Cognitive correlates of $\alpha 4\beta 2$ nicotinic acetylcholine receptors in mild Alzheimer's dementia

Osama Sabri, MD PhD*; Philipp M. Meyer, MD*; Susanne Gräf, PhD; Swen Hesse, MD; Stephan Wilke, MD; Georg-Alexander Becker, PhD; Michael Rullmann, PhD; Marianne Patt, PhD; Julia Luthardt, PhD; Gudrun Wagenknecht, PhD; Alexander Hoepping, PhD; Rene Smits, PhD; Annegret Franke, PhD; Bernhard Sattler, PhD; Solveig Tiepolt, MD; Steffen Fischer, PhD; Winnie Deuther-Conrad, PhD; Ulrich Hegerl, MD; Henryk Barthel, MD PhD; Peter Schönknecht, MD*; Peter Brust, PhD*

*These authors contributed equally.

Authors Affiliations: Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany (Sabri, Meyer, Hesse, Wilke, Becker, Rullmann, Patt, Luthardt, Sattler, Tiepolt, Barthel); Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany (Graef, Hegerl, Schönknecht); Integrated Research and Treatment Centre (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany (Hesse); Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig (Graef); Central Institute for Engineering, Electronics and Analytics—Electronic Systems (ZEA-2), Forschungszentrum Jülich, Jülich, Germany (Wagenknecht); ABX Advanced Biochemical Compounds GmbH, Radeberg, Germany (Hoepping, Smits); Centre for Clinical Trials Leipzig, University of Leipzig, Leipzig, Germany (Franke); Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Leipzig, Germany (Fischer, Deuther-Conrad, Brust)

Corresponding Author: Osama Sabri, MD, PhD; Department of Nuclear Medicine, University of Leipzig; Liebigstraße 18, 04103 Leipzig, Germany (email: <u>Osama.Sabri@medizin.uni-leipzig.de;</u> phone: ++49-341-9718000; fax: ++49-341-9718129)

Supplementary material

Supplementary results

$\alpha 4\beta 2$ -nAChR availability in Alzheimer's dementia compared with healthy controls

VOI analysis of GMD-mask-weighted V_T data (V_T[GMDW])

VOI analysis identified that in Alzheimer's dementia, compared with healthy controls, similar to V_T- and V_S-VOI analyses, there was lower V_T[GMDW] in cortical and subcortical brain regions reaching significance within four of the five a-priori selected brain regions, such as the hippocampus as part of the mesial temporal cortex (-7%; P=0.002; P<0.05_{corrected}), basal forebrain (-8%; P=0.008; P<0.05_{corrected}), frontal cortex (-4%; P=0.019; P<0.05_{uncorrected}) and mean cortex (-4%; P=0.021; P<0.05_{uncorrected}), remaining significant following correction for multiple testing within the hippocampus and basal forebrain.

For post-hoc selected brain regions, in Alzheimer's dementia, there was significantly lower $V_T[GMDW]$ within the thalamus (-9%; P=0.002; P<0.05_{corrected}), remaining significant following correction for multiple comparisons. In Alzheimer's dementia, lower $V_T[GMDW]$ was present within the lateral temporal cortex (-3%; P=0.047; P<0.05_{uncorrected}), anterior cingulate cortex (-2%; P=0.023; P<0.05_{uncorrected}), and cerebellar cortex (-6%; P=0.031; P<0.05_{uncorrected}), although those differences did not remain significant following correction for multiple comparisons (*Supplementary Table 4*).

2

VOI analysis of PVE-corrected V_T data (V_T[PVEC])

Following partial volume effect (PVE) correction, there was significantly lower V_T[PVEC] in patients with Alzheimer's dementia as compared to healthy controls, similar to analyses of V_T, V_S, and V_T[GMDW] in four of the five a-priori selected brain regions. V_T[PVEC] was lower within the hippocampus as part of the mesial temporal cortex (-11%; *P*=0.003; $P<0.05_{corrected}$), basal forebrain (-13%; *P*=0.009; $P<0.05_{corrected}$), mean cortex (-4%; *P*=0.031; $P<0.05_{uncorrected}$), frontal cortex (-4%; *P*=0.034; $P<0.05_{uncorrected}$), remaining significant following correction for multiple testing within the hippocampus and basal forebrain.

