
VIPER: a web application for rapid expert review of

variant calls

Supplementary Material

Marius Wöste and Martin Dugas

December 22, 2017

1 Architecture

Figure 1 gives a rough overview over the architecture of the Variant InsPector and Ex-

pert Rating tool (VIPER). The application consists of a server managing variant data and

visualization, and a web browser interface for user interaction.

1.1 Server

VIPER’s main component is the server part. The server component is implemented in Java

1.8 to enable usage on every major operating system (OS). It is responsible for importing

and exporting variant data, which is explained in detail in subsection 2.1 and subsection 2.2.

Importing variant data includes optional grouping of similar variant calls (see subsection 2.3).

The server component stores both ungrouped and grouped variant tables for faster access.

After successfully importing data, the variants can be locally accessed via HTTP.

The HTTP component is implemented using the Java Spark Framework

(http://sparkjava.com/). Variant calls cannot only be accessed via HTTP, but also

annotated with decisions and filtered based on metadata from the input file. Subsection 2.4

contains a detailed explanation about the filtering process. Variant visualization may also

be scheduled and accessed through the HTTP component.

1.1.1 Variant visualization

Variant calling is still a challenging task as there are many sources for potential errors

such as machine error (Hwang et al., 2015 ; Sandmann et al., 2017). Visualizing genomic

regions eases distinguishing false from true positive variant calls. We choose the Integrative

Genomics Viewer (IGV, Robinson et al., 2011 ; Thorvaldsdóttir et al., 2013) as a visualization

tool because of its many features and its ability to be controlled via HTTP requests.

When starting the VIPER server, a thread is started that is responsible for managing

an IGV instance. The IGV instance is started in a headless environment if using Linux and

Xvfb. The visualization thread is then used to send visualization commands to the IGV

instance via HTTP. For example, the following IGV commands are generated for a deletion

1

http://sparkjava.com/

Figure 1: VIPER architecture overview

on chromosome 4 starting at position 1,000,000 and ending at position 2,000,000 found in a

file called sample.bam:

new

load sample . bam

c o l l a p s e

goto 4:999975−1000025

snapshot sample−4−1000000.png

new

load sample . bam

c o l l a p s e

goto 4:1999975−2000025

snapshot sample−4−2000000.png

This results in IGV creating two image files containing the deletion’s breakpoints.

The breakpoint images are computed on demand as the user iterates through the variant

calls instead of precomputing all images on server startup. This drastically reduces the time

required for server startup and minimizes storage requirements. However, visualizing only

the currently inspected variant on demand would lead to waiting times for the user. As users

are inspecting variant calls in a linear fashion, we can exploit the locality of this process and

precompute a fixed number of variants that the user will inspect next.

Additionally, IGV visualization is configurable through VIPER’s web interface. Users

may set coloring, grouping, soft-clipping and downsampling options dynamically during the

variant inspection process.

2

Filters:

Decide	for	all:	

Variants:	90
viperId viperDec… sample svType chr1 bp1 chr2 bp2 supporti… tool genes database cov1 cov2 qual1 qual2

VAR01 NA SIM1 DELETION 1 36	933	582 1 36	933	621 26.14 BreaKmer,	Pinde… CSF3R NA 611.22 358.99 35.04 35.43

VAR02 NA SIM1 DELETION 2 25	459	768 2 25	459	831 47.20 SoftSV DNMT3A NA 1	187.53 2	358 35.34 34.82

VAR03 NA SIM1 DELETION 2 25	470	618 2 25	470	682 32.95 gustaf,	BreaKme… DNMT3A NA 862.86 377 34.95 35.55

VAR04 NA SIM1 DELETION 2 25	459	763 2 25	459	831 36.27 Socrates,	Pinde… DNMT3A NA 1	116.47 2	358 35.39 34.82

VAR05 NA SIM1 DELETION 2 25	459	767 2 25	459	835 52.19 BreaKmer DNMT3A NA 1	173.14 2	436.36 35.34 34.81

VAR06 NA SIM1 DELETION 3 105	439	098 3 105	439	146 53.42 gustaf,	BreaKme… CBLB NA 2	238.96 2	161.05 34.97 34.98

