(S45)

We find that the α of maximum variance in the E unit is indeed very well approximated by the α at
which y I reaches the threshold value of Equation S45, especially in the absence of input correlations
(ρEI = 0, Figure S2B, le�). For correlated noisy inputs, the criterion of Equation S45 deteriorates slightly
but still consistently provides an upper bound on the α of maximum E variance (Figure S2B, right).

Interestingly, the criterion for maximum variance in Equation S45 is equivalent to a criterion about the
e�ective I→I connection, given by W e�

II ≡ 2 k bV Ic+WII (cf. Equation 1 in main text). Specifically, at
the peak of variance we expect to have

W e�
II =

√
1

1− β
− 1 with β ≡ WEE WII

WEI WIE
(S46)

where β < 1 is in some sense the ratio of what contributes positively to the activity of the E cell
(product of self-excitation WEE with disinhibition WII) to what contributes negatively to it (the product

5The variance of the e�ective noise process is proportional to 1 + J2IE y I
2

(1+JII y I)
2 , and so has some dependence on α especially

for small α before y I grows large. However, empirically, the quality of the approximation in Equation S44 – which is derived
under the assumption of constant e�ective noise variance – suggests that we can neglect this e�ect.
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WIE WEI quantifying the strength of the E→ I→ E inhibitory feedback loop). Thus, in networks with
inhibition-dominated connectivity, i.e. ones in which β � 1, we expect W e�

II to reach the criterion of
Equation S46 earlier as the input grows (this argument implictly assumes that the rate of growth of
W e�

II itself doesn’t depend too much on β, which we could confirm numerically).

Finally, we note that since variability peaks for α ∼ O(1) and y ∼ O(1), networks with stronger
connectivity (large ψ) will exhibit a peak of variance for smaller external input h (because α ∝ ψ h) –
and this peak will occur for lower voltages/firing rates (because V ∝ y/ψ).

3.4 E�ects of input correlations

To see the e�ect of input correlations on variability, we return to the expression forΣEE in Equation S30,
assume again that τη →∞ and cE = cI

κ = c, but now with ρEI 6= 0. We thus obtain:

ΣEE = c2 A
2
II + κ2 A2

EI

Det A2 − 2 c2 ρEI
κAII AEI

Det A2 (S47)

Thus, total E variability is equal to that without input correlation (the first term), minus a positive
term proportional to ρEI. Thus, positive input correlations always decrease variability in the E unit
(and, in particular, its peak; Figure S2C, right), while negative correlations increase it. Moreover, the
subtracted term has the same large-α behavior as the first term, because the two terms share the
same denominator and for large alpha both numerators are O(y I

2). Thus, input correlations should
not a�ect the qualitative, decreasing behaviour of E variance for large increasing inputs. For small α
and large ρEI, however, we expect A2

II +κ
2 A2

EI−2 ρEI κAII AEI to grow much more slowly than A2
II +κ

2 A2
EI;

and indeed, in the extreme case ρEI = 1, the total numerator becomes (1 + (JII − κ JEI) y I)
2, which can

even decrease transiently with increasing α if κ JEI > JII (this occurs in about half of our thousand
networks). This, in e�ect, shi�s the peak of E variability to smaller values of α (Figure S2C, le�).

The situation for the I unit is a bit di�erent, as input correlations a�ect the I variance di�erently
depending on whether the network has already made the transition to the ISN regime. Indeed, under
the same assumptions as above, the I variance is given by

ΣII = c2 κ
2 A2

EE + A2
IE

Det A2 − 2 c2 ρEI
κAEE AIE

Det A2 (S48)

In the ISN regime, AEE > 0, so that input correlations decrease I variability, just as they do for E
variability as seen above. For small enough inputs, however, the network is not yet an ISN (AEE < 0),
so that the e�ect of correlations is reversed: larger input correlations increase I variability.

In sum, input correlations modify the fine details of how large the variance grows and how early
it peaks with increasing inputs, but they do not modify the qualitative aspects – in particular, the
non-monotonic behavior – of variability modulation with external inputs in this two-population SSN
model.

3.5 Mechanisms of variability modulation: Schur decomposition

We now unpack the mechanistic aspects of variability modulation in the SSN, by decomposing the
e�ects of e�ective connectivity into two qualitatively di�erent flow fields that shape the covariance of
activities in the network in distinct ways (Figure S3): “shear” and “restoring” fields. To do this, we focus
on the linearized dynamics of Equation S18 and perform a Schur decomposition of the Jacobian matrix
in Equation S22 (which includes both the single-neuron leak and the e�ective connectivity; Murphy
and Miller, 2009):

J (α) = U(α) TSchur(α) U(α)? with TSchur(α) ≡
(

λs wFF

0 λd

)
(S49)
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where ·? denotes the conjugate transpose, λs and λd are the two (either real or complex-conjugate6)
eigenvalues of J (α), the columns of U are the (orthonormal) Schur vectors such that U U? = U? U = I,
and wFF is the feedforward weight coupling the dynamics of the Schur vectors. Expressing the E and
I voltage fluctuations in the Schur basis as z ≡ U? δV, their dynamics become

τE
dz
dt

= TSchur z + U? T−1 η (S50)

In the case of the 2-population E/I architecture considered here (W given by Equation 8 of the main
text), the first Schur vector is a “sum mode” in the generalized sense (Murphy and Miller, 2009), i.e. its
excitatory and inhibitory components have the same sign7. This corresponds to pa�erns of network
activity in which the excitatory and inhibitory units are simultaneously either more active or less active
than average. The second Schur mode is a generalized “di�erence mode” in that its excitatory and
inhibitory components have opposive signs. (Hence the notations λs and λd.) In theory, U depends
on the input α, because J does. However, we find that past a relatively small value of α, the Schur
vectors do not change much and are indeed sum-like and di�erence-like across all thousand networks
studied in Methods S2 and Methods S3 (Figure S2E).