Furthermore, for post-hoc selected brain regions, in Alzheimer's dementia, there was significantly lower V_T[PVEC] within anterior cingulate cortex (-4%; *P*=0.013; $P<0.05_{\text{uncorrected}}$), pons (-7%; P=0.042; $P<0.05_{\text{uncorrected}}$), and cerebellar cortex (-6%; P=0.026; $P<0.05_{\text{uncorrected}}$), though those differences did not remain significant after correction for multiple comparisons (*Supplementary Table 5*).

Given the smaller variance (*Table 2 and Supplementary Table 5*) and that similar findings were produced using $V_T[PVEC]$ and V_T data, the primary outcome measure used for all PET analyses was the V_T data (Villemagne *et al.*, 2013).

Relationship between α4β2-nAChR availability in a-priori defined brain regions and cognition in Alzheimer's dementia as assessed by VOI analysis

Vs

In Alzheimer's dementia, a significant positive correlation between episodic memory and V_s within a-priori defined brain regions was restricted to the frontal cortex (r=0.57; P=0.044; P<0.05_{uncorrected}). Further, a positive significant correlation between executive function/working memory and V_T within the parietal cortex was found (r=0.62; P=0.021; P<0.05_{uncorrected}). There were no significant correlations between attention, visuospatial function or language and V_s within any of the a-priori selected cortical regions.

Thus, compared with the correlation results of the V_T data, correlations between V_S and cognitive function were less significant and not significant following correction for multiple comparisons. A possible explanation for this is that the corpus callosum, which is used to calculate the Vs, has a small volume with the disadvantage of a higher noise part.

V_T[GMDW]

In Alzheimer's dementia, there were significant positive associations between episodic memory and V_T[GMDW] within a-priori defined brain regions such as the frontal (r=0.71; P=0.011; P<0.05_{corrected}), mesial temporal (r=0.62; P=0.027; P<0.05_{uncorrected}) and parietal cortices (r=0.64; P=0.024; P<0.05_{uncorrected}). These findings remained significant following correction for multiple testing within the frontal cortex. There was no significant relationship between memory and $V_T[GMDW]$ within the basal forebrain (r=0.35; P=0.164). Executive function/working memory and V_T[GMDW] showed a significant positive correlation within the parietal cortex (r=0.79; P=0.003; P<0.05_{corrected}), although a significant correlation was not found within the frontal cortex (r=0.52; P=0.063). There were no significant correlations between attention, visuospatial function or language and V_T[GMDW] within any of the apriori selected cortical regions. Thus, findings of the correlation analyses between V_T[GMDW] and cognitive partial functions in Alzheimer's dementia show similarities to findings obtained by correlation analyses of V_T, although following correction for multiple comparisons, correlations remain only significant between episodic memory and V_T[GMDW] within the frontal cortex and executive function / working memory and V_T[GMDW] within the parietal cortex.

V_T[PVEC]

The findings of correlation analyses between $V_T[PVEC]$ and cognitive partial functions in Alzheimer's dementia were similar to the findings obtained by correlation analysis of V_T :

In Alzheimer's dementia, there were significant positive associations between episodic memory and V_T[PVEC] within a-priori defined brain regions such as the frontal (r=0.79; P=0.003; P<0.05_{corrected}), mesial temporal (r=0.67; P=0.017; P<0.05_{uncorrected}) and parietal cortices (r=0.65; P=0.021; P<0.05_{uncorrected}), remaining significant following correction for multiple testing within the frontal cortex. There was no significant relationship between memory and V_T[PVEC] within the basal forebrain (r=0.20; P=0.286).

