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S1 Appendix. Haitian model setup and initial conditions 1

Haitian model setup. The computational domain of the model consists of the 140 2

Haitian communes, each of them hosting a human community with size extracted from 3

the website of the Panamerican Health Organization (PAHO, 4

http://ais.paho.org/phip/viz/ed_haiticoleracases.asp, accessed on 5

21.10.2016.). The original census data had been published by the Institut Haitien de 6

Statistique et d’Informatique (IHSI) in March 2015 (Fig S1.1). Distances dij among the 7

centroids of each commune have been extracted from the road network provided by the 8

OpenStreetMap contributors (available on-line at www.openstreetmap.org) following 9

the same procedure used in [1]. 10

The daily rainfall measurements driving the model up to the beginning of the 11

forecast are computed starting from the NASA-JAXA Global Precipitation Mission 12

(GPM 3IMERGDL 03 late run daily precipitation estimates, resolution: 0.1 degrees, 13

available since April 2015, see https://www.nasa.gov/mission_pages/GPM/main for 14

details) which is the successor of the Tropical Rainfall Measuring Mission (TRMM) used 15

in earlier studies. 16

Cholera projections into the future are driven by the precipitation forecasts provided 17

by the NOAA’s Climate Forecast System (CFS operational climate forecast having 18

resolution of 0.938 degrees in longitude and 0.246 degrees in latitude, data available 19

on-line at https://www.ncdc.noaa.gov). CFS forecasts are computed daily starting at 20
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Fig S1.1. Population associated to each of the 140 communes as estimated from
PAHO, http://ais.paho.org/phip/viz/ed_haiticoleracases.asp and communes
vaccinated during the 2016 OCV campaign (red borders). The doses per commune are
listed in Table S1.1

four different times (00, 06, 12, 18 UTC). For each of the four starting times the 21

climatic data are forecasted every six hours for about nine months. We compute daily 22

precipitation estimates for each commune by averaging the six-hours forecasts. The 23

precipitation fields obtained from both GPM and CFS datasets are downscaled to the 24

model nodes by interpolation on a finer regular grid of about 3 km and averaging on 25

each commune. 26

Two epidemiological records are used in this study: the daily number of reported 27

cases at the departmental level published on the website of the Haitian Ministry of 28

Health (Ministère de la Santé Publique et de la Population MSPP, 29

http://mspp.gouv.ht) since the beginning of the epidemic (October 2010), and the 30

cases recorded at each commune during 2016 provided by MSF. The two datasets are in 31

agreement during 2016, in the sense that the sum of the communal-level data 32

corresponds to the departmental-level data. 33

We use the departmental-level data up to the end of 2015 to determine the initial 34

condition of the model, while using the communal-level data, which is more informative 35

of the local cholera dynamics, in the calibration and assimilation procedure during 2016. 36
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Department Vaccinated Commune Estimated population
Grande Anse Anse-d’Hainault 36401
Grande Anse Beaumont 31580
Grande Anse Bonbon 8610
Grande Anse Chambellan 26459
Grande Anse Dame-Marie 38747
Grande Anse Jeremie 134317
Grande Anse Les Irois 23374
Grande Anse Moron 23374
Grande Anse Pestel 44659
Grande Anse total OCV doses 375304
Sud Aquin 104216
Sud Camp Perrin 45043
Sud Chardonnierses 25240
Sud Les Anglais 29891
Sud Les Cayes 151696
Sud Port-a-Piment 18922
Sud Port-Salut 19098
Sud total OCV doses 394106
Tot 769410

Table S1.1. Estimated population of the communes interested by the OCV campaign.
The number of OCV doses actually used in the model during the vaccination campaign
(November 11-18, 2016) is equal to the population multiplied by the vaccination
coverage.