VAR07 NA SIM1 DELETION 3 105	439	035 3 105	439	147 55.22 BreakDancer CBLB NA 2	433.52 2	162.65 34.98 34.98

VAR08 NA SIM2 DUPLICATION 4 106	162	426 4 106	162	444 91.93 Socrates,	SoftS… TET2 NA 3	880.05 4	650.69 34.98 34.85

VAR09 NA SIM1 DUPLICATION 4 106	158	448 4 106	158	492 75.32 Socrates,	gusta… TET2 NA 2	277.05 2	249.83 34.96 34.97

VAR10 NA SIM2 DUPLICATION 4 106	162	419 4 106	162	446 93.62 gustaf TET2 NA 3	578.85 4	736 35.05 34.84

Previous 2 3 4 5 6 7 8 9 Next NA declined maybe approved

viperId

Search	for	values...

viperDecision

Search	for	values...

sample

Search	for	values...

svType

Search	for	values...

chr1

Search	for	values...

bp1 NA

534013 148544274

chr2

Search	for	values...

bp2 NA

534124 148544323

supporting NA

0 100

tool

Search	for	values...

genes

Search	for	values...

database NA

0 1

cov1 NA cov2 NA qual1 NA qual2 NA

1

	VIPER Inspector Filtering Export 	save	progress

Figure 2: VIPER’s Filtering page. Allows inspection of variants in a table as well as applying

filters based on the table’s columns.

1.2 Web browser interface

1.2.1 Design

VIPER’s main goal is to minimize time required for manual variant inspection and decision

making. Classifying variant calls into true and false positives is usually based on metrics

such as coverage and quality, and visualization with tools such as the IGV. To minimize

time required for a single decision, both variant metadata and breakpoint visualization are

presented on a single Inspector page. Thus, making a decision reduces to clicking a single

button.

However, iterating through variants one at a time may be too time-consuming for larger

variant datasets. As a result, we added a Filtering page that displays all variants in a single

table. This page enables users to apply filters based on the table’s columns and set a decision

for all variants matching the current filtering criteria. Figure 2 shows the Filtering page.

1.2.2 Implementation

We chose to implement VIPER’s frontend as a web interface because web browsers are

available for all major OSs, and there are a plethora of frameworks and libraries that ease

developing frontend functionality.

The web interface is implemented as a single page application using AngularJS 1.6.5

(https://angularjs.org/) and Bootstrap 3.3.7 (https://getbootstrap.com/docs/3.3/). We

chose AngularJS because it enables HTML templates to be rendered on the client-side

exclusively, thus seperating frontend and backend. The browser client can then use VIPER

by making calls to the HTTP API only, making the web interface highly dynamic. This also

3

https://angularjs.org/
https://getbootstrap.com/docs/3.3/

enables a potential usage of different frontends in the future.

2 Handling variant data

VIPER makes certain assumptions about variants in order to simplify dealing with variant

data. For VIPER, a variant is considered to consist of a sample name, a variant type and two

loci. The sample name denotes a BAM file name that the variant was found in. The variant

type is an arbitrary string and is used for the optional grouping denoted in subsection 2.3.

The two loci describe the variant’s breakpoints. A typical variant might look like this:

{
// name o f bam f i l e

sample : ”PATIENT32−WGS” ,

// type o f va r i ant

type : ”DELETION” ,

// f i r s t breakpoint

chr1 : ”4” ,

bp1 : 4000000 ,

// second breakpoint

chr2 : ”4” ,

bp2 : 5000000

}

However, using only positional information is usually not enough to make a meaningful

decision about a variant’s truth. As a result, we allow arbitrary metadata to be added to

the variants to show useful information and optionally enable filtering. We use a table-like

structure to store variant data. The columns sample, type, chr1, bp1, chr2 and bp2 are

mandatory as described before. Columns cov1, cov2 and genes may be added, describing

average coverage in breakpoint regions and overlapping genes respectively. An example

variant table with metadata is shown in Table 1.

