
Figure S1: Log Luminescence units correlate to CFUs.

Serial dilutions of cells were plated in triplicate and BacTiter-GloTM was added to determine cell number. Aliquots were also taken at each dilution to enumerate colony forming units. Log luminescence units versus CFUs/mL were then plotted. The results represent means plus the SEM. A linear regression was performed to determine goodness of fit (coefficient of determination r²=0.9884).

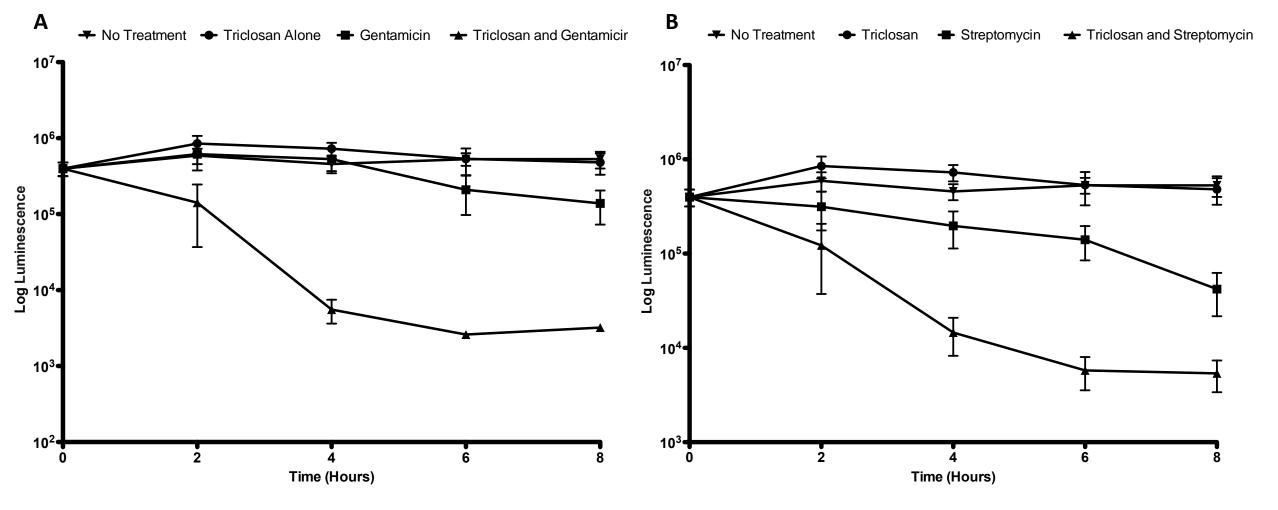
Figure S2: Triclosan and non-aminoglycoside antibiotics do not synergyize.

24-hr old biofilms grown on MBEC plates were treated for 6-hrs with 100 µM of triclosan and 100 µM of each antibiotic alone and in combination. Number of cells within the biofilms were quantified by BacTiter-GloTM. The assay was performed at least two times in triplicate. The results represent means plus the SEM. A one-way ANOVA followed by Bonferroni's multiple comparison post-hoc test was used to determine statistical significance compared to each antipseudomonal alone (NS, not significant).

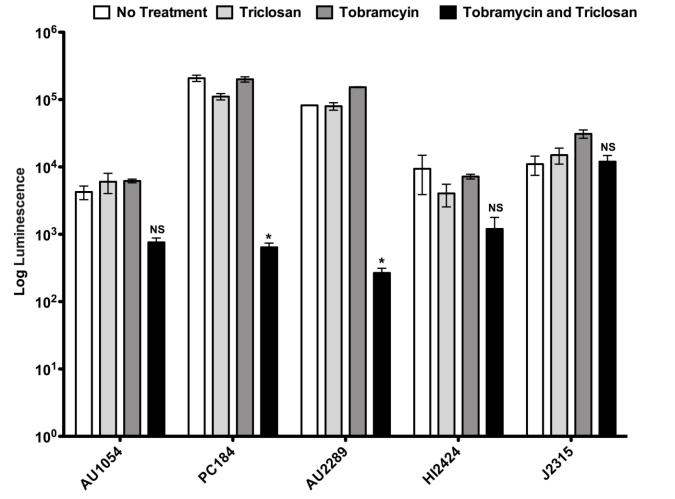
Figure S3: Triclosan and gentamicin or streptomycin synergize at multiple concentrations.

24-hr old biofilms grown on MBEC plates were treated for 6-hrs with 2-fold dilutions of equal concentrations of triclosan combined with gentamicin or streptomycin. The number of viable cells within the biofilms were quantified by BacTiter-Glo[™]. The assay was performed at least three times in triplicate. The results represent means plus the SEM.

