Table S1. Summary of plant growth parameters.

Growth parameters of eight C₄ grasses grown in control (full sunlight) or shade (16% of natural sunlight) environments. Values are means \pm SE (n = 3-4). The ranking (from lowest = a) of subtypes within each single row using multiple-comparison Tukey's *post hoc* test. Values followed by the same letter are not significantly different at the 5% level. Significant percent changes are shown in bold (p < 0.05).

Parameter	Treatment		C ₄		
		NADP-ME	PEP-CK	NAD-ME	
Total DM	Control	54.3±2.7ab	82.1±3.7b	35.1±5.9a	57.2±3.8
(g plant ⁻¹)	Shade	10.2±2.2a	6.5±0.7a	1.6±0.5a	7.1±1.3
	% change	-81	-92	-95	-88
Total leaf	Control	0.35±0.03a	0.56±0.07a	0.36±0.08a	0.41±0.03
area	Shade	0.16±0.04a	0.11±0.01a	0.03±0.01a	0.12±0.02
$(m^2 plant^{-1})$	% change	-53	-81	-92	0.29
Root/shoot	Control	0.42±0.04a	0.32±0.02a	0.37±0.06a	0.38±0.03
DM	Shade	0.2±0.01b	0.12±0a	0.19±0.02ab	0.17±0.01
	% change	-53	-62	-49	-54
LMA(g m ⁻²)	Control	41±3a	34±1a	37±2a	38±2
	Shade	25±2a	27±2a	22±1a	25±1
	% change	-39	-20	-39	-35
Leaf N _{mass}	Control	38±1a	43±1ab	48±2b	42±1
$(mg g^{-1})$	Shade	39±2a	39±2a	46±1a	41±1
	% change	2	-10	-4	-3
Leaf Narea	Control	1.56±0.13a	1.46±0.03a	1.81±0.08a	1.59±0.07
(g m ⁻²)	Shade	0.94±0.05a	1.03±0.05a	1.02±0.03a	0.99±0.03
	% change	-39	-29	-43	-38
Plant NUE	Control	120±5b	86±7ab	72±6a	99±5
	Shade	71±4b	60±1ab	43±4a	61±3
	% change	-41	-31	-39	-38

Table S2. Summary of gas exchange parameters.

Gas exchange parameters of eight C₄ grasses grown in control (full sunlight) or shade (16% of natural sunlight) environments. Values are means \pm SE (n = 3-4). The ranking (from lowest = a) of subtypes within each single row using multiple-comparison Tukey's *post hoc* test. Values followed by the same letter are not significantly different at the 5% level. Significant percent changes are shown in bold (p < 0.05).

Parameter Treatment			C ₄		
		NADP-ME	PEP-CK	NAD-ME	
CO ₂ assimilation at HL,	Control	42±1a	41±1a	42±1a	42±1
$A_{\rm h} (\mu {\rm mol} {\rm m}^{-2}{\rm s}^{-1})$	Shade	25±1b	22±1ab	16±1a	22±1
	% change	-39	-47	-62	-48
CO ₂ assimilation at LL,	Control	10±1a	12±1a	11±0a	11±0
$A_1 (\mu mol m^{-2} s^{-1})$	Shade	10±0a	9±0a	8±1a	9±0
	% change	0	-26	-30	-16
Conductnace at HL,	Control	0.33±0.02a	0.31±0.01a	0.33±0.01a	0.32±0.01
$g_{\rm sh}$ (µmol m ⁻² s ⁻¹)	Shade	0.21±0.02b	0.17±0.01ab	0.13±0.01a	0.18±0.01
	% change	-35	-43	-60	-45
Conductnace at LL,	Control	0.07±0a	0.07±0a	0.07±0.01a	0.07 ± 0
g_{s1} (µmol m ⁻² s ⁻¹)	Shade	0.07±0.01a	0.05±0a	0.06±0.01a	0.06±0
	% change	5	-28	-14	-10
Dark respiration,	Control	1.6±0.1b	1.1±0.1a	1.5±0.1ab	1.4±0.1
$R_{\rm d}$ (µmol m ⁻² s ⁻¹)	Shade	0.9±0.1a	1.2±0.2a	1.1±0.1a	1.1±0.1
	% change	-42	5	-29	-25
$R_{\rm d}/A_{\rm GROWTH}$ (x 100)	Control	3.7±0.2b	2.7±0.2a	3.5±0.2ab	3.3±0.1
	Shade	9.7±0.6a	12.8±1.9a	15.7±2.2a	12.3±1
	% change	158	373	341	269
PWUE	Control	130±5a	137±5a	132±5a	133±3
$(\mu mol CO_2 mol^{-1} H_2O)$	Shade	121±5a	128±5a	124±6a	124±3
	% change	-7	-6	-6	-7
PNUE	Control	29±2a	29±0a	23±0a	28±1
$(\mu mol CO_2 s^{-1} g^{-1} N)$	Shade	29±1b	23±1ab	17±2a	24±1
	% change	0	-19	-28	-12

Table S3. Summary of carbon isotope discrimination parameters.