sample type chr1 bp1 chr2 bp2 cov1 cov2 genes

PATIENT32 DELETION 4 4000000 4 5000000 37.50 22.50 NA

PATIENT76 DELETION 2 25464548 2 223731457 2381.10 55.93 DNMT3A,ACSL3

PATIENT123 TRANSLOCATION 4 106193716 X 129171548 34.10 23.80 TET2,BCORL1

PATIENT147 SNV X 10000 X 10000 1.5 2.3 NA

Table 1: Example variant table containing mandatory columns and metadata columns de-

scribing coverage and overlapped genes.

While these assumptions are adequate for variants with exactly two breakpoints, e.g.

deletions or inversions, complex rearrangements with more than two breakpoints can not

4

be expressed in a canonical manner. Also, by definition single nucleotide variations (SNVs)

span a single locus only. This problem can easily be solved by assinging an SNV’s single

locus to both variant breakpoints. The described variant definition has been sufficient for our

analyses, but may be extended in the future if necessary because of its inherent limitations.

As each column might contain multiple values per variant, e.g. genes and optionally

grouped values as explained in subsection 2.3, every column is assigned one of the following

types:

• STRING

• STRING COLLECTION

• NUMERIC

• NUMERIC COLLECTION

This distinction of types eases appropriately displaying and filtering variant data. The

STRING type represents arbitrary non-empty character sequences. The NUMERIC type repre-

sents 64-bit floating point numbers. It is noteworthy that a NUMERIC value may be empty

(NA). To simplify dealing with empty STRING values we represent these using the character

sequence ”NA”. The COLLECTION types represent multisets containing values with STRING or

NUMERIC type.

2.1 Import

As variants are stored in a table-like structure, it is straightforward to represent the data as

a CSV file with the first line containing the column names. Both STRING and NUMERIC types

are represented by their canonical character sequence representations. The COLLECTION

types are encoded by multiple values seperated by an arbitrary configurable character.

Reading a variant table from a CSV file consists of loading the file’s content, determining

column types and parsing values. Loading a CSV file is performed by a third party library.

The column types are determined comparing each column’s values against a floating point

regex.

If all column values match a floating point number or a character seperated list of floating

point numbers the type is set to NUMERICAL or NUMERICAL COLLECTION respectively. Should

any column value not be recognized as a floating point number representation, the column’s

type is set to STRING or STRING COLLECTION, depending on any value containing a delimiter

character. After determining column types all values are parsed and put into data structures

using the Java Standard libraries.

VIPER also supports reading VCF files since it is a wide-spread variant description

standard (https://samtools.github.io/hts-specs/VCFv4.2.pdf). However, since VCF files de-

scribe variants in a more general way than our definition, complex rearrangements exceeding

two breakpoints can not trivially be imported.

We use samtools’ HTSJDK (https://samtools.github.io/htsjdk/) to iterate through the

variants defined in the VCF file. Breakpoint locations are accessed using HTSJDK’s corre-

sponding methods. Additional columns are added for mandatory fields (e.g. REF), genotype

5

https://samtools.github.io/hts-specs/VCFv4.2.pdf
https://samtools.github.io/htsjdk/

and info fields that are defined in the header of the VCF file. The header also contains in-

formation about the data type of every field, enabling direct conversion to VIPER’s data

types.

However, the VCF file specification allows inclusion of calls concordant to reference.

These may optionally be excluded to only investigate non-reference calls.

2.2 Export

VIPER currently supports exporting the variant table to a CSV file as well as an XLSX

file. This process is straightforward as the variants are already stored as a table in-memory.

Third party libraries yield the features required for writing the variant table.

2.3 Grouping

In datasets with many samples, it may be of interest to associate a variant with multiple

samples, e.g. normal-tumor pairs. VIPER allows optionally grouping together variants that

expose similar characteristics.

As VIPER assumes every variant to include two loci, we can define a similarity relation

as follows: Let v1 and v2 be variants with a variant type and two breakpoint loci each. We

call v1 and v2 similar if they share the same type, the loci lie on the same chromosomes and

the breakpoint positions are at most d ∈ N bp apart, where d is a configurable parameter.