Executive function/working memory and $V_T[PVEC]$ demonstrated a significant positive correlation within the frontal cortex (r=0.59; *P*=0.037; *P*<0.05_{uncorrected}) and parietal cortex (r=0.83; *P*=0.002; *P*<0.05_{corrected}). There were no significant correlations between attention, visuospatial function or language and $V_T[PVEC]$ within any of the a-priori selected cortical regions. Thus, findings of the correlation analyses between $V_T[PVEC]$ and cognitive partial functions in Alzheimer's dementia show similarities to findings obtained by correlation analyses of V_T , however, after correction for multiple comparisons, correlations remain only significant between episodic memory and $V_T[PVEC]$ within the frontal cortex and executive function / working memory and $V_T[PVEC]$ within the parietal cortex.

5

Relationship between $\alpha 4\beta 2$ -nAChR availability within subregions of the mesial temporal cortex and episodic memory in Alzheimer's dementia as assessed by post hoc explorative VOI-analysis

VT

Between episodic memory and V_T there was a trend for a positive correlation within the hippocampus (r=0.52; *P*=0.06) and a significant, positive correlation within the amygdala (r=0.67; *P*=0.018).

Vs

Between episodic memory and V_s there was no significant correlation within the hippocampus (r=0.31; P=0.188) and a significant, positive correlation within the amygdala (r=0.80; P=0.003).

V_T[GMDW]

Between episodic memory and $V_T[GMDW]$ there was a trend for a positive correlation within the hippocampus (r=0.50; *P*=0.07) and a significant, positive correlation within the amygdala (r=0.58; *P*=0.038).

V_T[PVEC]

Between episodic memory and $V_T[PVEC]$ there was a trend for a positive correlation within the hippocampus (r=0.46; *P*=0.09) and a significant, positive correlation within the amygdala (r=0.65; *P*=0.022).

To summarize, post-hoc VOI-based correlation analysis between episodic memory and PET data within subregions of the mesial temporal cortex showed a trend for a positive correlation within the hippocampus (V_T , V_T [GMDW], V_T [PVEC]), and a significant, positive correlation within the amygdala for all aforementioned PET parameters. This relationship between episodic memory and $\alpha 4\beta$ 2-nAChR availability within the amygdala is interesting, however not so surprising as 1) there is a close bidirectional interaction between the amygdala and hippocampus, 2) episodic memory has been to linked to the frontal cortex, hippocampus and amygdala, as shown by functional MRI studies, and 3) as previously shown, direct electrical stimulation of the amygdala increases declarative memory in humans without emotional contribution (Yancey and Phelps 2001; Phelps 2004; Inman *et al.*, 2018). Further prospective

 $\alpha 4\beta 2$ -nAChR PET investigations of subregions of the mesial temporal cortex in Alzheimer's dementia are needed for verification of these findings.

Supplementary references

- Inman CS, Manns JR, Bijanki KR, Bass DI, Hamann S, Drane DL, et al. Direct electrical stimulation of the amygdala enhances declarative memory in humans. Proc Natl Acad Sci U S A 2018; 115: 98-103.
- Phelps EA. Human emotion and memory: interactions of the amygdala and hippocampal complex. [Review]. Curr Opin Neurobiol 2004;14: 198-202.
- Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol 2013; 12: 357-67.
- Yancey SW, Phelps EA. Functional neuroimaging and episodic memory: a perspective. J Clin Exp Neuropsychol 2001; 23: 32-48.

Supplementary Figure

Supplementary Figure. Localizations of individually drawn regions of interest for VOI analysis.

The localizations of individually drawn regions of interest for VOI analysis within the MRI of one study subject are shown.