The Schur decomposition reveals through TSchur(α) a feedforward structure hidden in the e�ective,
recurrent connectivity J (α). The di�erence mode feeds the sum mode with an e�ective feedforward
weight wFF (also a complex number if the eigenvalues have an imaginary component), given by the
upper right element of the triangular matrix TSchur – graphically, this corresponds to the “shear” flow
field in Figure S3. On top of this, both pa�erns inhibit themselves with the corresponding negative
weight λd or λs – the “restoring” flow field in Figure S3. Note that the sum of squared moduli (squared
Frobenius norm ‖ · ‖2

F) is preserved by the unitary transformation J 7→ U? J U ≡ TSchur, such that
‖J ‖2

F = ‖TSchur‖2
F, i.e.

|wFF| =
√
‖J ‖2

F − (|λs|2 + |λd|2) (S52)

The calculation of the network covariance matrix (Equation S30) can also be performed in the Schur
basis, and doing this sheds further light on the roles of λd, λs and wFF in shaping variability. We begin
by observing that

Tr (Σ) = Tr
(
〈δV δVT〉

)
= Tr (〈U z z? U?〉

)
= Tr (U〈 z z? 〉U?

)
= Tr (〈z z?〉

)
(S53)

(the last step following from U U? = I). Thus, the total variance is preserved in the Schur basis. Next,
taking the Fourier transform of Equation S50 and rearranging term yields

ẑ(ω) = (i ω I− TSchur)
−1 U? T−1 η̂(ω) (S54)

6The eigenvalues remain real over the entire input range for about half of the 1000 random networks studied throughout
(all with τ̄I = 1/2). In the second half, they go from real to complex-conjugate and then sometimes to real again.

7 This holds when the eigenvalues of A are real. When they are complex conjugate, one can still perform a real Schur
decomposition by orthogonalizing the imaginary part of the eigenvector against the real part, which yields

TSchur =
(

Re(λ) a+

a− Re(λ)

)
a± ≡

wFF ±
√

wFF
2 + 4 Im(λ)2

2
(S51)

and the two Schur vectors in this case are also sum-like and di�erence-like, in this order. At this point (anticipating to some
extent what follows this footnote), we note that in the imaginary case, there is a small feedback term proportional to a−
from the sum-mode to the di�erence-mode. Thus, the picture of the flow fields drawn in Figure S3 is incomplete. However,
we will see that in the slow-noise limit (which gives a very good approximation to the output covariance as seen in 3.3), the
purely feedforward picture remains exact provided one replaces wFF, λd and λs by their moduli.
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where ·̂ denotes the Fourier transform and ω ≡ 2π f τE is a dimensionless frequency. Moreover, ac-
cording to Parseval’s theorem we have

Tr (〈z z?〉
)

=
1

2π τE

∫ +∞

−∞
Tr (ẑ ẑ?

)
dω (S55)

Thus, combining Equations S53 to S55 we get

Tr(Σ) =
2 τ̄η
π

∫ +∞

−∞

Tr
[
(i ω I− TSchur)−1 U? Σ̃η U (i ω I− TSchur)−?

]
1 + (τ̄η ω)2 dω (S56)

where Σ̃η ≡ T−1 Ση T−1. To simplify the calculation we now assume uncorrelated input noise terms,
with the power of noise input to E and I balanced such that κ = τ̄I and Σ̃η = c2 (1 + 1/τ̄η) I, leading to:

Tr(Σ) =
(1 + τ̄η) c2

π

∫ +∞

−∞

Tr
(
(i ω I− TSchur)−1(i ω I− TSchur)−?

)
1 + (τ̄η ω)2 dω (S57)

=
(1 + τ̄η) c2

π

∫ +∞

−∞

1
1 + (τ̄η ω)2

(
1

|i ω − λd|2
+

1
|i ω − λs|2

+
|wFF|2

|i ω − λd|2|i ω − λs|2

)
dω

where the second equality comes from having inverted the upper-triangular matrix i ω I− TSchur ana-
lytically and taken its squared Frobenius norm. Carrying out the integral gives

Tr(Σ) = (1 + τ̄η) c2
(

1− τ̄η λr
s

−λr
s (1− 2 τ̄η λr

s + τ̄ 2
η |λs|2)

+
1− τ̄η λr

d

−λr
d (1− 2 τ̄η λr

d + τ̄ 2
η |λd|2)

(S58)

+
|wFF|2

[
1− τ̄η (λs + λd)

]
−(λs + λd) |λs| |λd|

[
1− τ̄η (λs + λd) + τ̄ 2

η |λs| |λd|
]) (S59)

where λr
s and λr

d stand for the real parts of λs and λd respectively (they must both be negative for the
dynamics to be stable).

