TOR complex 2 is required for chromatin-mediated gene silencing and assembly of heterochromatic domains at subtelomeres

Adiel Cohen, Aline Habib, Dana Laor, Sudhanshu Yadav, Martin Kupiec and Ronit Weisman

Supporting information

Figure S1 Figure S2 Figure S3 Figure S4 Figure S5 Table S1 Table S2

Figure S1: The TORC2-Gad8 pathway promotes silencing at the mating-type region. (A) Semi-quantities RT-PCR analysis of the $ade6^+$ gene inserted at the mating-type locus (mat2:BamHI::ade6⁺). A mini- $ade6^+$ gene at the $ade6^+$ locus (ade6-DN/N) is used as internal controls. $\Delta clr4$ cells are used for comparison (B) Loss of TORC2-Gad8 only weekly increases the endogenous mat2 expression. Expression levels of $mat2^+$ were examined in wild type (WT) or cells carrying mutations in $\Delta tor1$, $\Delta gad8$ or $\Delta clr4$ cells with or without a five-hour shift to SPAS, a starvation medium that is used to induce cells into the sexual development pathway. (C) $\Delta gad8$ cells display a highly variegated phenotype with respect to expression of the mat2:BamHI::ade6⁺ reporter gene. $\Delta gad8$ cells carrying mat2:BamHI::ade6⁺ were spread on YE-Ade plates.

Figure S2: TORC2-Gad8 affects gene expression at localized chromosomal regions outside the subtelomeric regions. Magnification of the RNA-seq data for the regions indicated by blue arrows in Fig. 2 on the arms on chromosomes I and II that show clusters of upregulated genes in $\Delta tor I$ and $\Delta gad8$ mutant cells.

Figure S3: Schematic representation of open reading frames within the subtelomeric regions of chromosome I and II. Red boxes represent genes that are upregulated in $\Delta tor 1$ or $\Delta gad8$ while blue boxes indicate genes that are unchanged or slightly reduced in gene expression according to RNA-seq analysis and qRT-PCR. Low and high H3K9me2 regions are represented according to (1) and following the scheme presented in (2).

Figure S4: TORC2-Gad8 is not required for heterochromatic gene silencing at the centromeric region. (A-B) Silencing assays showing that Tor1 is not required for heterochromatic $ura4^+$ or $ade6^+$ gene silencing. (C-D) qRT-PCR analysis showing that the level of $imr1L::ura4^+$ or $otr1L::ura4^+$ is only slightly induced in $\Delta tor1$ mutant cells.

Figure S5: The silencing defect in $\Delta tor1$ is epistatic with disruption of set1⁺ but not with disruption of rrp6⁺. Expression levels of the indicated genes were determined by qRT-PCR as described in Fig. 3.

Strain	Genotype	Source
TA1	975 h ⁺	Laboratory stock
TA2	h ⁻ leu1-32 ura4-D18 ade6-M210	Laboratory stock
TA16	h ⁹⁰ leu1-32 ura4-D18 ade6-M216	Laboratory stock
TA101	h ⁻ tor1::ura4 ⁺ leu1-32 ura4-D18 ade6-216	Laboratory stock
TA390	h^{-} tor1::ura4 ⁺ ura4-D18	Laboratory stock
TA910	h ⁺ set1::kanMX6 leu1-32 ura4-D18	YGRC
TA914	h ⁻ sin1::kanMX6 leu1-32 ura4-D18	K. Shiozaki (3)
TA956	mat1Msmt0 (BamHI)::ade6 ⁺ leu1-32 ura-D18 ade6-210 his2	A. Cohen (4)
TA972	mat1Msmt0 (BamHI)::ade6 ⁺ tor1::ura4 ⁺ leu1-32 ura4D-18	This study
	ade6-M210 his2	
TA1029	h ⁻ gad8::ura4 ⁺ leu1-32 ura4-D18 ade6-M216	M. Yamamoto (5)
TA1091	h ⁺ tor1:: ura4 ⁺ set1::kanMX6 leu1-32 ura-D18	Laboratory stock
TA1114	h ⁻ ste20::kanMX6 leu1-32 ura4-D18	K. Shiozaki (3)
TA1128	mat1Msmt0 (BamHI)::ade6 ⁺ sin1::kanMX6 leu1-32	This study
	ura4-D18 ade6-M210 his2	
TA1132	h^+ gad8:: $ura4^+$ $ura4$ -D18	Laboratory stock
TA1146	h ⁻ rrp6::kanMX6 leu-32 ura4-D18 ade6-M210	S. Whitehall (6)
TA1164	mat1Msmt0 (BamHI)::ade6 ⁺ ste20::kanMX6 leu1-32	This study
	ura4-D18 ade6-M210 his2	
TA1168	mat1Msmt0 (BamHI)::ade6 ⁺ gad8::ura4 ⁺ leu1 ura4-D18	This study
	ade6-M210 his2	
TA1231	h ⁻ clr4:Nat leu1-32 ura4-D18 ade6-210 his3D arg3-D	R. Allshire (7)
TA1258	mat1Msmt0 (BamHI)::ade6 ⁺ epe1::KanMX6 leu1-32 ura4D-18	This study
	ade6-210	
TA1263	mat1-Msmt0 (BamHI)::ade6+ otr1 (dh/BglII)::ura4 ⁺ leu1-32	A. Cohen
	ura4-DS/E ade6-210 his1989	
TA2008	h ⁹⁰ ryh1::KanMX leu1-32 ura4-D18 ade6	Laboratory stock
TA2127	Mat1Msmt0 (BamHI)::ade6 ⁺ clr4:: KanMX leu1-32 ura4-D18	This study
	Ade6DN/N	
TA2959	<i>h</i> ⁺ <i>tor</i> 1:: <i>ura</i> 4 ⁺ <i>rrp</i> 6:: <i>KanMX leu</i> 1-32 <i>ura</i> 4-D18 <i>ade</i> 6-216	This study