Carbon isotope discrimination parameters for eight C₄ grasses grown at control (full sunlight) or shade (16% of natural sunlight) environments. Values are means \pm SE (n = 3-4). The ranking (from lowest = a) of subtypes within each single row using multiple-comparison Tukey's *post hoc* test. Values followed by the same letter are not significantly different at the 5% level. Significant percent changes are shown in bold (p < 0.05).

Parameter	Treatment		C ₄		
		NADP-ME	PEP-CK	NAD-ME	
$C_{\rm i}/C_{\rm a}$ at HL	Control	0.32±0.02a	0.3±0.02a	0.36±0.02a	0.32±0.01
	Shade	0.4±0.02a	0.4±0.02a	0.43±0.03a	0.41±0.01
	% change	28	33	19	27
$C_{\rm i}/C_{\rm a}$ at LL	Control	0.35±0.02a	0.26±0.04a	0.37±0.08a	0.33±0.02
	Shade	0.35±0.04a	0.24±0.02a	0.44±0.04a	0.34±0.02
	% change	0	-7	19	4
Δ_{P} (‰) at HL	Control	2.26±0.17a	2.58±0.21a	2.91±0.28a	2.57±0.13
	Shade	2.41±0.17a	3.15±0.29a	3.63±0.19a	2.98±0.17
	% change	7	22	25	16
Δ_{P} (‰) at LL	Control	2.7±0.48a	4.17±0.17a	4.66±0.21a	3.95±0.23
	Shade	2.45±0.3a	4.07±0.35a	4.58±0.15a	3.69±0.23
	% change	-9	-2	-2	-3
Leakiness (ϕ_I) at HL	Control	0.13±0.01a	0.17±0.03a	0.21±0.03a	0.17±0.01
	Shade	0.14±0.01a	0.23±0.03ab	0.29±0.02b	0.22±0.02
	% change	9	34	39	27
Leakiness (ϕ_h) at LL	Control	0.19±0.04a	0.27±0.03a	0.34±0.02a	0.27 ± 0.02
	Shade	0.14±0.03a	0.26±0.06a	0.32±0.01a	0.24 ± 0.02
	% change	-26	-1	-5	-3
Dry matter	Control	4.8±0.1a	6.1±0.3b	6.8±0.2b	5.5±0.2
photosynthetic C- isotope discrimination, Δ_{DM}	Shade	5.2±0.2a	7.5±0.3b	8.8±0.2b	6.7±0.3
(‰)	% change	9	22	30	21

Table S4. Summary of biochemical parameters.

Biochemical parameters of eight C₄ grasses grown at control or shade (16% of natural sunlight) environments. Values are means \pm SE (*n* = 3-4). The ranking (from lowest = a) of subtypes within each single row using multiple-comparison Tukey's *post hoc* test. Values followed by the same letter are not significantly different at the 5% level. Significant percent changes are shown in bold (*p* < 0.05).