This expression simplifies in the slow noise limit, τ̄η →∞:8

Tr(Σ)
τ̄η→∞−→ c2

(
1
|λs|2

+
1
|λd|2

+
|wFF|2

|λs|2 |λd|2

)
(S60)

In this limit, the simplified picture of the flow fields drawn in a plane of sum and di�erence activity
(Figure S3) which assumed that they were real quantities, becomes accurate even when the eigenvalues
of J are complex-conjugate (in which case, as mentioned above in Footnote 7, the sum-like mode
feeds back onto the di�erence mode, although this interaction is much weaker than the opposite one).
Indeed, in Equation S60, the elements of TSchur are reduced to their moduli, so even when they are
complex one can still interpret Equation S60 as the total variance in a system with the same real Schur
vectors, real eigenvalues equal to −|λd| and −|λs| respectively, and a real feedforward weight equal
to |wFF|.

Equation S60 shows in more detail how the shear and restoring flows contribute to variability. In loose
terms, the total variance is a sum of two contributions: one that does not depend on wFF and decreases
with 1/|λ|2, and one that grows with |wFF|2 but is also divided by a term of order λ4 (where λ is a
loose notation to denote the overall magnitude of the eigenvalues). Thus, as the input grows, the e�ect
of the eigenvalues on variability becomes much stronger than that of balanced amplification. Such a

8More generally, for arbitrary τ̄I, κ and ρEI, in the limit τ̄η →∞, Equation S60 still holds, in precisely the same form, but

in terms of the eigenvalues and feedforward Schur weight of B(α) ≡ cΣ
− 1

2
η A(α) rather than of J (α). This is because, in

that limit, Tr(Σ) = c2 ‖B−1‖2
F. Note that τ̄I cannot a�ect the result in the limit τη → ∞; and that when κ = τ̄I and ρEI = 0,

then J (α) = B(α) and hence Equation S60 holds. To see why Tr(Σ) = c2 ‖B−1‖2
F in this limit: most simply, in the slow noise

limit, one can think of the noise η(t) in Equation S18 as a constant input and solve for its steady state δV = −A−1 η, then
form Σ =

〈
δV δVT

〉
.

12



dominance can also be understood from the structure of the flow fields that negative self-couplings and
balanced amplification induce. Restoring flows are proportional to the distance from the origin: the
stronger the momentary Vm deviation from the mean in any direction, the stronger the pull towards
the origin in the same direction (Figure S3C, green arrows). In contrast, the shear flow grow along the
di�erence axis while pointing in the orthogonal, sum direction, such that larger deviations in the sum
do not imply larger shear flow (Figure S3C, orange arrows). Thus, self-inhibition leads to exponential
temporal decay of activity fluctuations, whereas balanced amplification gives only linear growth. This
explains why, for large enough input, Vm variability decreases with increasing input even when all flow
fields grow in magnitude at the same rate (Figure S2A).

Equation S60 also shows that if one of the eigenvalues transiently weakens with increasing input,
then variability should transiently grow. This explains a large part of the variability peak observed in
the network of the main text, and indeed, it also predicts variability growth in most of the thousand
networks investigated here. However, there are cases where variability transiently grows, without any
weakening of eigenvalues (Figure S4A). In those cases, se�ing wFF to 0 in Equation S60 wrongly predicts
purely decaying variability (compare dashed and solid black lines in Figure S4A, bo�om). Thus, in
general, initial variability growth results from the combined e�ects of weaker inhibitory self-couplings
and strong balanced amplification.

3.6 How do shear and restoring flow fields depend on the input?

The input dependence of the shear (|wFF|) and restoring (|λs|, |λs|) flows can be understood from the
input dependence of mean responses (yE and y I), which was examined previously in Methods S2. First,
at α = 0 (no input) the e�ective connectivity is zero, thus J = diag(−1,−τ̄−1

I ) and therefore the two
eigenvalues are −1 and −1/τ̄I. To see how the eigenvalues change with the input, let us note that for
a 2 × 2 matrix, the sum of the eigenvalues is equal to the trace of the matrix while their product is
equal to its determinant. Thus, when both eigenvalues are real (which they are for small enough α),
both the arithmetic and geometric mean of |λs| and |λd| can be related to the elements of J , which
themselves depend directly on yE and y I. This yields:

|λs| + |λd| = τ̄−1
I

[
1 + τ̄I +

(
JII y I − τ̄I JEE yE

)]
(S61)

and (S62)

|λs| |λd| = τ̄−1
I

[
1 + Det J yE y I +

(
JII y I − JEE yE

)]
(S63)

We see that, by both measures, the overall restoring flow tends to grow with increasing input α, be-
cause i) mean responses grow too, and therefore so does the product term in Equation S63, and ii) y I
tends to grow larger than yE (Figure S1E), so that the weighted di�erence terms inside round brackets
in both Equations S61 and S63 increase, at least for large enough α. However, when gE JEE > gI JII, the
di�erence term in Equation S63 will initially grow negative with increasing – but small – α, before it
increases again for larger α. This means that at least one of the eigenvalues will decrease. In such a
case, whether or not both eigenvalues decrease transiently depends on the behavior of the di�erence
term in Equation S61. The requirement for this di�erence term to decrease initially is τ̄I gE JEE > gI JII
which is harder to satisfy especially when inhibition is fast (τ̄I is small). Thus, we typically expect
that one eigenvalue should decrease (or, at least, its growth should be delayed) before growing again
(Figure S2A).