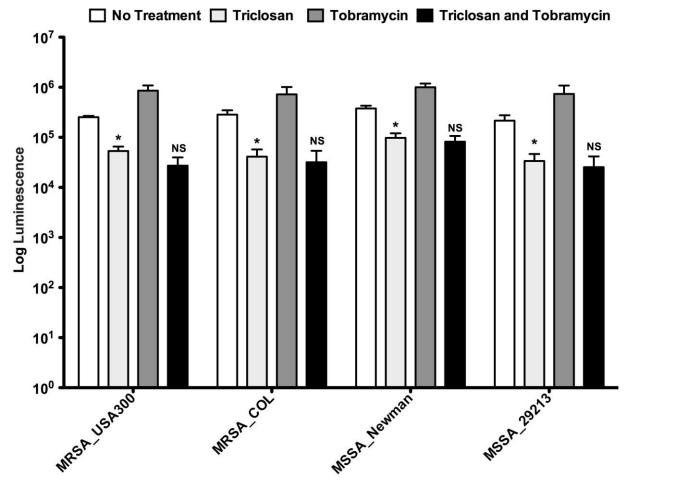
Triclosan Tobramycin	100 µM	50 µM	25 µM	12.5 μM	0 µM
534 µM	1.2E ⁴	2.4E ⁴	8.8E ⁵	3.5E⁵	3.5E⁵
	(3.1E ³)	(1.2E ³)	(5.6E ⁴)	(1.8E⁵)	(3.1E ⁵)
267 µM	1.4E ⁴	2.7E ⁴	8.04E ⁵	3.9E ⁵	3.6E ⁵
	(6.4E ³)	(1.6E ⁴)	(3.3E ⁴)	(1.6E⁵)	(3.3E ⁵)
133 µM	1.5E ⁴ (6.1E³)	3.9E ⁴ (9.8E ⁴)	3.4E⁵ (4.0E ⁵)	4.2E ⁵ (1.2E ⁴)	7.2E⁵ (3.9E ⁵)
66 µM	2.1E ⁴ (1.5E⁴)	5.1E ⁴ (2.1E ⁴)	4.7E⁵ (5.0E ⁵)	5.5E ⁵ (2.0E ⁵)	8.8E ⁵ (4.8E ⁵)
0 µM	1.2E ⁶	1.2E ⁶	1.3E ⁶	1.2E ⁶	1.4E⁶
	(6.7E ⁵)	(4.8E ⁵)	(4.1E ⁵)	(3.8E ⁵)	(1.8E ⁵)


Figure S4. Triclosan enhances low concentrations of tobramycin.

24-hr old biofilms grown on MBEC plates were treated for 6-hrs with checkerboard dilutions of triclosan combined with tobramycin. Number of viable cells within the biofilms were quantified by BacTiter-GloTM. The assay was performed at least three times in triplicate. The results represent means plus the Standard Error Deviation. A two-way ANOVA followed by Bonferroni's posttests was used to determine statistical significance compared to tobramycin treatment alone. Shaded cells indicate significance (p<0.05).


Figure S5. Triclosan enhances low concentrations of tobramycin.

24-hr old biofilms grown on MBEC plates were treated for 6-hrs with dilutions of triclosan combined with tobramycin at a fixed concentration of 66 μ M. Number of viable cells within the biofilms were quantified by BacTiter-GloTM. The assay was performed in triplicate. The results represent means plus the SEM. A two-way ANOVA followed by Bonferroni's posttests was used to determine statistical significance compared to tobramycin alone. (*, p<0.05).


Figure S6: Gentamicin and streptomycin have a shorter onset of action and enhanced killing when combined with triclosan.

24-hr old biofilms grown on MBEC plates were treated with triclosan 100 µM triclosan, gentamicin, or streptomycin alone and in combination for 8-hrs. At 0, 2, 4, 6, and 8-hrs the number of cells within the biofilms were determined using BacTiter-Glo[™]. The assay was performed at least three times in triplicate. The results represent means plus the SEM.

Figure S7. Tobramycin and triclosan are effective against Burkholderia cenocepacia.

24-hr old biofilms grown on MBEC plates were treated with triclosan (100 μ M) or tobramycin (500 μ M) alone and in combination for 6-hrs. The number of viable cells within the biofilms were quantified by BacTiter-GloTM. The assay was performed in triplicate. The results represent means plus the SEM. A two-way ANOVA followed by Bonferroni's posttests was used to determine statistical significance compared to tobramycin alone (*, p<0.05, NS, not significant).

Figure S8. Triclosan alone is effective against *Staphylococcus aureus*.

24-hr old biofilms grown on MBEC plates were treated with 100 μ M triclosan or tobramycin alone and in combination for 6-hrs. The number of viable cells within the biofilms were quantified by BacTiter-GloTM. The assay was performed at least three times in triplicate. The results represent means plus the SEM. A two-way ANOVA followed by Bonferroni's posttests was used to determine statistical significance compared to no treatment and triclosan alone (*, p<0.05, NS, not significant).