Parameater	Treat	NADP-ME			PEP-CK		NAD-ME		Subtype			Total	
		P. antidotale	C. ciliaris	S. bicolor	Z. mays	M. maximus	C. gayana	P. coloratum	L. fusca	NADP-ME	PEP-CK	NAD-ME	C ₄
Rubisco activity	Control	33±1a	31±1a	29±1a	31±2a	29±4a	36±4a	37±3a	29±1a	31±1a	32±3a	33±2a	32
$(\mu mol m^{-2}s^{-1})$	Shade	16±1ab	13±1a	16±2ab	21±2b	11±2a	23±2b	11±1a	15±1ab	16±1a	17±3a	13±1a	16
(1)	% change	-50	-56	-45	-34	-63	-37	-71	-47	-47	-48	-60	-51
Rubisco sites	Control	6.2±0.1a	5.1±0.2a	5±0.2a	5.7±0.3a	5.5±0.8a	6.3±0.8a	11±1b	6.7±0.2a	5.5±0.2a	5.8±0.5ab	8.5±1b	6.3±0.4
$(\mu mol m^{-2})$	Shade	2.9±0.2ac	2.2±0.1a	3.1±0.4ac	3.8±0.4bc	2.5±0.2ab	4±0.4c	3.2±0.2ac	3.5±0.2ac	3±0.2a	3.2±0.4a	3.4±0.2a	3.1±0.1
u	% change	-52	-56	-39	-34	-54	-37	-71	-47	-47	-44	-61	-51
Rubisco	Control	42±4a	41±6a	47±5ab	62±1ab	44±2ab	48±1ab	45±1ab	65±7b	47±3a	46±1a	55±5a	49±2
activation (%)	Shade	32±6ab	83±5d	44±1bc	58±1cd	36±5ab	36±5ab	41±1bc	25±1a	54±6a	36±3a	33±4a	44±4
	% change	-24	102	-6	-7	-20	-25	-8	-62	15	-22	-40	-9
PEPC activity	Control	184±4d	128±6bc	274±13e	193±4d	169±22cd	160±16cd	94±12ab	51±11a	189±13b	165±13ab	69±12a	154±12
$(\mu mol m^{-2}s^{-1})$	Shade	46±8bc	20±2a	77±8cd	98±6d	48±6bc	65±11cd	27±3ab	19±3a	59±9a	57±7a	23±3a	50±6
~ /	% change	-75	-84	-72	-49	-72	-59	-71	-62	-69	-66	-66	-68
PEPC/Initial	Control	14±1.6c	10.9±1.9bc	20.1±1.8d	9.6±0.5bc	13.6±1cd	9.3±0.5ac	5.6±0.5ab	2.9±0.3a	13.7±1.3b	11.4±1.1at	4.2±0.7a	11±1
Rubisco activity	Shade	8.9±1.1ac	1.8±0.2a	11.8±1.4bc	8.2±0.5ac	14.2±3.8c	8.1±0.5ac	6±0.5ab	5±0.3ab	7.7±1.2a	11.2±2.2a	5.5±0.3a	8±0.9
	% change	-36.18	-83.65	-41.22	-14.7	4.84	-13.15	7.45	73.32	-43.93	-2.48	29.79	-27.22
NADP-ME	Control	57±2c	47±2b	50±2bc	49±3b	1±0a	1±0a	4±0a	3±1a	51±1b	1±0a	3±0a	28±5
activity	Shade	23±2b	25±1bc	33±1c	43±3d	0±0a	1±0a	1±0a	1±0a	31±2b	1±0a	1±0a	16±3
$(\mu mol m^{-2}s^{-1})$	% change	-60	-46	-35	-13	-77	2	-74	-67	-40	-43	-70	-100
NAD-ME	Control	3±0a	1±0a	2±0a	3±0a	3±1a	3±0a	35±1b	36±3b	2±0a	3±0a	35±2b	10±3
activity	Shade	1±0a	1±0a	1±0a	2±0a	1±0a	2±0a	15±1b	18±1b	1±0a	1±0a	17±1b	5±1
$(\mu mol m^{-2}s^{-1})$	% change	-56	-26	-45	-8	-65	-44	-57	-49	-38	-56	-53	-50
PEP-CK	Control	6±1ab	16±1bc	2±0a	25±1c	46±3d	145±4e	20±3c	20±3c	11±3a	103±20b	20±2a	37±9
activity	Shade	3±1a	5±1ab	0±0a	13±1b	22±2c	52±3d	9±0ab	5±0a	6±2a	35±6b	7±1a	14±3
$(\mu mol m^{-2}s^{-1})$	% change	-45	-68	-78	-47	-52	-64	-55	-76	-50	-66	-66	-62
Protein $(g m^{-2})$	Control	5.1±0.2ab	4.8±0.4ab	4.2±0.5ab	5.2±0.3ab	5.3±0.7ab	3.5±0.3a	5.8±0.5b	4.4±0.5ab	4.8±0.2a	4.4±0.5a	5±0.4a	4.8±0.2
	Shade	2.3±0.4ab	1.7±0.1a	3.7±0.3b	3.3±0.1b	1.8±0.2a	2.5±0.3ab	2.2±0.1ab	2.8±0.5ab	2.8±0.3a	2.2±0.2a	2.5±0.3a	2.5±0.2
	% change	-54	-64	-12	-37	-67	-27	-62	-37	-42	-51	-50	-47