As for the shear flow, a similarly simple expression can be obtained in the case of real eigenvalues
by noting that the sum of squared eigenvalues in 2 × 2 matrix J is equal to (TrJ )2 − 2 DetJ . This
observation yields

|wFF| =
√
‖J ‖2

F − (TrJ )2 + 2 DetJ

= τ̄−1
I

(
JIE yE + τ̄I JEI y I

)
(S64)
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i.e. the shear flow is proportional to a weighted average of mean Vm responses in the E and I units,
which, in the SSN, shows linear growth for small α and sublinear growth for larger α (cf. Methods
S2 and Figure S1D). Thus, we have a situation in which the flow that boosts variability grows faster
initially than those that quench variability, causing a transient increase in total variance for small
increasing inputs. For large α, all flows (|λs|, |λd| and wFF) grow as

√
α (Figure S2A), because J is

dominated by its Jαβ yβ components and the y terms grow as
√
α as seen in Methods S2. Thus, the

total variance in Equation S60 should decay as 1/α in this limit, consistent with what we concluded
in 3.3.

When the eigenvalues of J turn complex-conjugate, Equations S61, S63 and S64 above become more
complicated expressions, which nevertheless does not change the main insights.

Methods S4 Firing rate and spike count variability

4.1 Generic results in the SSN regime

In Equation S34, we derived a generic scaling of membrane potential variances, Σ, with mean responses
in the SSN. What does it imply for rate variances and Fano factors? Firing rate variability, Σr, is
straightforwardly related to voltage variability through a linearization of the input/output nonlinearity,
yielding the following relationship:

Σr
ij ∝ V (n−1)

i V (n−1)
j Σij ≈ O(1) (S65)

Therefore, whether Σr grows or shrinks with increasing activation will depend on parameter details.
(Note that this is valid only to the extent that mean responses keep growing with large stimuli, which
occurs when ΩE > 0 – see 3.3 above. For ΩE < 0 we observe a decline of firing rate variance with
increasing stimulus.)

Under the assumption that spikes are emi�ed according to an inhomogeneous Poisson process with
underlying rate given by a threshold-powerlaw nonlinearity, we have shown in Hennequin and Lengyel
(2016) that the above-Poisson contribution to Fano factors (FF-1), due to slow voltage variability, scales
as

FFi − 1 ∝ V n−2
i Σii (S66)

Substituting Equation S34 into this, we have that

FFi − 1 ∝ V−ni (S67)

Thus, Fano factors are generally expected to decrease (towards a Poisson lower-bound of 1) as long as
the stimulus increases mean responses.

4.2 The specific regime of Kanashiro et al. (2017)

Kanashiro et al. (2017) studied a two-population E-I model (analogous to what we analyzed in Fig. 2
of the main text) in which they analyzed conditions for a�ention to suppress variability and increase
stimulus gain. In apparently conflict with our main result that variability suppression should occur
generically, they reported very specific conditions for variability quenching. In this section, we relate
their model to ours directly to understand the sources of this apparent contradiction.

Kanashiro et al. (2017) studied mean-field dynamics for firing rates r =
(

rE
rI

)
(an ‘r-equation’) of the

form

τET
d
dt

r = −r + f (W r + c g + aµ + η(t)) (S68)
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where boldface small or Greek le�ers denote two-vectors with an E and I component, the function f(·)
represents applying the function fE(·) to the E component and fI(·) to the I component, η(t) is a zero-
mean unit-variance noise, c g represents a stimulus-driven input, of strength c, while aµ represents
an a�entional input, of strength 0 ≤ a ≤ 1.

For the input-output function f(·), Kanashiro et al. (2017) used the firing rate of an integrate-and-fire
neuron responding to a given mean and variance of input. This is an expansive function that, for a fixed
level of fast noise, can be well approximated as a power law (Hansel and van Vreeswijk, 2002) (precisely
the form of nonlinearity we used in our model (S1). Nevertheless, most of the results we derive in this
section (unless otherwise noted) hold for an arbitrary monotonically increasing, expansive f(·), and
thus wherever possible, we will express them in terms of f(·) and its slope, f′(·), rather than using our
previous approach to express the scaling of variability in terms of V and its powers, which was specific
to a powerlaw nonlinearity9.

Although in contrast to Kanashiro et al.’s r-equation, we studied an equation for voltage dynamics
(a ‘v-equation’; Equation S1), there is a simple equivalence between these two forms of model10. In
particular, linearizing Equation S68 gives the covariance matrix of rate fluctuations as Σr = FΣ F
where Σ is the covariance matrix of voltage fluctuations implied by our (linearized) voltage equation

Equation S18 with the same input noise η(t), and F =
(

f ′E 0
0 f ′I

)
(cf. Equation S65).

Like us, Kanashiro et al. (2017) analyzed variability by linearizing the dynamics about a fixed point,
and they studied the slow-noise limit; thus we shall also restrict our analysis to this limit here. They
concluded that, to reduce variability, a�entional input had to be biased toward inhibitory cells (µI >
µE); while for a�entional input to increase the gain of response to a stimulus, stimulus-driven input
had to be directed to excitatory cells (gE > gI). As we will show, these conclusions depend on the
specific, non-generic parameter choices they made, which eliminate the more generic suppression of
variability by increasing activity seen in the SSN.