Supplementary Tables

	Alzheimer's dementia (n = 14)	Healthy controls (n = 15)	<i>P</i> -value	
Age	75.1 (6.2)	71.3 (4.7)	0.071	
Education	13.1 (2.2)	13.8 (1.5)	0.378	
Sex (Female/Male) ^a	10 / 4	7 / 8	0.264	
MMSE	24.0 (2.6)	28.4 (0.9)	<0.001	
GDS	7.4 (3.6)	3.3 (2.2)	<0.001	
Scheltens-Score	1.4 (1.0)	0.7 (0.5)	0.025	
Fazekas-PVH	1.3 (0.8)	0.8 (0.7)	0.074	
Fazekas-DWMH	1.3 (0.7)	0.8 (0.6)	0.053	

Supplementary Table 1. Clinical characteristics and MRI measures in Alzheimer's dementia and healthy controls: comparison of means (SD).

Abbreviations: DWMH = deep white matter hyperintensities; GDS = Geriatric Depression Scale;

MMSE = Mini-Mental-State-Examination; PVH = periventricular white matter hyperintensities; SD = standard deviation.

Unpaired two-tailed t-test for the comparison between Alzheimer's dementia and healthy controls; significance at P<0.05 (bold).

^aFisher's exact test; significance at *P*<0.05 uncorrected.

Supplementary Table 2. Cognitive test results in Alzheimer's dementia patients and healthy

controls

	^a Z-								
	Alzheimer's dementia	Healthy controls	t/F	df/N	P value				
^b Attention									
AKT-G	0.54 (1.10)	1.47 (0.99)	-2.30	25	0.030				
Digit span forward	-0.68 (0.74)	-0.01 (0.70)	-1.92	18	0.071				
Executive function/working memory									
TMT-A	-1.13 (1.35)	0.18 (1.17)	-2.76	26	0.010				
ТМТ-В	-0.66 (1.08)	0.55 (1.00)	-2.58	20	0.018				
TMT-B/A	-0.20 (1.08)	0.41 (0.90)	-1.39	20	0.180				
Digit span backward	-0.51 (0.77)	0.24 (1.08)	-1.53	18	0.143				
Letter fluency	-1.49 (1.14)	0.73 (0.66)	-6.47	27	<0.001				
Language									
Category fluency	-0.52 (0.98)	0.66 (1.14)	-2.98	27	0.006				
BNT	-0.69 (1.30)	0.45 (0.74)	-2.93	27	0.007				
Visuospatial abilities									
CERAD visuoconstruction copy	-1.93 (1.54)	-0.61 (0.95)	-2.80	27	0.009				
CERAD visuoconstruction recall	-2.17 (0.95)	0.22 (0.98)	-6.63	27	<0.001				
Episodic memory									
CERAD wordlist immediate recall	-2.88 (1.47)	0.45 (0.72)	-7.83	27	<0.001				
CERAD wordlist delayed recall	-2.14 (0.76)	0.39 (1.11)	-7.10	27	<0.001				
CERAD wordlist savings score	-1.14 (1.72)	0.15 (1.20)	-2.31	26	0.029				
CERAD visuoconstruction savings score	-1.44 (1.14)	0.43 (0.87)	-4.95	27	<0.001				
WMS Logical Memory I	-2.56 (1.55)	0.31 (1.19)	-4.53	18	< 0.001				
WMS Logical Memory II	-3.19 (0.86)	0.43 (0.94)	-8.03	18	<0.001				

Abbreviations: AK-T = Alters-Konzentrations-Test; BNT = Boston Naming Test; CERAD = The Consortium to

Establish a Registry for Alzheimer's dementia; TMT = Trail Making Test; WMS = Wechsler Memory Scale.

^aZ-scores are given as mean and standard deviation (in brackets).

^bANCOVA was carried out for variable to account for years of education as covariate.

Unpaired two-tailed t-test for the comparison between Alzheimer's dementia and healthy controls; significance at P<0.05 (bold).

Supplementary Table 3. VOI analysis of V_s (specific binding part of the distribution volume) with the corpus callosum as pseudo-reference region within the brain of Alzheimer's dementia and healthy controls.

