Enantioselective Synthesis of Thailanstatin A Methyl Ester and Evaluation of *in vitro* Splicing Inhibition

Arun K. Ghosh,^{*, †} Anne M. Veitschegger,[†] Shenyou Nie,[†] Nicola Relitti[†]

Andrew J. MacRae,[‡] Melissa S. Jurica,[‡]

[†]Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907; [‡]Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064

akghosh@purdue.edu

Copies of ¹H and ¹³C spectra of new compounds-----S2-S37

Figure S1. ¹H NMR (400 MHz, CDCl₃) of Aldehyde **15**

Figure S2. ¹³C NMR (100 MHz, CDCl₃) of Aldehyde **15**

Figure S3. ¹H NMR (300 MHz, CDCl₃) of Diene **16**

Figure S4. ¹³C NMR (75 MHz, CDCl₃) of Diene **16**

Figure S5. ¹H NMR (300 MHz, CDCl₃) of Sulfonate **17**

Figure S6. ¹³C NMR (75 MHz, CDCl₃) of Sulfonate **17**

Figure S7. ¹H NMR (300 MHz, CDCl₃) of Dihydropyran **18**

Figure S8. ¹³C NMR (75 MHz, CDCl₃) of Dihydropyran **18**

Figure S9. 1 H NMR (400 MHz, CDCl₃) of Ketone **19**

Figure S10. ¹H NMR (500 MHz, CDCl₃) of Amine **9**

Figure S11. ^{13}C NMR (125 MHz, CDCl₃) of Amine ${\bm 9}$

Figure S12. ¹H NMR (300 MHz, CDCl₃) of Amide **7**

Figure S13. ^1H NMR (500 MHz, CDCl₃) of THP 22

Figure S14. 13 C NMR (125 MHz, CDCl₃) of THP **22**

Figure S15. ¹H NMR (400 MHz, CDCl₃) of Benzylidene Acetal **23**

Figure S16. ¹³C NMR (100 MHz, CDCl₃) of Benzylidene Acetal **23**

Figure S17. ¹H NMR (500 MHz, CDCl₃) of Silyl Ether **24**

Figure S18. ¹³C NMR (125 MHz, CDCl₃) of Silyl Ether **24**

Figure S19. ¹H NMR (400 MHz, CDCl₃) of Methyl Ester **25**

Figure S20. ¹³C NMR (100 MHz, CDCl₃) of Methyl Ester **25**

Figure S22. ¹³C NMR (100 MHz, CDCl₃) of Olefin **26**

Figure S23. ¹H NMR (500 MHz, CDCl₃) of Silyl Ether **29**

Figure S24. ¹³C NMR (125 MHz, CDCl₃) of Silyl Ether **29**

Figure S25. ^1H NMR (500 MHz, CDCl₃) of Olefin 30

Figure S26. ¹³C NMR (125 MHz, CDCl₃) of Olefin **30**

Figure S27. ¹H NMR (500 MHz, CDCl₃) of Alcohol **31**

Figure S28. ¹³C NMR (125 MHz, CDCl₃) of Alcohol **31**

Figure S29. 1 H NMR (500 MHz, CDCl₃) of Olefin **32**

Figure S30. ¹³C NMR (125 MHz, CDCl₃) of Olefin **32**

Figure S31. ¹H NMR (500 MHz, CDCl₃) of Methyl Ester **27**

Figure S32. ¹³C NMR (125 MHz, CDCl₃) of Methyl Ester **27**

7.26 5.59 5.59 5.59 5.59 5.54 1.555 5.54 1.555 5.531 5.531 5.531 5.531 5.531 5.531 5.532 5.532 5.532 5.532 5.532 5.532 5.532 5.532 5.532 5.532 5.532 5.532 5.5325 5.5325 5

Figure S34. ¹³C NMR (125 MHz, CDCl₃) of Epoxide **8**

Figure S35. ¹H NMR (500 MHz, CDCl₃) of Thailanstatin A Methyl Ester (**2**)

.0

Figure S36. ¹³C NMR (125 MHz, CDCl₃) of Thailanstatin A Methyl Ester (2)