In particular, Kanashiro et al. (2017) simplified the weight matrix
(

WEE −WEI

WIE −WII

)
to the special, non-

generic form
(

WE −WI

WE −WI

)
. This assumption on the weights means that Det W = 0 and ΩE = ΩI = 0,

which eliminates many SSN behaviors.11 Furthermore this means that Det A scales as (f ′)1 instead of
the generic (f ′)2 (because one of the eigenvalues of A is −1, independent of the values of the f ′’s, cf.
Footnote 9), so that A−1 scales as (f ′)0. Therefore, Σ scales as (f ′)0 instead of the generic (f ′)−2, Σr

scales as (f ′)2 instead of the generic (f ′)0 (cf. Footnote 9). To see the implications of this scaling for
Fano factors, we recall that the firing rate nonlinearity f used by Kanashiro et al. is well approximated
by a threshold powerlaw with some exponent n; thus, from the general results developed in 4.1, we
expect the above-Poisson part of the Fano factor, ∝ V n−2 Σ, to scale as (f ′)(n−2)/(n−1) instead of the
generic (f ′)−

n
n−1 . In short, this choice of parameters causes Σ and the Fano factor to lose their generic

decrease with increasing activity (and in fact, causes the Fano factor to generically increase instead),
and causesΣr to change from going to a constant for large f ′’s to generically increasing with increasing
activity. This renders any decrease in these measures of variability with increasing activity much more

9For example, it is easy to show that the scaling of e�ective connectivity, membrane potential and rate variability devel-
oped in Equations S34 and S65 can be wri�en using this more general approach as Det A ∝ (f ′)2, Σ ∝ (f ′)−2 and Σr ∝ (f ′)0,
respectively.

10When T (a diagonal matrix of relative time constants) is proportional to the identity matrix, the r-equation τ d
dt r = −r +

f (Wr + hr (t)) is equivalent to the v-equation τ d
dt v = −v+W f(v)+hv (t), under the equivalence v = Wr+hr , τ d

dt hr = −hr +hv

(Miller and Fumarola, 2012). For steady states or in the slow noise limit, the rate and voltage equations are equivalent under
the simpler relationship r = f (v), hr = hv , regardless of the structure of T.

11The SSN (Ahmadian et al., 2013) relies on a positive determinant of W to ensure stability and also to ensure that
the “loosely balanced” solution exists, which depends on W being invertible (this solution is illustrated in Equation S11-
Equation S15). The loosely balanced solution characterizes SSN dynamics for stronger input (roughly, for stimulus-driven
rather than spontaneous input). Furthermore, SSN dynamical regimes are characterized by the nonzero values of ΩE and ΩI

(Equations S13 and S14).
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dependent on specific parameter choices, including in particular the choice of relative strength of
external input to E vs. I cells (µI > µe).

More specifically, Kanashiro et al. (2017) focused on the variance of rE (the EE component of Σr). In
the general case in the slow noise limit, this is (from Equation S26)

Σr
EE =

(1 + f ′I WII)((1 + f ′I WII) (f ′E cE)2 − 2 f ′2E f ′I WEI cEI) + (f ′E WEI)2 (f ′I cI)2

(Det A)2 (S69)

where Det A = 1 − f ′E WEE + f ′I WII + f ′I f
′

E Det W. In addition to the assumption on the structure of
W, Kanashiro et al. (2017) also assumed that the inhibitory and excitatory input noise were perfectly
correlated, cEI = cE cI (because they assumed a single, global noise process in Equation S68). Using
these assumptions, the excitatory rate variance instead becomes

Σr
EE|Kanashiro =

f ′2E (f ′E cE + f ′I WI f ′E cE − f ′2I WI cI)2

(Det A|Kanashiro)2 (S70)

where Det A|Kanashiro = 1 − f ′E WE + f ′I WI. The numerator of Σr
EE|Kanashiro increases with increasing

f ′E and decreases with increasing f ′I , while the opposite is true of the denominator; this is why their
increase in f ′I had to dominate the increase in f ′E for them to find a decrease in variability. For the
generic Σr

EE (Equation S69), there is no such simple monotonic dependence on f ′E or f ′I ; while results
may be parameter dependent, there is no obvious reason for this generic Σr

EE why external input must
be biased towards I cells in order for increasing activity to suppress excitatory rate variability.

Kanashiro et al. (2017) did, in one figure, consider the e�ects of a more general weight matrix. They con-
sidered the same a�ention-induced trajectory in rE and rI that decreased variability for their restricted
weight matrix, and showed that this also decreased variability for a parametric range of weights. How-
ever, they did not examine whether their conclusion that variability reduction required µI > µE held
in this more general case.