$\mathbf{V_S}$	Alzheimer's Healthy controls		controls				
	dement	1a (11=14)	(n=15)				
	Mean	SD	Mean	SD	Change of	t/F	P value
					AD compared		
					with HC		
					(%)		
^a Mean cortex	2.88	0.76	3.34	0.60	-14	4.79	0.009
^a Frontal cortex	2.96	0.89	3.42	0.65	-13	4.14	0.016
Lateral temporal cortex	2.80	0.81	3.10	0.60	-10	3.33	0.036
Mesial temporal cortex	2.78	0.80	3.52	0.63	-21	6.04	0.003
^a Hippocampus	3.13	0.97	4.09	0.78	-23	6.82	0.002
Amygdala	3.32	0.68	3.76	0.82	-12	1.97	0.144
^a Parietal cortex	2.97	0.80	3.30	0.71	-10	2.87	0.057
Occipital cortex	2.24	0.80	2.18	0.63	3	2.91	0.054
^a Basal forebrain	1.48	1.22	2.24	0.82	-34	4.00	0.019
Anterior cingulate cortex	3.10	0.67	3.39	0.64	-8	3.25	0.039
Posterior cingulate cortex	3.25	0.49	3.43	0.64	-5	1.46	0.249
Caudate nucleus	4.14	1.25	4.38	0.88	-5	0.26	0.852
Putamen	5.70	1.27	5.55	0.78	3	0.40	0.752
Thalamus	17.29	3.11	19.61	2.98	-12	3.88	0.021
Pons/Midbrain	4.54	1.03	5.28	1.10	-14	2.14	0.120
Cerebellar cortex	6.09	1.17	6.86	0.88	-11	1.99	0.141
White matter- centrum semiovale	4.20	1.32	4.26	0.84	-2	3.49	0.030

Abbreviations: AD = Alzheimer's dementia; FDR = False discovery rate; HC = healthy controls; $V_s =$ specific

binding part of the distribution volume; VOI = volume of interest.

^aa-priori selected brain region with known Alzheimer's dementia pathology.

ANCOVA for the comparison of V_s between Alzheimer's dementia and healthy controls (adjusted for age and sex), within five a-priori defined cortical brain regions, such as mean cortex, frontal, mesial temporal [hippocampus], parietal cortices, and basal forebrain (in bold); significance at $P<0.05_{corrected}$ (false discovery rate correction according to Benjamini-Hochberg; in bold). Furthermore exploratory post-hoc analysis for eleven additional brain regions, significance at $P<0.005_{uncorrected}$ ($P<0.05_{corrected}$; FDR-correction).

Supplementary Table 4. Individual VOI analysis of the GMD-mask weighted V_T values $(V_{T[GMDW]})$ in Alzheimer's dementia and healthy controls.

V _{T[GMDW]}	Alzheimer's He dementia (n=14)		Health (r	y controls n=15)			
	Mean	SD	Mean	SD	Change of AD compared with HC (%)	t/F	P-value
^a Mean cortex	8.07	1.00	8.41	0.46	-4	3.87	0.021
^a Frontal cortex	8.11	1.05	8.49	0.54	-4	3.98	0.019
Lateral temporal cortex	8.03	0.96	8.24	0.38	-3	3.05	0.047
Mesial temporal cortex	8.03	1.10	8.62	0.54	-7	4.61	0.011
^a Hippocampus	8.46	1.22	9.08	0.57	-7	6.29	0.002
Amygdala	8.53	1.19	8.74	0.69	-2	0.92	0.444
^a Parietal cortex	8.10	1.09	8.27	0.57	-2	2.15	0.119
Occipital cortex	7.51	0.85	7.46	0.34	1	0.99	0.414
^a Basal forebrain	6.95	1.29	7.52	0.98	-8	4.97	0.008
Anterior cingulate cortex	8.35	1.01	8.51	0.69	-2	3.78	0.023
Posterior cingulate cortex	8.41	0.97	8.53	0.54	-1	1.05	0.388
Caudate nucleus	8.85	1.30	9.32	0.81	-5	1.13	0.356
Putamen	10.49	1.21	10.55	0.92	-1	1.39	0.270
Thalamus	20.77	3.74	22.90	2.86	-9	6.65	0.002
Pons/Midbrain	7.86	1.13	8.44	1.31	-7	1.45	0.253
Cerebellar cortex	10.91	1.49	11.56	0.85	-6	3.46	0.031

Abbreviations: AD = Alzheimer's dementia; FDR = False discovery rate; GMD = grey matter density; HC = healthy controls; $V_{T[GMDW]} =$ grey matter density mask weighted distribution volume; VOI = volume of interest. ^aa-priori selected brain region with known Alzheimer's dementia pathology.