Table S1: Strains used in this study.

TA2997	<i>mat1Msmt0 (BamHI)::ade6</i> ⁺ <i>leo1:: KanMX leu1-32 ura4 ade6-</i> 210	This study
TA3017	mat1Msmt0 (BamHI)ade6 ⁺ leo1 KanMX tor1ura4 ⁺ leu1-	This study
1113017	32	
	ura4 ade6-210	
TA3018	mat1Msmt0 (BamHI)::ade6 ⁺ leo1::KanMX gad8::ura4 ⁺ leu1-	This study
	32 ura4-DS/E or D18 ade6-210 his2	
TA3022	mat1Msmt0 (BamHI)::ade6 ⁺ epe1:: KanMX tor1::ura4 ⁺	This study
	leu1-32 ura4-D18 ade6-210	
TA3033	h ⁺ paf1::kanMX4 leu1-32 ura4-DS/E ade6 his?	This study
TA3073	h ⁹⁰ tor1::ura4 ⁺ paf1::KanMX6 leu1-32 ura4 ade6 his2	This study
TA3194	mat1Msmt0 (BamHI)::ade6 ⁺ sir2:: KanMX6 leu1-32 ura4- D18 ade6-210	This study
TA3201	h ⁹⁰ Swi6-5XFlag::hphMX6 leu1-32 ura4-D18 ade6-M216	This study
TA3222	h ⁹⁰ tor1::ura4 ⁺ Swi6-5XFlag::hphMX6 leu1-32 ura4-D18	This study
	ade6	
TA3224	h ⁹⁰ gad8::ura Swi6-5XFlag::hphMX6 leu1-32 ura4-D18 ade6	This study
TA3227	h ⁹⁰ clr4:Nat Swi6-5XFlag::hphMX6 leu1-32 ura4-D18 ade6	This study
TA3234	h ⁹⁰ epe1::kanMX6 leu1-32 ura4-D18 ade6-M216	This study
TA3238	h ⁹⁰ tor1::ura4 epe1:: KanMX leu1-32 ura4-D18 ade6-M216	This study
TA3240	h ⁹⁰ tor1::ura4 ⁺ leu1-32 ura4-D18 ade6-216	Laboratory stock
TA3275	h^+ imr1L(NcoI)::ura4 ⁺ otr1R (SphI)::ade6 ⁺ leu1-32 ura4-	S. Braun
	DS/E ade6-M210	
TA3287	h ⁺ imr1L(NcoI)::ura4 ⁺ otr1R (SphI)::ade6 tor1:: kanMX leu1-	This study
	32 ade6-M210 ura4-DS/E	
TA3293	mat1-Msmt0 (BamHI)::ade6 ⁺ otr1 (dh/BglII)::ura4 ⁺ tor1:: KanMX6 leu1-32 his2 ura4-DS/E ade6-210	This study

