High-performance and site-directed in utero electroporation with a triple-electrode probe

Marco dal Maschio^{1*}, Diego Ghezzi^{1*}, Guillaume Bony^{1*}, Alessandro Alabastri², Gabriele Deidda¹, Marco Brondi^{3,4}, Sebastian Sulis Sato^{3,4}, Remo Proietti Zaccaria², Enzo Di Fabrizio^{2,5}, Gian Michele Ratto^{3,4}, Laura Cancedda^{1#}

- ¹ Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- ² Department of Nanostructures, Istituto Italiano di Tecnologia, via Morego, 30 16163 Genova, Italy
- ³ Laboratorio NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, 56120, Pisa, Italy
- ⁴ IIT@NEST, Center for Nanotechnology Innovation, 56120, Pisa, Italy
- ⁵ BIONEM Laboratory, University of Magna Graecia, 88100 Catanzaro, Italy

* These authors equally contributed to this work.

[#] Corresponding author: laura.cancedda@iit.it

Supplementary Fig. S1:	Cumulative distribution of the number of publications/year with description		
	of in utero electroporation targeting somatosensory cortex, hippocampus		
	or visual cortex.		
Supplementary Fig. S2:	Tiled images of a coronal section of the hippocampus.		
Supplementary Fig. S3:	Rostro-caudal coronal series for the hippocampus.		
Supplementary Fig. S4:	Tiled images of a coronal section of the visual cortex.		
Supplementary Fig. S5:	Tiled images of a coronal section of the motor cortex.		
Supplementary Fig. S6:	In utero electroporation of hippocampus and visual or motor cortex results		
	in specific transfection of excitatory neurons.		
Supplementary Fig. S7:	Rostro-caudal coronal series for the motor cortex.		
Supplementary Fig. S8:	Tiled images of a sagittal section of the cerebellum.		
Supplementary Fig. S9:	In utero electroporation of cerebellum at E14.5 results in specific		
	transfection of Purkinje cells.		
Supplementary Table 1:	Electrophysiological functional proprieties layer II/III visual cortical		
	neurons transfected with EGFP by the three-electrode configuration in		
	comparison to WT cells.		

Supplementary Fig. S1: Cumulative distribution of the number of publications/year with description of *in utero* electroporation targeting somatosensory cortex, hippocampus or visual cortex.

Supplementary Fig. S1: The number of publications on IUE targeting different brain areas indicates technical difficulties in electroporating regions other than the somatosensory cortex. The numbers of publications were obtained upon a pubmed quest with "*in utero* electroporation AND cortex" and subsequent careful screen of the results to separate articles on somatosensory from that on visual cortex, or "*in utero* electroporation AND hippocampus" as key words. Note the exponential increase of the number of publications on the somatosensory cortex in comparison to articles on the hippocampus or visual cortex.

Supplementary Fig. S2: Tiled images of a coronal section of the hippocampus (P21).

Supplementary Fig. S2: Principal cells transfected in CA1-CA2 regions (green). Sections were counterstained with Hoechst (magenta). Scale bar: 500 µm.

Supplementary Fig. S3: Rostro-caudal coronal series for the hippocampus (P21).

Supplementary Fig. S3: (a) 3D rostro-caudal reconstruction of a (P21) brain injected monolaterally and electroporated for targeting the hippocampus. (b) Set of the serial coronal slices utilized for reconstruction in a. Sections were counterstained with Hoechst (magenta). Scale bars: 1 mm

Supplementary Fig. S4: Tiled images of a coronal section of the visual cortex (P10).

Supplementary Fig. S4: Transfected pyramidal cells in green Sections were counterstained with Hoechst (magenta). Scale bar: 500 µm.

Supplementary Fig. S5: Tiled images of a coronal section of the motor cortex (P20).

Supplementary Fig. S5: Transfected pyramidal cells in layer II/II (green). Sections were counterstained with Hoechst (magenta). Scale bar: $500 \mu m$.

Supplementary Fig. S6: *In utero* electroporation of hippocampus and visual or motor cortex results in specific transfection of excitatory neurons.

Supplementary Fig. S6: *In utero* electroporation of hippocampus and visual or motor cortex results in specific transfection of excitatory neurons (red, td-Tomato fluorescence). Confocal images of coronal sections (P21) stained for excitatory-cell marker CaMKII and inhibitory-cell marker GABA. Tomato-expressing cells stained positive only for CaMKII. Scale bar: 20 µm

Supplementary Fig. S7: Rostro-caudal coronal series for the motor cortex.

Supplementary Fig. S7: (a) 3D rostro-caudal reconstruction of a (P15) brain injected bilaterally and electroporated for targeting the motor cortex. (b) Set of the serial coronal slices utilized for reconstruction in a. Sections were counterstained with Hoechst (magenta). Scale bars: 1 mm

Supplementary Fig. S8: Tiled images of a sagittal section of the cerebellum (P14).

Supplementary Fig. S8: Transfected with EGFP Purkinje cells (green). Sections were counterstained with Hoechst (magenta). Scale bar: 500 μ m.

Supplementary Fig. S9: *In utero* electroporation of cerebellum at E14.5 results in specific transfection of Purkinje cells.

Supplementary Fig. S9: Confocal images of a coronal section (P14) with Purkinje-cells (green, EGFP fluorescence) stained for their specific marker Calbindin (red, alexa 568) and cell nuclei (cyan, Hoechst). Scale bar: 50 μm

Supplementary Table 1: Electrophysiological functional proprieties of layer II/III visual cortical neurons.

	Membrane	Membrane	Membrane	sEPSC
	Resting	Capacitance	Resistance (MΩ)	Frequency (Hz)
	Potential (mV)	(pF)		
WT (n = 4)	-50.5 ± 0.5	56.74 ± 4.35	704.7 ± 133.3	1.42 ± 0.47
EGFP (n = 5)	-53 ± 3.6	71.22 ± 5.74	621 ± 172.1	1.95 ± 0.5

Electrophysiological functional proprieties of layer II/III visual cortical neurons transfected with EGFP by the three-electrode configuration in comparison to WT cells. Data are expressed as average of all recorded cells ± SEM.