Finally, Kanashiro et al. (2017) considered the a�ention-induced change in gain of excitatory cells to

a stimulus-driven input. The excitatory stimulus gain is drSS
E
dc , where rSS

E is the E-component of the

deterministic steady-state value rSS = f
(
W rSS + c g + aµ

)
. We can compute drSS

dc = F (W drSS

dc + g),

which can be solved to give drSS

dc = (I− F W )−1 F g. The E-component is then

drSS
E

dc
=
f ′E ((1 + f ′I WII) gE − f ′I WEI gI)

Det A
(S71)

We now note that, if we write Σ∗EE for Σr
EE under the special condition of perfect correlation and equal

variances (cEI = cE cI, and cE = cI) then the numerator of Σ∗EE is f ′2E c2
E (1 + f ′I (WII −WEI))2 (the denomi-

nator remains (Det A)2). This allows us to write

drSS
E

dc
=
gE

cE

√
Σ∗EE + f ′E f

′
I WEI (gE − gI)/Det A (S72)

Note that Det A > 0 is a necessary condition for the fixed point to be stable and f ′E > 0, f ′I > 0. This
means that, if an a�entional manipulation lowers Σ∗EE, then in order for it to raise the excitatory stimu-
lus gain it must either be the case that gE > gI and the a�entional stimulus increases the second term,
by increasing f ′E f

′
I /Det A, more than the first term decreases; or gE < gI and the a�entional stimulus

decreases the magnitude of the 2nd term, by decreasing f ′E f
′

I /Det A, by more than the decrease in the
first term. However, an a�entional stimulus may raise Σ∗EE while lowering Σr

EE.

With the assumptions of Kanashiro et al. (2017), Equation S71 becomes drSS
E

dc = f ′E (gE+WI f ′I (gE−gI))
Det A|Kanashiro

and the
numerator of Σ∗EE becomes f ′2E c2

E. Kanashiro et al. (2017) restricted their analysis to the case cI = cE, so
that with their other assumptions Σr

EE = Σ∗EE, and so simply wrote

drSS
E

dc
=
gE

cE

√
Σr

EE + f ′E f
′

I WI (gE − gI)/Det A|Kanashiro (S73)
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Note that the numerator of the second term is quadratic in the increasing f ′ terms, while their denom-
inator (unlike the denominator in Equation S72) is only linear in these terms. Thus, under Kanashiro
et al., 2017’s assumptions, the second term should generically increase in magnitude with the increased
activation induced by a�ention. Perhaps on this basis, they predicted that a�ention’s observed e�ects
of lowering excitatory variability and raising excitatory stimulus gain required gE > gI.

Defining Σ∆
EE ≡ Σr

EE − Σ∗EE,12 Equation S72 can be rewri�en as

drSS
E

dc
=
gE

cE

√
Σr

EE − Σ∆
EE + f ′E f

′
I WEI (gE − gI)/Det A (S76)

Note that, with Σr
EE decreasing, the first term of drSS

E
dc can be increasing if Σ∆

EE decreases by more than
Σr

EE. Thus, for generic parameters, we conclude that a�ention can increase excitatory stimulus gain
while lowering Σr

EE by virtue of the first term of Equation S76 increasing with a�ention, which will
occur if Σ∆

EE decreases more than Σr
EE, and/or of the second term increasing with a�ention, which will

occur for gE > gI or gE < gI if f ′E f
′

I /Det A increases or decreases, respectively, with a�ention.

12With the assumptions of Kanashiro et al. (2017),

Σ∆
EE|Kanashiro =

(
f ′2E f ′I WI (cE − cI)

(
2 cE + f ′I WI (cE − cI)

))
/ (Det A|Kanashiro)2 (S74)

More generally,
Σ∆

EE =
(
f ′2E f ′I WEI

(
2 (1 + f ′I WII) (c2

E − cEI) + f ′I WEI (c2
I − c2

E)
))
/ (Det A)2 (S75)
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Figure S1. Related to Figure 2. Typical behavior of mean responses to increasing inputs in
1000 randomly sampled 2-population SSNs. (A) Dimensionless recurrent weights {Jαβ} (Equa-
tion S8); these are normalized such that the largest of the four weights is one for each network. Colors
indicate the sign of ΩE (Equation S13). (B) Distribution of feedforward weights gE and gI, also nor-
malized for each network so that their maximum is one. (C) Overall connection strength ψ (in units
of W , see table ”Parameters Used in the SSN Simulations” in STAR Methods, such that Wαβ ≡ ψ Jαβ)
vs. ΩE. (D) Example responses (dimensionless voltages yE and y I) to increasing inputs (dimensionless
α) for a network with ΩE > 0 (top) and one with ΩE < 0 showing supersaturation (bo�om). (E) Mean
E firing rate rE as a function of the mean I firing rate r I, for a subset of networks; each point on these
curves corresponds to a di�erent input level, increased from zero to a maximum value chosen such
that r I = 200 Hz.
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Figure S2. Related to Figure 2. Robustness of variability modulation to changes in network
parameters. We examined the modulation of variability by external input in the 1000 randomly pa-
rameterized, 2-population networks of Figure S1. (A) Behavior of |wFF|, |λs|, |λd|, ‖A‖F, det(A) (Equa-
tion S49) and the total variance (normalized to unit peak), as a function of the (dimensionless) input α.
The dashed green line is proportional to