Variable	Definition	Values/Calculation/Units
A	photosynthetic rate	μ mol m ⁻² s ⁻¹
$g_{\rm bs}$	bundle-sheath conductance to CO_2 (von Caemmerer, 2000)	$g_{\rm bs} = 0.003 \text{ mol } \text{m}^{-2} \text{ s}^{-1}$
φ _h	leakiness at high light (von Caemmerer et al., 2014)	unitless
φ	leakiness at low light (Ubierna et al., 2013)	unitless
a _b	¹³ C fractionation across the boundary layer	2.9 %
a	13 C fractionation due to diffusion of CO ₂ in air	4 4 %
a'	weighted fractionation across the boundary layer and	$a_b(C_a - C_{ls}) + a(C_{ls} - C_i)$
	stomata in series	$a = \frac{1}{C_a - C_i}$
<i>a</i> ;	fractionation factor associated with the dissolution of CO ₂	$a_i = s = 1.8 \%_0$
	and diffusion through water	
s	fractionation during leakage of CO ₂ out of the bundle-	18%
5	sheath cells (Henderson et al. 1992)	1.0 /00
f	fractionation associated with photorespiration	11.6 %
J t	ternary effect of transpiration rate on the carbon isotone	$(1+a') \cdot E_{a'}$
ι	discrimination during CO_2 assimilation	$t = \frac{1}{2 \cdot g_{1c}^{\dagger}} \%_0$
F	leaf transpiration rate	mmol $m^{-2} s^{-1}$
a^{t}	total conductance to CO ₂ diffusion including boundary	million m ² s ⁻¹
S ac	layer and stomatal conductance	
C_{1}	leaf surface CO ₂ mole fraction	umal mal ⁻¹
b_{1s}	fractionation by Rubisco (Fargubar, 1983)	30 %
b_3	combined fractionation of the conversion of CO_2 to HCO_2^-	-5 74 %
04	and PEP carboxylation (Farquhar, 1983)	-3.7 - 700
е	fractionation factor associated with respiration (Pengelly et	$e = \delta^{13}$ C in the CO ₂ cyllinder –
	al., 2010)	δ^{13} C in growth environment
$g_{ m m}$	mesophyll conductance to CO_2 (Ubierna et al., 2016)	$g_{\rm m} = 1.4 \text{ mol m}^{-2} \text{ s}^{-1} \text{ at } 28 ^{\circ}\text{C}$
$\tilde{\Delta}$	Photosynthetic discrimination against ¹³ C	9 ₀₀
Om	O_2 mole fraction in the mesophyll cells	210000 μmol mol ⁻¹
Os	O ₂ mole fraction in the bundle-sheath cells	$O_{\rm s} = \frac{\dot{\alpha} \cdot A}{0.047 \cdot a_{\rm b}} + O_m \ \mu {\rm mol \ mol^{-1}}$
C_{a}	CO_2 mole fraction in the ambient air	Measured
C_{s}	CO_2 mole fraction in the bundle-sheath cells	$(\Gamma^*:\mathcal{O}_r)\cdot (\frac{7}{r}\cdot (A+R_A) + \frac{(1-x)\cdot J_L}{r})$
- 3		$C_s = \frac{(1-x)(1-x)(1-x)}{(1-x)(1-x)(1-x)} \text{ in } \mu \text{ mol mol}^{-1}$
$C_{\rm i}$	CO_2 mole fraction inside the leaf	μmol mol ⁻¹
C_{m}	CO_2 mole fraction in the mesophyll cytosol at the sites of CA	$C_{\rm m} = C_{\rm i} - \frac{A}{g_{\rm m}}$ in µmol mol ⁻¹
Ra	non-photorespiratory CO ₂ released in the dark (= measured	μ mol m ⁻² s ⁻¹
π	rates of dark respiration)	
$R_{ m m}$	Mesophyll mitochondrial respiration rate	$R_{\rm m} = 0.5 R_{\rm d} {\rm in} \mu {\rm mol} {\rm m}^{-2} {\rm s}^{-1}$
Vc	Rubisco carboxylation rate (von Caemmerer, 2000)	$V_{\rm c} = \frac{(1-x) \cdot J_{\rm t}}{3 \cdot (1 + \frac{7 \cdot \Gamma^2 \cdot Q_{\rm c}}{3 \cdot (1 + \frac{7 \cdot \Gamma^2 \cdot Q_{\rm c}}{3 \cdot Q_{\rm c}})} \inf \mu \text{mol } {\rm m}^{-2} {\rm s}^{-1}$
Vo	Rubisco oxygenation rate (von Caemmerer, 2000)	$V_{\rm o} = \frac{V_{\rm c} - A - R_{\rm d}}{0.5} \mu {\rm mol} {\rm m}^{-2}{\rm s}^{-1}$
$V_{\rm P}$	PEP carboxylation rate (von Caemmerer, 2000)	$V_{\rm p} = \frac{x \cdot J_{\rm t}}{2} \mu \text{mol m}^{-2} \text{s}^{-1}$
α	fraction of PSII activity in the bundle-sheath cells	0 for NADP-ME and 0.2 for NAD-ME and PEP CK appaging
. *	(Sharwood et al., 2010) half of the regimerceal of Publices apositivity (Sharwood et	C DO 255 0 00022 and 0 000222 for NADD
Y	al 2016)	ME NAD ME and DED CV apopios
	al., 2010)	wie, NAD-Wie and PEP-UK species,
$\Gamma^*(uhar)$	componentian point in the absence of with shew drive	$\mathbf{r} = \mathbf{O} + \mathbf{v}^*$
1 (µbar)	respiration	$1 = O_{\rm s} \cdot \gamma$

Table S5. Definitions and units for variable described in the text.