However, this similarity is not enough to be used as a grouping criterion as it is no transitive

relation. Whenever there are variants v1, v2 and v3 with v1 similar to v2 and v2 similar to v3,

we consider v1 similar to v3 regardless of the breakpoint distances. This ensures every variant

is assigned exactly one group after the grouping process. Algorithm 1 shows pseudocode for

splitting variants into similar groups.

Input: Set of variants I sharing the same type and chromosomes, d ∈ N
Output: Set of variant sets O

O ← ∅
L← I

while L 6= ∅ do
G← {any single v ∈ L}
while G changed do

G← G ∪ {v′|v ∈ G, v′ ∈ L, |v.bp1 − v′.bp1| ≤ d ∧ |v.bp2 − v′.bp2| ≤ d}
end while

L← L−G

O ← O ∪ {G}
end while

return O

Algorithm 1: Grouping variant calls

A new variant table is then generated based on the grouping. Columns with NUMERIC

values keep its type using the median of values in each group as new column values. All other

column types are converted to their equivalent COLLECTION types by computing the unique

6

set of combined values for each group. After the grouping process the columns viperId and

viperDecision are added to enable easy identification of variants and setting decisions for

each variant.

However, the grouping process requires the resolution of variants to be similar for all

variant calls within the dataset since it uses breakpoint distances as a similarity metric. For

example, grouping would not be applicable for a dataset containing both SNV calls as well

as CNV calls that have been detected using coverage information. The user must choose

the maximum distance d appropriately or disable grouping as a result.

2.4 Filtering

To enable quick iteration through all variants, it is helpful to be able to inspect only subsets

of the whole dataset matching certain criteria such as very low coverage. VIPER enables

this filtering by providing a single filter for each column of the variant table. For columns

with NUMERIC values a simple interval check is performed. The bounds of such intervals as

well as defining if NA values are allowed is configurable by the user. For each column with

STRING values a set of allowed values can be configured by the user. A value passes this filter

if its value is contained in the set. However, for usability and performance reasons a variant

always passes the filter if the set of allowed values is empty. COLLECTION filters work like

their single value conterparts, with a collection passing whenever any value of the collection

passes a single value filter. A variant passes the filtering stage if all its column values pass

the respective filters.

While this filtering is very basic, the column viperDecision can be selected as a filtering

criterion as well, enabling users to use previous decisions for stateful filtering.

3 Availability

As both VIPER server and IGV are implemented in Java, running the VIPER server only

requires a Java 1.8 environment. Because the web interface is implemented using AngularJS,

it is heavily reliant on the browser’s Javascript engine. A modern web browser is required

as a result. VIPER has been succesfully tested on Ubuntu 16.04, Debian 8, Windows 7 and

OS X using Firefox 55, Chrome 59, Internet Explorer 11 and Safari 10.1 respectively. It

was achieving adequate performance on a desktop machine with 8 GB RAM with ∼130,000

calls.

4 Application to exploratory analyses

This section briefly explains the application of VIPER to two dataset analyses.

4.1 MDS SV analysis

The first dataset VIPER was applied to consists of 117 NGS samples from 111 patients

diagnosed with MDS (6 patients sampled twice). DNA extracted from the patient’s blood

7

was sequenced using Illumina’s NextSeq 550. A paired-end amplicon-based approach was

chosen to sample exons of 15 genes with high coverage.

The target region is ∼125 kb in length and a high average coverage of 3, 675× was

achieved. Reads have been aligned using bwa mem (v0.7.8) with -M option.