Initial conditions. In order to estimate a suitable set of parameters that describes 37

the Haitian cholera dynamics before Matthew, the model simulations were started on 38

February 2016, using the data collected in the previous epidemic years (from October 39

2010 to February 2016) as forcings in a spin-up period. This spin-up period is necessary 40

to compute the proportion of population susceptible to cholera at the beginning of 2016, 41

which is key to estimate the vulnerability to a new outbreak in a consistent way with 42

respect the model parameters and the recorded cases. 43

Haiti’s recent history being marked by a large cholera epidemic starting in 2010 and 44

revamping every year since then, part of the population have acquired immunity that 45

protects them from reinfection. To estimate the initial state of susceptibility of the 46

population and the bacterial concentration in the water reservoir of each department, 47

we used an upscaled version of equations (1-6) driven by the real force of infection, 48
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which corresponds to the daily reported cases per department, here indicated with dCk

dt : 49

dIk
dt

=
dCk

dt
− (γ + µ+ α) , Ik (S1.1)

dRk

dt
= −(ρ+ µ)Rk + γ Ik +

(1 − σ)

σ

dCk

dt
, (S1.2)

dBk

dt
= −µBBk +

p

Wk
[1 + φJk(t)] (Ik) , (S1.3)

where the index k = 1, 10 refers to the ten Haitian departments. These equations have 50

been solved between October 20, 2010 and January 2, 2016, by assuming the initial 51

numbers of infected and recovered to be 0 (there has been no history of cholera in Haiti 52

in the 200 years before the start of the epidemic in 2010 [2–4]). The number of 53

vaccinated people is set to zero, while the number of susceptibles is derived by 54

subtracting the abundance of the other compartments from the total population, 55

S = H −R− I. The results at the department level are then downscaled to the 56

commune level proportionally to the commune population. Subsequently, a similar 57

procedure is used at the communal level from January 2, 2016 to February 6, 2016, 58

using as forcings the available weekly reported cases in each commune, thus ensuring 59

that the bacterial concentration in the water reservoir at the beginning of the 60

simulation is consistent with the data in each node of the model. 61

Model limitations. The deterministic equations used to simulate our model are well 62

suited for large epidemics where demographic stochasticity is negligible. Adding 63

stochasticity, as proposed in [5], could have been handled with the same DA approach, 64

albeit at extra computational cost. A key spatial driver of the epidemic is based on an 65

empirical estimation of human mobility, in this case computed by a gravity model [6]. 66

Such assumption is consistent with the highly diffusive spread of the disease in presence 67

of large incidence, as at the onset of the epidemics in 2010. It might not be accurate, 68

however, for periods characterized by a low number of reported cases, when the spread 69

might be highly stochastic. In addition, the gravity model does not account for 70

post-hurricane specific population displacements which might have been characterized 71

by singular characters. However, it is expected that population movements between 72

high/low cholera incidence areas will favor the widespread propagation of the epidemic 73

at the country-scale and thus that the gravity approach provides a reasonable 74
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approximation. Human mobility data derived from mobile phone records have been 75

used in Haiti and elsewhere in the context of cholera epidemics [7, 8] and could improve 76

future approximations of human mobility if provided in close to real-time [7, 9]. 77

A further limitation of the model might reside in the way the revamping effect of 78

heavy rainfall is accounted for. In fact, our choice here relies on a scheme that directly 79

models the bacterial concentration of a water reservoir (owing to washout of open-air 80

defecation sites or to sewer overflows) that formally proved superior to all other models 81

during the early phases of the 2010 Haiti outbreak [10] . However, after much WASH 82

efforts especially in the southern Haitian regions hit by Matthew, it may be worth 83

considering a comparison with models where rainfall drivers increase direct exposure 84

probabilities rather than the environmental bacterial concentration [11]. 85

Intrinsic limitations of the proposed methodology for predictive purposes are

associated to the correct estimation of model and data uncertainty, ingredients that are

key to a good performance of DA schemes. Reliable data availability in real time both

on reported cases and on measured ground values of precipitation (which help constrain

remote acquisition of rainfall fields) is and will remain a limiting factor, also in view of

the low specificity of the reported cholera case definitions.
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