√
α. Only a random subset of the thousand random networks

are shown. Following the same convention as in Figure S1, cases with ΩE > 0 are shown in black,
those with ΩE < 0 in orange. (B) Sca�er plot of the α at which the E variance reaches its maximum
(“true value”), and that given by the approximate criterion of Equation S45 (which assumes very fast
inhibition, i.e. τ̄I → 0), for uncorrelated (le�, ρEI = 0) and fully correlated (right, ρEI = 1) input noise
term to the E and I units. (C) Sca�er plot of the input α at which the E variance peaks (le�), as well as
the value of the variance peak (right), for ρEI = 0 vs. ρEI = 1. (D) Mean E (red) and I (blue) firing rates
(top) and Vm std. (bo�om) for two example networks with larger values of the power-law exponent
n; parameters were otherwise the same as in Figure 2 of the main text. (E) Orientation of the two
Schur vectors for a subset of the 1000 random networks. Their “sum-like” and “di�erence-like” nature
emerges quite rapidly for small α and then persists for larger α.
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Figure S3. Related to Figure 2. Mechanism of input-dependent modulation of variability
in the SSN. (A–C) Visualization of the influence of single-neuron leak and e�ective connectivity as
restoring and shear flow fields shaping the (co-)variability of E/I activity in the two-population SSN.
Cardinal axes (δVE and δVI) measure (in mV) the deviation of E and I membrane potentials from their
respective steady-state values (Equation S18) defined such that the origin (δV = 0 mV) corresponds to
the stationary mean population activity for the given input strength h (labels on top). Gray axes show
directions of Schur vectors (Equation S49) along which the restoring flow field acts (green triangular
arrows) and which are also coupled by the shear flow field (wFF, orange triangular arrows) such that
deviations along the “di�erence” axis give rise to deviations along the “sum” axis. Triangular arrows
are proportional in area to the contribution they make to the total flow of fluctuations. Gray traces
show example membrane potential fluctuations of the network, black covariance ellipses show contour
lines of the corresponding joint distribution of δVE and δVI at one standard deviation, dashed ellipses
in (B) and (C) reproduce covariance ellipse at h = 0 mV (A) for comparison. At h = 0 (A), the only
contributor to the flow of trajectories is the leak in each population (green flow field) acting along the
cardinal axes of E/I fluctuations – the flow is stronger (suppresses fluctuations more) along the I axis
due to the shorter membrane time constant in I cells. This flow contains the di�usion due to input
noise (cf. example trajectory in gray), resulting in uncorrelated baseline E/I fluctuations (black ellipse is
axis aligned). As the network is driven by h > 0 (B–C), the e�ective recurrent connectivity adds to the
leak to instate two types of flow fields steering fluctuations: a restoring flow field (green, generalizing
the leak in (A)) and a “shear-like” flow field (orange). The relative contributions of the two flow fields
determine the size and elongation of the E/I covariance (solid black ellipses). (D) Illustration of the
decomposition of the e�ective connectivity (for a given mean stimulus h; Equation S49) as couplings
between a di�erence-like pa�ern (le�) and a sum-like pa�ern (right; cf. rotated gray axes in B-C).
The di�erence mode feeds the sum mode with weight wFF (orange arrow), and the di�erence and
sum pa�erns inhibit themselves with negative weight λd and λs respectively (green arrows). These
three h-dependent couplings scale the corresponding flow fields in (A-C) (consistent colors). (E) Input-
dependence of wFF (top, orange) and |λd| and |λs| (bo�om, green). Black triangular marks indicate
input levels illustrated in (A-C).
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Figure S4. Related to Figure 2. Variability modulation cannot be understood based on the
restoring flows (i.e. the eigenvalues of the Jacobian of the dynamics) alone. (A) Example 2-
population network showing transient increase in variability with increasing external input h (bo�om,
black, normalized to variance at h = 0 mV), without any substantial decrease in any of the eigenvalues,
and in |λs| in particular (middle, green; cf. Figure S3E, bo�om). The dashed black curve (bo�om) shows
the predicted variability (Equation S60) assuming wFF = 0 uniformly (cf. middle, orange), i.e. taking
into account only the magnitude of the restoring flows λd and λs (middle, green). The gray curve
(bo�om) is the prediction made by assuming fully correlated input noise terms with variance g2

E and
g2
I respectively for the E and I units. Variability in this case can be read o� from the slope of the V E (top,

