
 
 

Stan Code Used to Run Analyses 
 
data { 
 int<lower=0> N;                  #Number of data points 
 int<lower=1> P;                   #Number of fixed effects  
 int<lower=0> J;                   #Number of subjects 
 int<lower=1,upper=J> subj[N];     #Subject indicator 
 int<lower=1> K;                   #Number of regions  
 int<lower=1> n_u;                 #Number of subject random effects 
 int<lower=1> n_corr;              #Dimension of random effects correlation matrix 
 vector[K] y[N];                   #Response variables 
 vector[P] X[N];                   #Fixed effects design matrix 
 vector[n_u] Z_u[N];               #Subject random effects design matrix 
} 
 
parameters { 
 matrix[K, P] beta;                 #Fixed effect coefficients 
 cholesky_factor_corr[n_corr] L_u;    #Cholesky factor for subject random effects  
 vector<lower=0>[n_corr] sigma_u;     #Subject random effects standard deviation 
 vector<lower=0,upper=1>[K] sigma_e;  #Residual standard deviation 
 matrix[n_corr, J] z_u;                 #Spherical subject random effects 
} 
 
transformed parameters { 
   matrix[K,n_u] u[J]; #Subject random effect coefficients 
 { 
    matrix[n_corr,n_corr] Sigma_u; #Subject random effects covariance matrix 
    matrix[n_corr,J] u_mat; 
    Sigma_u = diag_pre_multiply(sigma_u,L_u); 
    u_mat = Sigma_u * z_u; 
    for (i in 1:J) 
     u[i] = append_col(u_mat[1:K,i],u_mat[(1+K):n_corr,i]); 
 }    
} 
 
model { 
 vector[K] mu[N]; 
 L_u ~ lkj_corr_cholesky(1.0); 
 to_vector(beta) ~ normal(0,5); 
 to_vector(z_u) ~ normal(0,1); 
 for (i in 1:N) 
  mu[i] <- beta*X[i] + u[subj[i]]*Z_u[i]; 
 y ~ multi_normal(mu,diag_matrix(sigma_e .* sigma_e));         
} 
 
 
 

  



Online Interactive Models 
An interactive tool created with the R package Shiny15  is hosted online at 
https://briangordon.shinyapps.io/apoe4/ This application provides a more in-depth 
depiction of the statistical models and results than is possible in the main manuscript. 
The online application makes it possible to see the model estimates for each modality in 
every single brain region. By default the credible intervals are set at 99%, but the slider 
allows for an adjustment and recalculation of the credible intervals on the displayed 
panels down to 90%. Other options include varying the minimum number of visits a 
displayed subject has, displaying subject level credible intervals, and displaying the 
subjects’ raw data. Note altering the minimum number of visits only impacts the display 
and does not generate a recalculation of the models.  
 
 
Supplemental Table 1:  
 
Comparison of Demographics between E4 and Non-E4 groups with Longitudinal 
MRI 
 ε4+ (ε34 or ε44) ε4- (ε22, ε23, or ε33) Significance Test 

(N)umber of participants 150 332  

Age (sd) 65.5 (9.9) 67.2 (10.0) F1,480=3.02, p=0.08 

Gender, N male (%) 56 (37.3%) 129 (38.9%) X
2
=0.05, p=0.8 

Education (sd) 15.7 (2.5) 15.9 (2.5) F1,457=0.43, p=0.51 

MMSE (sd) 29.1 (1.3) 29.1 (1.0) F1,480=0.10, p=0.75 

CDR Sum of Boxes (sd) 0.02 (0.09) 0.02 (0.10) F1,480=0.36, p=0.55 

# of scans, mean (sd) 3.0 (1.2) 3.1 (1.3) F1,480=0.83, p=0.36 

Years of follow-up (sd) 5.4 (3.1) 5.6 (3.1) F1,480=0.33, p=0.56 

MMSE=Mini-Mental State Examination  CDR=Clinical Dementia Rating 
+Education values were not available for 23 individuals 
 
Does effects of APOE ε4 genotype.  
Linear mixed effects models were run modelling heterozygous (ε4 and ε3) and 
homozygotes (ε4 ε4) as separate groups. To be as focused as possible analyses were 
run only for PIB measurements in the precuneus and hippocampal volume. We found 
that the homozygotes did accumulate Aβ faster than heterozygotes and noncarriers. 
Similarly, APOE ε4 homozygotes had greater rates of structural atrophy than 
heterozygotes and noncarriers. Due to the restricted number of homozygotes with 
longitudinal PIB (n=11) and MRI (n=23), the credible intervals around model estimates 
were quite large at the older range of our distribution.  
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