ANCOVA for the comparison of $V_{T[GMDW]}$ between Alzheimer's dementia and healthy controls (adjusted for age and sex), within five a-priori defined cortical brain regions, such as mean cortex, frontal, mesial temporal [hippocampus], parietal cortices, and basal forebrain (in bold); significance at *P*<0.05_{corrected} (false discovery rate

correction	according to	Benjamini-Ho	ochberg; in	bold). Further, e	exploratory post-hoc a	analysis for ten additional
brain	regions,	significance	at	$P < 0.005_{\text{uncorrec}}$	ected (P<0.05 _{correct}	ed; FDR-correction).

Supplementary Table 5. Individual VOI analysis of the PVE-corrected V_T values ($V_{T[PVEC]}$) in Alzheimer's dementia and healthy controls.

V _{T[PVEC]}	Alzheimer's		Healthy controls				
	dementia	a (n=14)	(n=15)				
	Mean	SD	Mean	SD	Change of	t/F	P-value
					AD		
					compared with HC		
					(%)		
^a Mean cortex	9.65	1.16	10.04	0.59	-4	3.49	0.031
^a Frontal cortex	9.77	1.40	10.23	0.72	-4	3.38	0.034
Lateral temporal cortex	9.77	1.12	9.96	0.57	-2	2.38	0.094
Mesial temporal cortex	9.34	1.22	10.11	0.68	-8	4.17	0.016
^a Hippocampus	9.33	1.43	10.53	1.01	-11	6.06	0.003
Amygdala	10.00	1.42	10.33	1.24	-3	0.25	0.864
^a Parietal cortex	9.82	1.28	10.11	0.76	-3	1.62	0.209
Occipital cortex	9.03	0.97	8.77	0.56	3	1.08	0.375
^a Basal forebrain	7.77	2.73	8.92	2.01	-13	4.79	0.009
Anterior cingulate cortex	10.56	1.10	11.01	1.10	-4	4.36	0.013
Posterior cingulate cortex	10.37	1.13	10.61	0.86	-2	0.88	0.467
Caudate nucleus	13.76	2.40	13.65	1.60	1	0.50	0.685
Putamen	12.17	1.84	11.90	1.33	2	0.42	0.743
Thalamus	28.71	4.30	30.94	4.49	-7	2.61	0.074
Pons/Midbrain	11.53	1.47	12.37	1.10	-7	3.16	0.042
Cerebellar cortex	13.24	1.78	14.04	1.11	-6	3.67	0.026
White matter centrum semiovale	13.70	3.86	13.14	2.49	4	0.37	0.773

Abbreviations: AD = Alzheimer's dementia; FDR = False discovery rate; HC = healthy controls; PVEC = partial volume effect correction; $V_{T[PVEC]} =$ partial volume effect-corrected distribution volume; VOI = volume of interest.

^aa-priori selected brain region with known Alzheimer's dementia pathology.

ANCOVA for the comparison of $V_{T[PVEC]}$ between Alzheimer's dementia and healthy controls (adjusted for age and sex) within five a-priori defined cortical brain regions, such as mean cortex, frontal, mesial temporal [hippocampus], parietal cortices, and basal forebrain (in bold); significance at $P<0.05_{corrected}$ (false discovery rate correction according to Benjamini-Hochberg; in bold). Further, exploratory post-hoc analysis for eleven additional brain regions, significance at $P<0.005_{uncorrected}$ ($P<0.05_{corrected}$; FDR-correction).