red) and V I curves (top, blue), because input noise becomes equivalent to fluctuations in h to which the
network has time to respond. Neither of these two predictions capture the initial growth of variability
and, consequently, both grossly underestimate the overall magnitude of variability across the whole
range of inputs. (B) Mean firing rates (top), variances of firing rate fluctuations (middle) and Fano
factors (assuming Poisson spike emission on top of rate fluctuations), in the same network as in (A)
for the E (red) and I populations (blue). Note that the overall scale of super-Poisson variability (Fano
factor minus one) is arbitrary here, and in general depends on the counting window, autocorrelation
time constants, and the variance of the input noise. Parameters: τη → ∞, gE = 0.77, gI = 1, JEE =
0.38, JEI = 0.27, JIE = 1, JII = 0.6,ψ = 2.37.
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Figure S5. Related to Figure 3. Input correlation-dependent behavior of the spiking SSN. Top
le�: mean population firing rates (top le�) as a function of input strength h, and for di�erent values
of the input correlation ρ (color coded). Triangular marks denote the values of h used in spontaneous
(black) and evoked (green) conditions in Figure 3. Top right: Fano factors (population average± std.)
Bo�om right: Vm std. (population average± std.) Bo�om le�: factor analysis applied to normalized
spike counts (such that the total variance equals the average Fano factor; see STAR Methods) to de-
compose variability into a shared component (one single factor), and a private component (Churchland
et al., 2010). Note that only the shared part of variability is quenched by increasing stimulus, and that
shared variability and its quenching both require a non-zero input correlation coe�icient ρ.
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Figure S6. Related to Figure 4. Dependence of variability reduction in the ring SSN model
on spatial and temporal correlations in the input noise. Dependence of the network-averaged
Vm std. (A-B) and Fano factor (C-D) on either the temporal correlation time constant τnoise in the
external input noise term (for fixed `noise = 60◦) (A, C), or its spatial correlation length `noise (for fixed
τnoise = 50 ms) (B, D), in the spontaneous (c = 0, black) and high-contrast (c = 20, green) input
regimes. Red arrows indicate the parameter values used in the main text (see table ”Parameters Used
in the SSN Simulations” in STAR Methods). Top panels show absolute magnitude of variability, bo�om
panels show the amount of relative variability suppression for the high contrast input, as a percentage
of spontaneous variability.
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Figure S7. Related to Figure 4. A ring SSN accounts for the stimulus dependence of across-
trial variability in area MT. (A) Vm mean (le�) and std. (center) as a function of the model neuron’s
preferred direction (PD, relative to stimulus at 0◦), for increasing values of stimulus strength c. The full
Vm covariance matrices are shown on the right for the E population, box color indicating c. (B) Mean
firing rates (le�), spike count Fano factors (center), and spike count correlations between similarly
tuned neurons (right), as a function of the neurons’ (mean) preferred direction. (C) Experimental
data (awake monkey MT) adapted from (Ponce-Alvarez et al., 2013), with average firing rates (le�),
average Fano factors (center), and average spike count correlations among similarly tuned cells (right),
as a function of the cells’ preferred direction. Data is shown for spontaneous (pre-stimulus, black)
and evoked (high-contrast stimulus, green) activity periods. Error bars denote s.e.m. Dots in panels
A–B were obtained from 400 s epochs of simulated stationary activity, and denote averages among
cells with similar tuning preferences (PD di�erence< 18◦); solid lines show analytical approximations
(Hennequin and Lengyel, 2016). In panels B-C, spikes were counted in 100 ms bins. The only parameters
that di�ered from Figure 4 of the main text were: `syn = `noise = `stim = 80◦ (see table ”Parameters Used
in the SSN simulations” in STAR Methods).
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Figure S8. Related to Figure 5. Bump kinetics capture a substantial amount of variability in
the ring SSN model. Black: total Vm variance in the ring SSN (E neurons) as a function of stimulus
contrast. This is compared to the total variance captured by the two main modes of bump kinetics
(green), and by a basis of 3 vectors formed by the same two modes + the uniform mode orthogonalized
against the other two (blue). This three-dimensional subspace is virtually identical to the subspace
spanned by the top three principal components of Vm fluctuations, at all stimulus contrasts, but yields
a more interpretable basis. Note that while a substantial fraction of variability suppression with in-
creasing stimulus contrast is due to quenched fluctuations in the uniform mode (di�erence between
blue and green curves), the two modes of bump kinetics alone capture most of the variance at high
contrast. Also note that the amount of variance captured by these linear projections is slightly smaller
than that captured by the full, nonlinear fit shown in Figure 5A.
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Figure S9. Related to Figures 5-6. Activity variability in a ring multi-a�ractor network. (A–C)
Tuning of mean firing rates, Fano factors, and Vm std. in spontaneous (c = 0, black) and evoked (c = 3,
green) conditions. (D–G) Analogous to Figure 5A-D, for the ring a�ractor network. By a large margin,
the dominant contributor to activity variability in this network for a strong stimulus is the sideways
ji�ering of the activity bump (E-G, top), with an almost complete absence of variability in the width
of the bump (E-G, bo�om).
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Figure S10. Related to Figure 7. Dynamics of variability quenching in the ring multi-a�ractor
model. (A) Sample membrane potentials (10 trials, individual lines showing Vi in Equation 13; STAR
Methods) for a neuron tuned to the stimulus direction (top), to the orthogonal direction (middle) and to
the opposite direction (bo�om). Here the stimulus, θs, and thus also the preferred stimuli of neurons, θi ,
are defined to be between−π and π. Stimulus strength is stepped up for a 1-sec duration (gray shading;
c = 2). (B) Time course of the standard-deviation across trials of the membrane potential, averaged
across neurons, for di�erent values of input strength, c (color coded). The inset shows the spatial
profile of network activity (firing rate r , Equation 14; STAR Methods) in an example trial over 400 ms
following stimulus onset (time is color coded). First, the activity bump quickly scales up and then it
slowly moves from its initial random location (here, around −3π/4) to the new position determined
by the stimulus (at θs = 0). The initial growth of bump amplitude increases variability because of the
random location of the bump across trials, while the slow movement to a location that is the same
across trials decreases variability.
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Figure S11. Related to Figures 4, 6, and 7. Tuning curves of V1 cells analysed from the data set
of Ecker et al. (2010). Only cells with an orientation tuning index (OTI) of at least 0.75 are shown here
and were included in subsequent analyses (STAR Methods). Green vertical scale bars: 2 spikes/sec.
Note that some cells were also direction selective, hence responded at two di�erent levels at some
orientations depending on the motion direction.
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Figure S12. Related to Figure 4. Parameter-dependence of shared variability suppression as
measured by factor analysis. Reduction of shared variability from spontaneous (black) to stimulus-
evoked (green) activity in the monkey V1 dataset (Ecker et al., 2010), as estimated via factor analysis
(STAR Methods). The x-axis shows the number of latent factors used. Only conditions with at least 8
simultaneously recorded well-isolated cells were analyzed (151 conditions).
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