The primary analysis for this dataset consisted of indel and SNV analysis that yielded

many mutations with VAFs < 20%. We assume potential SVs to possibly have low VAFs

as well as a result. As an exploratory follow-up analysis we applied the following SV calling

tools to the dataset:

• Pindel (v0.2.5b9)

• Socrates (v1.13.1)

• SeekSV (v1.2.1)

• Sprites (v0.3.0)

• BreaKmer (v0.0.7)

• gustaf (v1.0.0)

• Delly2 (v0.7.6)

• BreakDancer (v1.4.5)

• SoftSV (v1.4.2)

• CREST (v1.0.0)

All tools have been called with their respective default parameters. The tools called

between 62 and 3460 raw variants each, with 18803 variants called in total. Since SV calling

tools are usually developed for WGS we expect many false positives because of the much

higher coverage in our dataset. Simple filtering strategies such as filtering by quality or

coverage did not significantly reduce the number of calls. However, manual inspection of

several calls using IGV revealed that in many cases having a quick glance at the breakpoint

sites allowed identification of false positives, for example deletion calls in long homopolymers.

Figure 3: VIPER’s application in MDS SV analysis pipeline.

This leads to the simple pipeline illustrated in figure 4.1. The first step consists of

performing all tool calls and collecting all raw calls. Metadata annotation including coverage,

quality and genes affected is then performed using R packages biomaRt and Rsamtools. The

annotated calls are then fed to VIPER for decision making by the analyst.

Since all mentioned tools provide single-nucleotide resolution by using split-read infor-

mation, applying VIPER enabled classification into true and false positive candidates by

inspecting soft-clipping and alignment information at breakpoint sites. Only 389 calls were

identified as candidates for actual mutations. Some of these candidate calls have also been

8

observed during the previous indel and SNV analysis and were confirmed to be true positives

by further experimental validation (using Sanger sequencing).

4.2 mtDNA SNV/indel analysis

The second dataset where VIPER was used consists of 491 control-tumour sample pairs from

patients with medulloblastomata. Using WGS yielded high-coverage mtDNA (4, 521×) data

for SNV and indel analysis. All data is aligned using bwa mem (v0.8.7, -T set to 0). Variants

are called using the following 8 tools:

• GATK HaplotypeCaller (v3.3.0)

• Platypus (v0.8.1)

• VarScan (v2.3.9)

• LoFreq (v2.1.2)

• FreeBayes (v1.0.2-6)

• SNVer (v0.5.3)

• SAMtools (v1.3)

• VarDict (git commit #de269ed961)

Several basic characteristics are then used to perform filtering. Variant calls must meet

the following criteria to be included in further analysis:

• Number of reads with alternate allele ≥ 20

• Coverage ≥ 50× at variant locus

• Variant allele frequency ≥ 0.01

• Average base quality ≥ 15 at variant locus

• Difference between mean base quality reference and mean base quality alternative

allele < 7

All calls meeting these requirements are then compared to the databases 1000 Genomes,

COSMIC and dbSNP (ESP6500, ExAC and ClinVar provide no data for mtDNA). The

tools mtSNP, Phylotree, mtDB and MitoMap are also used to predict classification into

polymorphisms and pathogene mutations.

Variants are categorized into polymorphisms, artefacts and mutations by manual in-

spection of the collected information. VIPER was then applied to manually inspect the

categorized 11968 variant breakpoint sites to increase categorization confidence.

References

Hwang, S., Kim, E., Lee, I., and Marcotte, E. (2015). Systematic comparison of variant calling pipelines using gold

standard personal exome variants. Scientific Reports, 5, 17875.

Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., and Mesirov, J. P.

(2011). Integrative genomics viewer. Nature biotechnology, 29(1), 24–26.

Sandmann, S., de Graaf, A., Karimi, M., van der Reijden, B., Hellström-Lindberg, E., Jansen, J., and Dugas, M.

(2017). Evaluating variant calling tools for non-matched next-generation sequencing data. Scientific Reports,

7, 43169.

9

Thorvaldsdóttir, H., Robinson, J. T., and Mesirov, J. P. (2013). Integrative genomics viewer (IGV): high-

performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178–192.

10

	Architecture
	Server
	Variant visualization

	Web browser interface
	Design
	Implementation

	Handling variant data
	Import
	Export
	Grouping
	Filtering

	Availability
	Application to exploratory analyses
	MDS SV analysis
	mtDNA SNV/indel analysis