*YGRC Yeast Genetic Resource Center, Japan

 Table S2: Oligonucleotides used for qRT-PCR analyses

Name	Target	Sequence
#481 mat2-Pc R	mat2-Pc	TGTTAGACTTGCCTGGTCACAAT T
#480 mat2-Pc F	mat2-Pc	TTGAATATAGTATGCGCTCTAAC TTGG
#916 ADE6 F	ade6	GCAGTTTAGACGGAAAAGTTTA TGC
#917 ADE6 R	ade6	ATTGAGAAGGGAAGCGAGCAGG
#994 ACT1 F	act1	GGTTTCGCTGGAGATGATG
#995 ACT1R	act1	ATACCACGCTTGCTTTGAG
#1220 TLH1/2 F	tlh1/2	ATGGTCGTCGCTTCAGAAATTGC
#1221 TLH1/2 R	tlh1/2	CTCCTTGGAAGAATTGCAAGCCT C
#1238 MEI4 F	mei4	TCAGATCCGTGGAATCCTTC
#1239 MEI4 R	mei4	CGCACTTGAGTAGCCACTTG
#1242 SPAC186.05 F	SPAC186.05	AAATTTTCCCGGGCTTTCAT
#1243 SPAC186.05 R	SPAC186.05	TCCGACAATCACCGCTACC
#1260 SPBC1348.03 F	SPBC1348.03	ACCAAGACTAAGCCTCACAGTG AAATATTGT
#1261 SPBC1348.03 R	SPBC1348.03	CTACGACGCATCCAAATGTAAA GGATC
#1262 SPAC977.02 F	SPAC977.02	ACCAAGACTAAGCCTCACAGTG AAATATTGT
#1263 SPAC977.02 R	SPAC977.02	ACTACGACGCATCCAAATGTAA AGGATC
#1264 SPAC750.01 F	SPAC750.01	TATTGGGAAGACTGGGTGCTTG AAGA
#1265 SPAC750.01 R	SPAC750.01	CCAACCAATTCTTCTGACACCCC A
#1266 SPBPB2B2.18 F	<i>SPBPB2B2.18</i>	GTTGTTCTCAGTGTGACTGGCAC GA

#1267 SPBPB2B2.18 R	SPBPB2B2.18	TGAGATTCGGGACTAGCATCGG TAAT
#1271 SPAC186.04 F	SPAC186.04	GCGAAGAAAACCCAACAAGC
#1272 SPAC186.04 R	SPAC186.04	TCATCGTTTACTCTGATCCGTGA
#1273 SPAC186.06 F	SPAC186.06	GGGAGTGGAGCTGGATCAGT
#1274 SPAC186.06 R	SPAC186.06	CGCCACCAACATGAATATCG
#1279 dg1 F	dg1	ACGGCATCGCTTGTACTTTT
#1280 dg1 R	dg1	TGAGGTTCATGATGGGTTCA
#1382 URA4 F	ura4	GTCGAGGATTTCGACCAGGATA
#1383 URA4 R	ura4	GCTTGACGGTATTTCCAATGTCT

- 1. Cam, H. P., Sugiyama, T., Chen, E. S., Chen, X., FitzGerald, P. C., and Grewal, S. I. (2005) Comprehensive analysis of heterochromatin- and RNAimediated epigenetic control of the fission yeast genome. *Nature genetics* **37**, 809-819
- 2. Dheur, S., Saupe, S. J., Genier, S., Vazquez, S., and Javerzat, J. P. (2011) Role for cohesin in the formation of a heterochromatic domain at fission yeast subtelomeres. *Molecular and cellular biology* **31**, 1088-1097
- 3. Ikeda, K., Morigasaki, S., Tatebe, H., Tamanoi, F., and Shiozaki, K. (2008) Fission yeast TOR complex 2 activates the AGC-family Gad8 kinase essential for stress resistance and cell cycle control. *Cell Cycle* **7**, 358-364
- 4. Ayoub, N., Goldshmidt, I., and Cohen, A. (1999) Position effect variegation at the mating-type locus of fission yeast: a cis-acting element inhibits covariegated expression of genes in the silent and expressed domains. *Genetics* **152**, 495-508
- 5. Matsuo, T., Kubo, Y., Watanabe, Y., and Yamamoto, M. (2003) Schizosaccharomyces pombe AGC family kinase Gad8p forms a conserved signaling module with TOR and PDK1-like kinases. *The EMBO journal* **22**, 3073-3083
- 6. Anderson, H. E., Wardle, J., Korkut, S. V., Murton, H. E., Lopez-Maury, L., Bahler, J., and Whitehall, S. K. (2009) The fission yeast HIRA histone chaperone is required for promoter silencing and the suppression of cryptic antisense transcripts. *Molecular and cellular biology* **29**, 5158-5167
- Ekwall, K., Nimmo, E. R., Javerzat, J. P., Borgstrom, B., Egel, R., Cranston, G., and Allshire, R. (1996) Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. *Journal of cell science* 109 (Pt 11), 2637-2648